Modeling of H2 Permeation through Electroless Pore-Plated Composite Pd Membranes Using Computational Fluid Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pd Membranes: Preparation and Basic Characterization
2.2. Computational Model
2.2.1. Geometry and Mesh of the Membrane Cell
2.2.2. Porous Support Modeling
2.2.3. H2 Permeation through the Bulk Palladium
2.2.4. Fluid Dynamics
2.2.5. Boundary Conditions and Physical Properties
2.2.6. Convergence Criteria and Solution Methods
3. Results and Discussion
3.1. Fundamental Membrane Characterization
3.2. Porous Support Modeling
3.3. H2 Permeation through the Composite Membrane: In–Out Configuration
3.4. H2 Permeation through the Composite Membrane: Out–In Configuration
3.5. General Model Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Twigg, M.V.; Dupont, V. Hydrogen production from fossil fuel and biomass feedstocks. In Advances in Hydrogen Production, Storage and Distribution; Woodhead Publishing: Cambridge, UK, 2014; pp. 43–84. [Google Scholar]
- Wallman, P.H.; Thorsness, C.B.; Winter, J.D. Hydrogen production from wastes. Energy 1998, 23, 271–278. [Google Scholar] [CrossRef]
- Miyaoka, H.; Miyaoka, H.; Ichikawa, T.; Ichikawa, T.; Kojima, Y. Highly purified hydrogen production from ammonia for PEM fuel cell. Int. J. Hydrogen Energy 2018, 43, 14486–14492. [Google Scholar] [CrossRef]
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Ávila-Neto, C.N.; Dantas, S.C.; Silva, F.A.; Franco, T.V.; Romanielo, L.L.; Hori, C.E.; Assis, A.J. Hydrogen production from methane reforming: Thermodynamic assessment and autothermal reactor design. J. Nat. Gas Sci. Eng. 2009, 1, 205–215. [Google Scholar] [CrossRef]
- Chen, W.H.; Chen, C.Y. Water gas shift reaction for hydrogen production and carbon dioxide capture: A review. Appl. Energy 2020, 258, 114078. [Google Scholar] [CrossRef]
- Bernardo, G.; Araújo, T.; da Silva Lopes, T.; Sousa, J.; Mendes, A. Recent advances in membrane technologies for hydrogen purification. Int. J. Hydrogen Energy 2020, 45, 7313–7338. [Google Scholar] [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven chemical separation to change the world. Nature 2016, 53, 435–437. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Hägg, M.B. Membranes for environmentally friendly energy processes. Membranes (Basel) 2012, 2, 706–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alique, D.; Martinez-Diaz, D.; Sanz, R.; Calles, J.A. Review of supported pd-based membranes preparation by electroless plating for ultra-pure hydrogen production. Membranes (Basel) 2018, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirasaki, Y.; Yasuda, I. Membrane reactor for hydrogen production from natural gas at the Tokyo Gas Company: A case study. In Handbook of Membrane Reactors; Woodhead Publishing: Cambridge, UK, 2013; Volume 2, pp. 487–507. [Google Scholar]
- Delima, R.S.; Sherbo, R.S.; Dvorak, D.J.; Kurimoto, A.; Berlinguette, C.P. Supported palladium membrane reactor architecture for electrocatalytic hydrogenation. J. Mater. Chem. A 2019, 7, 26586–26595. [Google Scholar] [CrossRef]
- Alique, D. Processing and characterization of coating and thin film materials. In Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications; Springer International Publishing: Cham, Switzerland, 2017; pp. 27–72. [Google Scholar]
- Zhu, B.; Duke, M.; Dumée, L.F.; Merenda, A.; des Ligneris, E.; Kong, L.; Hodgson, P.D.; Gray, S. Short review on porous metal membranes—Fabrication, commercial products, and applications. Membranes (Basel) 2018, 8, 83. [Google Scholar] [CrossRef] [Green Version]
- Melendez, J.; Fernandez, E.; Gallucci, F.; van Sint Annaland, M.; Arias, P.L.; Pacheco Tanaka, D.A. Preparation and characterization of ceramic supported ultra-thin (~1 µm) Pd-Ag membranes. J. Memb. Sci. 2017, 528, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Lewis, A.E.; Kershner, D.C.; Paglieri, S.N.; Slepicka, M.J.; Way, J.D. Pd-Pt/YSZ composite membranes for hydrogen separation from synthetic water-gas shift streams. J. Memb. Sci. 2013, 437, 257–264. [Google Scholar] [CrossRef]
- Roa, F.; Douglas Way, J.; McCormick, R.L.; Paglieri, S.N. Preparation and characterization of Pd-Cu composite membranes for hydrogen separation. Chem. Eng. J. 2003, 93, 11–22. [Google Scholar] [CrossRef]
- Alique, D.; Sanz, R.; Calles, J.A. Pd membranes by electroless pore-plating. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier Publising: Amsterdam, The Netherlands, 2020; pp. 31–62. [Google Scholar]
- Harris, C.K.; Roekaerts, D.; Rosendal, F.J.J.; Buitendijk, F.G.J.; Daskopoulos, P.; Vreenegoor, A.J.N.; Wang, H. Computational fluid dynamics for chemical reactor engineering. Chem. Eng. Sci. 1996, 51, 1569–1594. [Google Scholar] [CrossRef] [Green Version]
- Fimbres-Weihs, G.A.; Wiley, D.E. Review of 3D CFD modeling of flow and mass transfer in narrow spacer-filled channels in membrane modules. Chem. Eng. Process. Process Intensif. 2010, 49, 759–781. [Google Scholar] [CrossRef]
- Ghohe, F.M.; Hormozi, F. A numerical investigation on H2 separation by a conical palladium membrane. Int. J. Hydrogen Energy 2019, 44, 10653–10665. [Google Scholar] [CrossRef]
- Coroneo, M.; Montante, G.; Catalano, J.; Paglianti, A. Modelling the effect of operating conditions on hydrodynamics and mass transfer in a Pd-Ag membrane module for H2 purification. J. Memb. Sci. 2009, 343, 34–41. [Google Scholar] [CrossRef]
- Coroneo, M.; Montante, G.; Giacinti Baschetti, M.; Paglianti, A. CFD modelling of inorganic membrane modules for gas mixture separation. Chem. Eng. Sci. 2009, 64, 1085–1094. [Google Scholar] [CrossRef]
- Chen, W.H.; Syu, W.Z.; Hung, C.I.; Lin, Y.L.; Yang, C.C. A numerical approach of conjugate hydrogen permeation and polarization in a Pd membrane tube. Int. J. Hydrogen Energy 2012, 37, 12666–12679. [Google Scholar] [CrossRef]
- Ghasemzadeh, K.; Harasi, J.N.; Amiri, T.Y.; Basile, A.; Iulianelli, A. Methanol steam reforming for hydrogen generation: A comparative modeling study between silica and Pd-based membrane reactors by CFD method. Fuel Process. Technol. 2020, 199, 106273. [Google Scholar] [CrossRef]
- Ben-Mansour, R.; Abuelyamen, A.; Habib, M.A. CFD modeling of hydrogen separation through Pd-based membrane. Int. J. Hydrogen Energy 2020, 45, 23006–23019. [Google Scholar] [CrossRef]
- Fatemi, S.; Banitaba, F.; Mansourpour, Z. Combination of Adsorption-Diffusion Model with Computational Fluid Dynamics for Simulation of a Tubular Membrane Made from SAPO-34 Thin Layer Supported by Stainless Steel for Separation of CO2 from CH4. J. Membr. Sep. Technol. 2016, 5, 16–24. [Google Scholar] [CrossRef]
- Martinez-Diaz, D.; Sanz, R.; Calles, J.A.; Alique, D. H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers. Sep. Purif. Technol. 2019, 216, 16–24. [Google Scholar] [CrossRef]
- Martinez-Diaz, D.; Martínez del Monte, D.; García-Rojas, E.; Alique, D.; Calles, J.A.; Sanz, R. Comprehensive permeation analysis and mechanical resistance of electroless pore-plated Pd-membranes with ordered mesoporous ceria as intermediate layer. Sep. Purif. Technol. 2021, 258, 118066. [Google Scholar] [CrossRef]
- Sanz, R.; Calles, J.A.; Alique, D.; Furones, L. New synthesis method of Pd membranes over tubular PSS supports via “pore-plating” for hydrogen separation processes. Int. J. Hydrogen Energy 2012, 37, 18476–18485. [Google Scholar] [CrossRef]
- Pacheco Tanaka, D.A.; Okazaki, J.; Llosa Tanco, M.A.; Suzuki, T.M. Fabrication of supported palladium alloy membranes using electroless plating techniques. In Palladium Membrane Technology for Hydrogen Production, Carbon Capture and Other Applications: Principles, Energy Production and Other Applications; Woodhead Publishing: Cambridge, UK, 2015; pp. 83–99. ISBN 9781782422419. [Google Scholar]
- ANSYS, Inc. ANSYS Fluent User´s Guide; ANSYS, Inc.: Canonsburg, PA, USA, 2013; pp. 223–226. [Google Scholar]
- Ward, T.L.; Dao, T. Model of hydrogen permeation behavior in palladium membranes. J. Memb. Sci. 1999, 153, 211–231. [Google Scholar] [CrossRef]
- Hara, S.; Caravella, A.; Ishitsuka, M.; Suda, H.; Mukaida, M.; Haraya, K.; Shimano, E.; Tsuji, T. Hydrogen diffusion coefficient and mobility in palladium as a function of equilibrium pressure evaluated by permeation measurement. J. Memb. Sci. 2012, 421–422, 355–360. [Google Scholar] [CrossRef]
- Sieverts, A. Absorption of gases by metals. Zeitschrift Für Met. 1929, 21, 37–46. [Google Scholar]
- ANSYS, Inc. ANSYS Fluent Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2012; Volume 15317, pp. 724–746. [Google Scholar]
Sample | Elemental Composition by EDS (wt.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Cr | Ni | Mo | C | O | Ce | Pd | Others | |
Raw PSS | 63.5 | 17.0 | 9.0 | 2.0 | <0.03 | - | - | - | 8.5 |
Calcined PSS | 60.1 | 8.8 | 4.6 | 1.5 | 1.3 | 23.3 | - | - | 0.4 |
CeO2/PSS | 48.08 | 6.2 | 2.4 | 0.5 | 1.8 | 28.94 | 11.8 | - | 0.3 |
Pd/CeO2/PSS | 0.7 | - | - | - | 5.3 | 0.3 | 0.9 | 92.8 | - |
XH2 (Feed) | y-Intercept × 106 (kg·m−2·s−1) | K × 107 (kg·m−2·s−1·Pa−0.5) |
0.5 | −6.601 | 2.179 |
0.6 | −5.380 | 2.446 |
0.7 | −6.784 | 3.102 |
0.8 | −7.962 | 3.597 |
0.9 | −6.965 | 4.085 |
1.0 | −13.680 | 5.023 |
XH2 (Feed) | y-Intercept × 106 (kg·m−2·s−1) | K × 107 (kg·m−2·s−1·Pa−0.5) |
0.5 | −6.505 | 2.827 |
0.6 | −7.843 | 3.450 |
0.7 | −6.846 | 3.476 |
0.8 | −8.547 | 3.996 |
0.9 | −8.461 | 4.306 |
1.0 | −11.848 | 4.562 |
ΔP (bar) | Feed (g/s) | Permeation (g/s) | Error (%) | |
---|---|---|---|---|
Experimental | Model | |||
0.5 | 0.0195 | 0.0173 | 0.0158 | − 8.58 |
1 | 0.0400 | 0.0373 | 0.0376 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, A.; Casado, C.; Alique, D.; Calles, J.A.; Marugán, J. Modeling of H2 Permeation through Electroless Pore-Plated Composite Pd Membranes Using Computational Fluid Dynamics. Membranes 2021, 11, 123. https://doi.org/10.3390/membranes11020123
Fernández A, Casado C, Alique D, Calles JA, Marugán J. Modeling of H2 Permeation through Electroless Pore-Plated Composite Pd Membranes Using Computational Fluid Dynamics. Membranes. 2021; 11(2):123. https://doi.org/10.3390/membranes11020123
Chicago/Turabian StyleFernández, Alberto, Cintia Casado, David Alique, José Antonio Calles, and Javier Marugán. 2021. "Modeling of H2 Permeation through Electroless Pore-Plated Composite Pd Membranes Using Computational Fluid Dynamics" Membranes 11, no. 2: 123. https://doi.org/10.3390/membranes11020123
APA StyleFernández, A., Casado, C., Alique, D., Calles, J. A., & Marugán, J. (2021). Modeling of H2 Permeation through Electroless Pore-Plated Composite Pd Membranes Using Computational Fluid Dynamics. Membranes, 11(2), 123. https://doi.org/10.3390/membranes11020123