Quaternized Diaminobutane/Poly(vinyl alcohol) Cross-Linked Membranes for Acid Recovery via Diffusion Dialysis
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Synthesis of Quaternized Diaminobutane (QDAB)
2.3. Preparation of QDAB/PVA Membranes
2.4. Membrane Characterizations
2.4.1. Fourier-Transform Infrared (FTIR) Spectroscopy
2.4.2. Ion-Exchange Capacity (IEC)
2.4.3. Water Uptake and Linear Expansion Ratio
2.4.4. Thermal Stability
2.4.5. Mechanical Properties
2.4.6. Scanning Electron Microscopy
2.4.7. Acid Recovery Experiment
3. Results and Discussion
3.1. FTIR Spectra Analysis
3.2. Ion-Exchange Capacity
3.3. Water Uptake and Linear Expansion Ratio
3.4. Thermal Stability of QDAB AEMs
3.5. Mechanical Strength of QDAB Membranes
3.6. Morphological Analysis
3.7. Acid Recovery Performance of QDAB AEMs via Diffusion Dialysis (DD)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, X.; Wang, Z.; Zhang, H.; Yuan, Y.; Wang, H.; Zhang, Z. Prepared poly(aryl piperidinium) anion exchange membranes for acid recovery to improve dialysis coefficients and selectivity. J. Membr. Sci. 2021, 619, 118805. [Google Scholar] [CrossRef]
- Huang, X.; Xu, Y.; Shan, C.; Li, X.; Zhang, W.; Pan, B. Coupled Cu(II)-EDTA degradation and Cu(II) removal from acidic wastewater by ozonation: Performance, products and pathways. Chem. Eng. J. 2016, 299, 23–29. [Google Scholar] [CrossRef]
- Ji, W.; Wu, B.; Zhu, Y.; Irfan, M.; Afsar, N.U.; Ge, L.; Xu, T. Self-organized nanostructured anion exchange membranes for acid recovery. Chem. Eng. J. 2020, 382, 122838. [Google Scholar] [CrossRef]
- Xiao, H.F.; Chen, Q.; Cheng, H.; Li, X.M.; Qin, W.M.; Chen, B.S.; Xiao, D.; Zhang, W.M. Selective removal of halides from spent zinc sulfate electrolyte by diffusion dialysis. J. Membr. Sci. 2017, 537, 111–118. [Google Scholar] [CrossRef]
- San Román, M.F.; Ortiz-Gándara, I.; Bringas, E.; Ibañez, R.; Ortiz, I. Membrane selective recovery of HCl, zinc and iron from simulated mining effluents. Desalination 2018, 440, 78–87. [Google Scholar] [CrossRef]
- Zhou, Z.; Qin, W. Extraction properties of phthalic acid and aromatic polycarboxylic acids using various solvents. J. Chem. Technol. Biotechnol. 2011, 86, 492–496. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, Z.; He, Y.; Mondal, A.N.; Bakangura, E.; Xu, T. Diffusion dialysis membranes with semi-interpenetrating network for acid recovery. J. Membr. Sci. 2015, 493, 645–653. [Google Scholar] [CrossRef]
- Lee, H.J.; Ahn, S.J.; Seo, Y.J.; Lee, J.W. A feasibility study on the multistage process for the oxalic acid pretreatment of a lignocellulosic biomass using electrodialysis. Bioresour. Technol. 2013, 130, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Iakovleva, E.; Mäkilä, E.; Salonen, J.; Sitarz, M.; Wang, S.; Sillanpää, M. Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecol. Eng. 2015, 81, 30–40. [Google Scholar] [CrossRef]
- Agrawal, A.; Sahu, K.K. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J. Hazard. Mater. 2009, 171, 61–75. [Google Scholar] [CrossRef]
- Luo, J.; Wu, C.; Xu, T.; Wu, Y. Diffusion dialysis-concept, principle and applications. J. Membr. Sci. 2011, 366, 1–16. [Google Scholar] [CrossRef]
- Feng, J.; Chen, J.; Wei, B.; Liao, S.; Yu, Y.; Li, X. Series-connected hexacations cross-linked anion exchange membranes for diffusion dialysis in acid recovery. J. Membr. Sci. 2019, 570–571, 120–129. [Google Scholar] [CrossRef]
- Mondal, A.N.; Cheng, C.; Yao, Z.; Pan, J.; Hossain, M.M.; Khan, M.I.; Yang, Z.; Wu, L.; Xu, T. Novel quaternized aromatic amine based hybrid PVA membranes for acid recovery. J. Membr. Sci. 2015, 490, 29–37. [Google Scholar] [CrossRef]
- Palatý, Z.; Žáková, A. Separation of H2SO4 + CuSO4 mixture by diffusion dialysis. J. Hazard. Mater. 2004, 114, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Gong, M.; Wu, Y.; Wu, C.; Luo, J.; Xu, T. Alkali recovery using PVA/SiO2 cation exchange membranes with different –COOH contents. J. Hazard. Mater. 2013, 244–245, 348–356. [Google Scholar] [CrossRef]
- Xu, J.; Lu, S.; Fu, D. Recovery of hydrochloric acid from the waste acid solution by diffusion dialysis. J. Hazard. Mater. 2009, 165, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Kim, M.S.; Kim, B.S.; Kim, S.K.; Kim, W.B.; Lee, J.C. Recovery of H2SO4 from waste acid solution by a diffusion dialysis method. J. Hazard. Mater. 2005, 124, 230–235. [Google Scholar] [CrossRef]
- Lan, S.; Wen, X.; Zhu, Z.; Shao, F.; Zhu, C. Recycling of spent nitric acid solution from electrodialysis by diffusion dialysis. Desalination 2011, 278, 227–230. [Google Scholar] [CrossRef]
- Palatý, Z.; Bendová, H. Continuous dialysis of mixture of inorganic acids. Sep. Purif. Technol. 2017, 172, 277–284. [Google Scholar] [CrossRef]
- Pan, J.; He, Y.; Wu, L.; Jiang, C.; Wu, B.; Mondal, A.N.; Cheng, C.; Xu, T. Anion exchange membranes from hot-pressed electrospun QPPO–SiO2 hybrid nanofibers for acid recovery. J. Membr. Sci. 2015, 480, 115–121. [Google Scholar] [CrossRef]
- Cegłowski, M.; Schroeder, G. Preparation of porous resin with Schiff base chelating groups for removal of heavy metal ions from aqueous solutions. Chem. Eng. J. 2015, 263, 402–411. [Google Scholar] [CrossRef]
- Sun, F.; Wu, C.; Wu, Y.; Xu, T. Porous BPPO-based membranes modified by multisilicon copolymer for application in diffusion dialysis. J. Membr. Sci. 2014, 450, 103–110. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, J.; Zhao, L.; Zhang, G.; Wu, C.; Xu, T. QPPO/PVA anion exchange hybrid membranes from double crosslinking agents for acid recovery. J. Membr. Sci. 2013, 428, 95–103. [Google Scholar] [CrossRef]
- Irfan, M.; Bakangura, E.; Afsar, N.U.; Xu, T. Augmenting acid recovery from different systems by novel Q-DAN anion exchange membranes via diffusion dialysis. Sep. Purif. Technol. 2018, 201, 336–345. [Google Scholar] [CrossRef]
- Kim, D.H.; Park, J.H.; Seo, S.J.; Park, J.S.; Jung, S.; Kang, Y.S.; Choi, J.H.; Kang, M.S. Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance. J. Membr. Sci. 2013, 447, 80–86. [Google Scholar] [CrossRef]
- Yadav, S.; Soontarapa, K.; Jyothi, M.S.; Padaki, M.; Balakrishna, R.G.; Lai, J.Y. Supplementing multi-functional groups to polysulfone membranes using Azadirachta indica leaves powder for effective and highly selective acid recovery. J. Hazard. Mater. 2019, 369, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Afsar, N.U.; Bakangura, E.; Mondal, A.N.; Khan, M.I.; Emmanuel, K.; Yang, Z.; Wu, L.; Xu, T. Development of novel PVA-QUDAP based anion exchange membranes for diffusion dialysis and theoretical analysis therein. Sep. Purif. Technol. 2017, 178, 269–278. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, Q.L.; Zhang, Q.G.; Zhu, A.M. Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. J. Power Sources 2008, 183, 447–453. [Google Scholar] [CrossRef]
- Luo, J.; Wu, C.; Wu, Y.; Xu, T. Diffusion dialysis of hydrochloride acid at different temperatures using PPO–SiO2 hybrid anion exchange membranes. J. Membr. Sci. 2010, 347, 240–249. [Google Scholar] [CrossRef]
- Dilshad, M.R.; Islam, A.; Hamidullah, U.; Jamshaid, F.; Ahmad, A.; Butt, M.T.; Ijaz, A. Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation. Sep. Purif. Technol. 2019, 210, 627–635. [Google Scholar] [CrossRef]
- Raza, M.A.; Islam, A.; Sabir, A.; Gull, N.; Ali, I.; Mehmood, R.; Bae, J.; Hassan, G.; Khan, M.U. PVA/TEOS crosslinked membranes incorporating zinc oxide nanoparticles and sodium alginate to improve reverse osmosis performance for desalination. J. Appl. Polym. Sci. 2019, 136, 47559. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, C.; Li, Y.; Xu, T.; Fu, Y. PVA–silica anion-exchange hybrid membranes prepared through a copolymer crosslinking agent. J. Membr. Sci. 2010, 350, 322–332. [Google Scholar] [CrossRef]
- Emmanuel, K.; Cheng, C.; Erigene, B.; Mondal, A.N.; Hossain, M.M.; Khan, M.I.; Afsar, N.U.; Liang, G.; Wu, L.; Xu, T. Imidazolium functionalized anion exchange membrane blended with PVA for acid recovery via diffusion dialysis process. J. Membr. Sci. 2016, 497, 209–215. [Google Scholar] [CrossRef]
- Emmanuel, K.; Erigene, B.; Cheng, C.; Mondal, A.N.; Hossain, M.M.; Khan, M.I.; Afsar, N.U.; Ge, L.; Wu, L.; Xu, T. Facile synthesis of pyridinium functionalized anion exchange membranes for diffusion dialysis application. Sep. Purif. Technol. 2016, 167, 108–116. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Wang, Y. Diffusion Dialysis for Acid Recovery from Acidic Waste Solutions: Anion Exchange Membranes and Technology Integration. Membranes 2020, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, C.; Wu, Y.; Gu, J.; Xu, T. Polyelectrolyte complex/PVA membranes for diffusion dialysis. J. Hazard. Mater. 2013, 261, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, K.; Cheng, C.; Erigene, B.; Mondal, A.N.; Afsar, N.U.; Khan, M.I.; Hossain, M.M.; Jiang, C.; Ge, L.; Wu, L.; et al. Novel synthetic route to prepare doubly quaternized anion exchange membranes for diffusion dialysis application. Sep. Purif. Technol. 2017, 189, 204–212. [Google Scholar] [CrossRef]
- Cheng, C.; Yang, Z.; Pan, J.; Tong, B.; Xu, T. Facile and cost effective PVA based hybrid membrane fabrication for acid recovery. Sep. Purif. Technol. 2014, 136, 250–257. [Google Scholar] [CrossRef]
- Wu, C.; Wu, Y.; Luo, J.; Xu, T.; Fu, Y. Anion exchange hybrid membranes from PVA and multi-alkoxy silicon copolymer tailored for diffusion dialysis process. J. Membr. Sci. 2010, 356, 96–104. [Google Scholar] [CrossRef]
- Ananth, A.; Arthanareeswaran, G.; Wang, H. The influence of tetraethylorthosilicate and polyethyleneimine on the performance of polyethersulfone membranes. Desalination 2012, 287, 61–70. [Google Scholar] [CrossRef]
- Afsar, N.U.; Erigene, B.; Irfan, M.; Wu, B.; Xu, T.; Ji, W.; Emmanuel, K.; Ge, L.; Xu, T. High performance anion exchange membrane with proton transport pathways for diffusion dialysis. Sep. Purif. Technol. 2018, 193, 11–20. [Google Scholar] [CrossRef]
- Klaysom, C.; Marschall, R.; Moon, S.H.; Ladewig, B.P.; Lu, G.Q.; Wang, L. Preparation of porous composite ion-exchange membranes for desalination application. J. Mater. Chem. 2011, 21, 7401–7409. [Google Scholar] [CrossRef]
- Wu, D.; Xu, T.; Wu, L.; Wu, Y. Hybrid acid–base polymer membranes prepared for application in fuel cells. J. Power Sources 2009, 186, 286–292. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C. Spectrometric identification of organic compounds. J. Chem. Educ. 1962, 39, 546. [Google Scholar] [CrossRef]
- Costa-Júnior, E.S.; Barbosa-Stancioli, E.F.; Mansur, A.A.; Vasconcelos, W.L.; Mansur, H.S. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr. Polym. 2009, 76, 472–481. [Google Scholar] [CrossRef]
- Xiong, Y.; Liu, Q.L.; Zhu, A.M.; Huang, S.M.; Zeng, Q.H. Performance of organic–inorganic hybrid anion-exchange membranes for alkaline direct methanol fuel cells. J. Power Sources 2009, 186, 328–333. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Islam, A.; Butt, M.A. Novel Silica Functionalized Monosodium Glutamate/PVA Cross-Linked Membranes for Alkali Recovery by Diffusion Dialysis. J. Polym. Environ. 2021. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, C.; Gong, M.; Xu, T. New anion exchanger organic–inorganic hybrid materials and membranes from a copolymerof glycidylmethacrylate and γ-methacryloxypropyl trimethoxy silane. J. Appl. Polym. Sci. 2006, 102, 3580–3589. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, J.; Yao, L.; Wu, C.; Mao, F.; Xu, T. PVA/SiO2 anion exchange hybrid membranes from multisilicon copolymers with two types of molecular weights. J. Membr. Sci. 2012, 399–400, 16–27. [Google Scholar] [CrossRef]
- Wu, Y.; Luo, J.; Wu, C.; Xu, T.; Fu, Y. Bionic Multisilicon Copolymers Used As Novel Cross-Linking Agents for Preparing Anion Exchange Hybrid Membranes. J. Phys. Chem. B 2011, 115, 6474–6483. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Zhou, H.; Nakazawa, S.; Hara, N. An extremely low methanol crossover and highly durable aromatic pore-filling electrolyte membrane for direct methanol fuel cells. Adv. Mater. 2007, 19, 592–596. [Google Scholar] [CrossRef]
- Dilshad, M.R.; Islam, A.; Sabir, A.; Shafiq, M.; Butt, M.T.; Ijaz, A.; Jamil, T. Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation. J. Ind. Eng. Chem. 2017, 55, 65–73. [Google Scholar] [CrossRef]
- Xing, R.; Ho, W.S. Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. J. Taiwan Inst. Chem. Eng. 2009, 40, 654–662. [Google Scholar] [CrossRef]
- Gu, J.; Wu, C.; Wu, Y.; Luo, J.; Xu, T. PVA-based hybrid membranes from cation exchange multisilicon copolymer for alkali recovery. Desalination 2012, 304, 25–32. [Google Scholar] [CrossRef]
- Mondal, A.N.; Zheng, C.; Cheng, C.; Miao, J.; Hossain, M.M.; Emmanuel, K.; Khan, M.I.; Afsar, N.U.; Ge, L.; Wu, L.; et al. Novel silica-functionalized aminoisophthalic acid-based membranes for base recovery via diffusion dialysis. J. Membr. Sci. 2016, 507, 90–98. [Google Scholar] [CrossRef]
- Yoon, K.S.; Lee, J.Y.; Kim, T.H.; Yu, D.M.; Hong, S.K.; Hong, Y.T. Multiblock copolymers based on poly(p-phenylene)-co-poly(arylene ether sulfone ketone) with sulfonated multiphenyl pendant groups for polymer electrolyte fuel cell (PEMFC) application. Eur. Polym. J. 2015, 66, 1–11. [Google Scholar] [CrossRef]
- Bakangura, E.; Cheng, C.; Wu, L.; He, Y.; Ge, X.; Ran, J.; Emmanuel, K.; Xu, T. Highly charged hierarchically structured porous anion exchange membranes with excellent performance. J. Membr. Sci. 2016, 515, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Emmanuel, K.; Cheng, C.; Mondal, A.N.; Erigene, B.; Hossain, M.M.; Afsar, N.U.; Khan, M.I.; Wu, L.; Xu, T. Covalently cross-linked pyridinium based AEMs with aromatic pendant groups for acid recovery via diffusion dialysis. Sep. Purif. Technol. 2016, 164, 125–131. [Google Scholar] [CrossRef]
Membrane Code | QDAB of PVA (wt. %) | TEOS of PVA (wt. %) | IEC (mmol/g) | Water Uptake (%) | LER (%) |
---|---|---|---|---|---|
QDAB-30 | 30 | 20 | 0.86 ± 0.02 | 71.3 | 28.7 |
QDAB-40 | 40 | 20 | 1.07 ± 0.03 | 84.6 | 32.4 |
QDAB-50 | 50 | 20 | 1.19 ± 0.03 | 109.1 | 34.2 |
QDAB-60 | 60 | 20 | 1.38 ± 0.04 | 131.4 | 37.8 |
QDAB-70 | 70 | 20 | 1.46 ± 0.05 | 143.8 | 39.5 |
Membrane Type | T10% (°C) | T40% (°C) | T60% (°C) |
---|---|---|---|
QDAB-30 | 301 | 358 | 396 |
QDAB-40 | 296 | 365 | 411 |
QDAB-50 | 291 | 371 | 421 |
QDAB-60 | 277 | 376 | 438 |
QDAB-70 | 268 | 381 | 441 |
Membrane Type | UH (m/h) | S | Ref. |
---|---|---|---|
PVA based hybrid | 0.011–0.018 | 18.5–21 | [38] |
Quaternized aromatic amine/PVA | 0.0172–0.0252 | 14–21 | [13] |
PVA-SiO2 hybrid | 0.0079–0.01 | 15.9–21 | [32] |
Porous BPPO based hybrid | 0.020–0.025 | 28.6–45.5 | [22] |
QPPO/PVA hybrid | 0.021–0.049 | 26–39 | [23] |
Commercial DF-120 | 0.009 | 18.5 | [34] |
QDAB/PVA hybrid | 0.0186–0.0295 | 24.7–44.1 | This Work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashraf, M.A.; Islam, A.; Butt, M.A.; Mannan, H.A.; Khan, R.U.; Kamran, K.; Bashir, S.; Iqbal, J.; Al-Ghamdi, A.A.; Al-Sehemi, A.G. Quaternized Diaminobutane/Poly(vinyl alcohol) Cross-Linked Membranes for Acid Recovery via Diffusion Dialysis. Membranes 2021, 11, 786. https://doi.org/10.3390/membranes11100786
Ashraf MA, Islam A, Butt MA, Mannan HA, Khan RU, Kamran K, Bashir S, Iqbal J, Al-Ghamdi AA, Al-Sehemi AG. Quaternized Diaminobutane/Poly(vinyl alcohol) Cross-Linked Membranes for Acid Recovery via Diffusion Dialysis. Membranes. 2021; 11(10):786. https://doi.org/10.3390/membranes11100786
Chicago/Turabian StyleAshraf, Muhammad Adnan, Atif Islam, Muhammad Arif Butt, Hafiz Abdul Mannan, Rafi Ullah Khan, Kashif Kamran, Shahid Bashir, Javed Iqbal, Ahmed A. Al-Ghamdi, and Abdullah G. Al-Sehemi. 2021. "Quaternized Diaminobutane/Poly(vinyl alcohol) Cross-Linked Membranes for Acid Recovery via Diffusion Dialysis" Membranes 11, no. 10: 786. https://doi.org/10.3390/membranes11100786
APA StyleAshraf, M. A., Islam, A., Butt, M. A., Mannan, H. A., Khan, R. U., Kamran, K., Bashir, S., Iqbal, J., Al-Ghamdi, A. A., & Al-Sehemi, A. G. (2021). Quaternized Diaminobutane/Poly(vinyl alcohol) Cross-Linked Membranes for Acid Recovery via Diffusion Dialysis. Membranes, 11(10), 786. https://doi.org/10.3390/membranes11100786