Effective H2 Separation through Electroless Pore-Plated Pd Membranes Containing Graphite Lead Barriers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Membrane Preparation
2.2. Characterization
- i)
- Mode out–in: The gas is fed to the shell side, thus meeting first the Pd film that extracts part of the gas into the lumen side of the membrane. In this configuration, the adherence of diverse layers is relatively ensured due to the compression stress caused by the higher feed pressure.
- ii)
- Mode in–out: In this case, the feed is introduced to the inner membrane side, thus first passing through the porous support before meeting the Pd film and permeating to the shell side. At these conditions, an inevitable tensile stress is produced between support and the Pd layer, affecting the overall mechanical resistance and possibly causing a dramatic deterioration of the composite membrane by delamination.
3. Results and Discussion
3.1. Membrane Morphology
3.2. Permeation Behavior
3.2.1. Pure Gases: N2 and H2
3.2.2. N2–H2 Binary Mixtures
3.2.3. Effect of the Permeate Flux Direction
3.2.4. Literature Setting for Permeation Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yue, X.-L.; Gao, Q.-X.; Xi-Liu, Y.; Qing-Xian, G. Contributions of natural systems and human activity to greenhouse gas emissions. Adv. Clim. Chang. Res. 2018, 9, 243–252. [Google Scholar] [CrossRef]
- Szulejko, J.E.; Kumar, P.; Deep, A.; Tsang, D.C.W. Global warming projections to 2100 using simple CO 2 greenhouse gas modeling and comments on CO 2 climate sensitivity factor. Atmos. Pollut. Res. 2017, 8, 136–140. [Google Scholar] [CrossRef]
- Abdin, Z.; Zafaranloo, A.; Rafiee, A.; Mérida, W.; Lipiński, W.; Khalilpour, K.R. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 2020, 120, 109620. [Google Scholar] [CrossRef]
- Iulianelli, A.; Liguori, S.; De Vita, A.; Italiano, C.; Fabiano, C.; Huang, Y.; Basile, A. The oncoming energy vector: Hydrogen produced in Pd-composite membrane reactor via bioethanol reforming over Ni/CeO 2 catalyst. Catal. Today 2016, 259, 368–375. [Google Scholar] [CrossRef]
- Baykara, S.Z. Hydrogen: A brief overview on its sources, production and environmental impact. Int. J. Hydrog. Energy 2018, 43, 10605–10614. [Google Scholar] [CrossRef]
- Sołowski, G.; Shalaby, M.S.; Abdallah, H.A.M.; Shaban, A.; Cenian, A. Production of hydrogen from biomass and its separation using membrane technology. Renew. Sustain. Energy Rev. 2018, 82, 3152–3167. [Google Scholar] [CrossRef]
- Matsakas, L.; Gao, Q.; Jansson, S.; Rova, U.; Christakopoulos, P. Green conversion of municipal solid wastes into fuels and chemicals. Electron. J. Biotechnol. 2017, 26, 69–83. [Google Scholar] [CrossRef]
- Itoh, N.; Kikuchi, Y.; Furusawa, T.; Sato, T. Tube-wall catalytic membrane reactor for hydrogen production by low-temperature ammonia decomposition. Int. J. Hydrog. Energy 2020. [Google Scholar] [CrossRef]
- Ahmad, H.; Kamarudin, S.; Minggu, L.J.; Kassim, M.B. Hydrogen from photo-catalytic water splitting process: A review. Renew. Sustain. Energy Rev. 2015, 43, 599–610. [Google Scholar] [CrossRef]
- Abdalla, A.M.; Hossain, S.; Nisfindy, O.B.; Azad, A.T.; Dawood, M.; Azad, A.K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manag. 2018, 165, 602–627. [Google Scholar] [CrossRef]
- Quarton, C.J.; Samsatli, S. Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling? Renew. Sustain. Energy Rev. 2018, 98, 302–316. [Google Scholar] [CrossRef]
- Alique, D.; Zhang, J.; Jung, Y.-G. (Eds.) Processing and Characterization of Coating and Thin Film Materials in. Adv. Ceram. Met. Coat. Thin Film Mater. Energy Environ. Appl. 2018. [Google Scholar] [CrossRef]
- Bernardo, G.; Araújo, T.; Lopes, T.D.S.; Sousa, J.; Mendes, A. Recent advances in membrane technologies for hydrogen purification. Int. J. Hydrog. Energy 2020, 45, 7313–7338. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Meng, Y.; Yan, F.; Aihemaiti, A. A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers. Manag. 2018, 171, 133–155. [Google Scholar] [CrossRef]
- Brunetti, A.; Caravella, A.; Drioli, E.; Barbieri, G. CHAPTER 1: Membrane Reactors for Hydrogen Production. In Membrane Engineering for the Treatment of Gases: Gas-separation Issues Combined with Membrane Reactors; Royal Society of Chemistry: London, UK, 2017; Volume 2, pp. 1–29. [Google Scholar] [CrossRef]
- Di Marcoberardino, G.; Binotti, M.; Manzolini, G.; Viviente, J.L.; Arratibel Plazaola, A.; Roses, L.; Gallucci, F. Achievements of European projects on membrane reactor for hydrogen production. J. Clean. Prod. 2017, 161, 1442–1450. [Google Scholar] [CrossRef] [Green Version]
- Alique, D.; Sanz, R.; Calles, J. Pd membranes by electroless pore-plating. Curr. Trends Future Dev. (Bio-) Membr. 2020, 31–62. [Google Scholar] [CrossRef]
- Peters, T.; Rørvik, P.; Sunde, T.; Stange, M.; Roness, F.; Reinertsen, T.; Ræder, J.; Larring, Y.; Bredesen, R. Palladium (Pd) Membranes as Key Enabling Technology for Pre-combustion CO2 Capture and Hydrogen Production. Energy Procedia 2017, 114, 37–45. [Google Scholar] [CrossRef]
- Yun, S.; Oyama, S.T. Correlations in palladium membranes for hydrogen separation: A review. J. Membr. Sci. 2011, 375, 28–45. [Google Scholar] [CrossRef]
- Melendez, J.; Fernandez, E.; Gallucci, F.; Annaland, M.V.S.; Arias, P.L.; Tanaka, D.A.P. Preparation and characterization of ceramic supported ultra-thin (~1 µm) Pd-Ag membranes. J. Membr. Sci. 2017, 528, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Caravella, A.; Xu, H.Y. Recent progress in Pd-based composite membranes. J. Mater. Chem. A 2016, 4, 14069–14094. [Google Scholar] [CrossRef]
- Martinez-Diaz, D.; Sanz, R.; Calles, J.A.; Alique, D. H2 permeation increase of electroless pore-plated Pd/PSS membranes with CeO2 intermediate barriers. Sep. Purif. Technol. 2019, 216, 16–24. [Google Scholar] [CrossRef]
- Lee, C.-B.; Lee, S.-W.; Park, J.-S.; Ryi, S.-K.; Lee, D.-W.; Hwang, K.-R.; Kim, S.-H. Ceramics used as intermetallic diffusion barriers in Pd-based composite membranes sputtered on porous nickel supports. J. Alloy. Compd. 2013, 578, 425–430. [Google Scholar] [CrossRef]
- Arratibel, A.; Medrano, J.A.; Melendez, J.; Tanaka, D.A.P.; Annaland, M.V.S.; Gallucci, F. Attrition-resistant membranes for fluidized-bed membrane reactors: Double-skin membranes. J. Membr. Sci. 2018, 563, 419–426. [Google Scholar] [CrossRef]
- Arratibel, A.; Tanaka, A.P.; Laso, I.; Annaland, M.V.S.; Gallucci, F. Development of Pd-based double-skinned membranes for hydrogen production in fluidized bed membrane reactors. J. Membr. Sci. 2018, 550, 536–544. [Google Scholar] [CrossRef]
- Hu, X.; Chen, W.; Huang, Y. Fabrication of Pd/ceramic membranes for hydrogen separation based on low-cost macroporous ceramics with pencil coating. Int. J. Hydrog. Energy 2010, 35, 7803–7808. [Google Scholar] [CrossRef]
- Hu, X.; Yan, W.; Ding, W.; Yu, J.; Huang, Y. Bifunctional palladium composite membrane for hydrogen separation and catalytic CO methanation. Chin. J. Catal. 2013, 34, 1720–1729. [Google Scholar] [CrossRef]
- Terra, N.M.; Bessa, L.P.; Cardoso, V.L.; Reis, M.H.M. Graphite coating on alumina substrate for the fabrication of hydrogen selective membranes. Int. J. Hydrog. Energy 2018, 43, 1534–1544. [Google Scholar] [CrossRef]
- Wei, L.; Yu, J.; Hu, X.; Huang, Y. Facile surface modification of porous stainless steel substrate with TiO2 intermediate layer for fabrication of H2-permeable composite palladium membranes. Sep. Sci. Technol. 2016, 51, 998–1006. [Google Scholar] [CrossRef]
- Sanz, R.; Calles, J.A.; Alique, D.; Furones, L. New synthesis method of Pd membranes over tubular PSS supports via “pore-plating” for hydrogen separation processes. Int. J. Hydrog. Energy 2012, 37, 18476–18485. [Google Scholar] [CrossRef]
- Furones, L.; Alique, D. Interlayer Properties of In-Situ Oxidized Porous Stainless Steel for Preparation of Composite Pd Membranes. Chem. Eng. 2017, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Sanz-Villanueva, D.; Alique, D.; Vizcaíno, A.; Sanz, R.; Calles, J. Pre-activation of SBA-15 intermediate barriers with Pd nuclei to increase thermal and mechanical resistances of pore-plated Pd-membranes. Int. J. Hydrog. Energy 2020. [Google Scholar] [CrossRef]
- Alique, D.; Martinez-Diaz, D.; Sanz, R.; Calles, J. Review of Supported Pd-Based Membranes Preparation by Electroless Plating for Ultra-Pure Hydrogen Production. Membranes 2018, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Alique, D.; Imperatore, M.; Sanz, R.; Calles, J.A.; Baschetti, M.G. Hydrogen permeation in composite Pd-membranes prepared by conventional electroless plating and electroless pore-plating alternatives over ceramic and metallic supports. Int. J. Hydrog. Energy 2016, 41, 19430–19438. [Google Scholar] [CrossRef]
- Martinez-Diaz, D.; Alique, D.; Calles, J.; Sanz, R. Pd-thickness reduction in electroless pore-plated membranes by using doped-ceria as interlayer. Int. J. Hydrog. Energy 2020, 45, 7278–7289. [Google Scholar] [CrossRef]
- Calles, J.A.; Sanz, R.; Alique, D.; Furones, L.; Marín, P.; Ordóñez, S. Influence of the selective layer morphology on the permeation properties for Pd-PSS composite membranes prepared by electroless pore-plating: Experimental and modeling study. Sep. Purif. Technol. 2018, 194, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Conde, J.J.; Maroño, M.; Sánchez-Hervás, J.M. Pd-Based Membranes for Hydrogen Separation: Review of Alloying Elements and Their Influence on Membrane Properties. Sep. Purif. Rev. 2017, 46, 152–177. [Google Scholar] [CrossRef]
- Al-Mufachi, N.; Rees, N.; Steinberger-Wilkens, R. Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renew. Sustain. Energy Rev. 2015, 47, 540–551. [Google Scholar] [CrossRef]
- Fernandez, E.; Medrano, J.A.; Melendez, J.; Parco, M.; Viviente, J.L.; Annaland, M.V.S.; Gallucci, F.; Tanaka, D.A.P. Preparation and characterization of metallic supported thin Pd–Ag membranes for hydrogen separation. Chem. Eng. J. 2016, 305, 182–190. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, H.; Goldbach, A. Duplex Pd/ceramic/Pd composite membrane for sweep gas-enhanced CO2 capture. J. Membr. Sci. 2018, 563, 388–397. [Google Scholar] [CrossRef]
- Sanz, R.; Calles, J.; Ordóñez, S.; Marín, P.; Alique, D.; Furones, L. Modelling and simulation of permeation behaviour on Pd/PSS composite membranes prepared by “pore-plating” method. J. Membr. Sci. 2013, 446, 410–421. [Google Scholar] [CrossRef]
- Miguel, C.; Mendes, A.; Tosti, S.; Madeira, L.M. Effect of CO and CO2 on H2 permeation through finger-like Pd–Ag membranes. Int. J. Hydrog. Energy 2012, 37, 12680–12687. [Google Scholar] [CrossRef]
- Mardilovich, P.P.; She, Y.; Ma, Y.H.; Rei, M.-H. Defect-free palladium membranes on porous stainless-steel support. AIChE J. 1998, 44, 310–322. [Google Scholar] [CrossRef]
- Gade, S.K.; Thoen, P.M.; Way, J.D. Unsupported palladium alloy foil membranes fabricated by electroless plating. J. Membr. Sci. 2008, 316, 112–118. [Google Scholar] [CrossRef]
- Tong, J.; Matsumura, Y.; Suda, H.; Haraya, K. Thin and dense Pd/CeO2/MPSS composite membrane for hydrogen separation and steam reforming of methane. Sep. Purif. Technol. 2005, 46, 1–10. [Google Scholar] [CrossRef]
- Qiao, A.; Zhang, K.; Tian, Y.; Xie, L.; Luo, H.; Lin, J.Y.; Li, Y. Hydrogen separation through palladium-copper membranes on porous stainless steel with sol-gel derived ceria as diffusion barrier. Fuel 2010, 89, 1274–1279. [Google Scholar] [CrossRef]
- Contardi, I.; Cornaglia, L.; Tarditi, A.M. Effect of the porous stainless steel substrate shape on the ZrO 2 deposition by vacuum assisted dip-coating. Int. J. Hydrog. Energy 2017, 42, 7986–7996. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Q.; Jin, X.; Ding, W.; Hu, X.; Li, H. Coating the porous Al2O3 substrate with a natural mineral of Nontronite-15A for fabrication of hydrogen-permeable palladium membranes. Int. J. Hydrog. Energy 2020, 45, 7412–7422. [Google Scholar] [CrossRef]
Support | Intermediate Layer | H2-Selective Layer | Membrane Performance at ΔP = 1 bar | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Incorporation Technique | Composition | tPd (μm) | Operating Mode | T (K) | Permeate Flux (m3 m−2 h−1) | αH2/N2 | |||
- (1) | - | Cold-rolling | PdAg | 50 | in–out | 573 | 1.1 × 10−2 | - | [42] |
PSS (1) | Fe2O3–Cr2O3 | ELP | Pure Pd | 20 | out–in | 623 | 3.4 | 500 | [43] |
PSS (1) | Fe2O3–Cr2O3 | ELP-PP | Pure Pd | 11–20 | in–out | 623–723 | 1.1–2.2 | ∞ | [30] |
PSS (1) | Al2O3 | ELP | Pure Pd | 5 | out–in | 673 | 3.3 | 500 | [44] |
PSS (1) | CeO2 | ELP | Pure Pd | 13 | out–in | 773–823 | 10.2–22.2 | ∞ | [45] |
PSS (2) | CeO2 | ELP | PdCu | 8 | - | 723 | 5.9 | 2369 | [46] |
PSS (1) | ZrO2 | ELP | PdAu | 14–27 | out–in | 673–773 | 3.8–7.8 | 4000 | [47] |
Al2O3 (1) | - | ELP-duplex | Pure Pd | 2.8/2.5 | out–in | 773 | 17.7 | 14,429 | [40] |
PSS (1) | Fe2O3–Cr2O3/CeO2 | ELP-PP | Pure Pd | 15.4 | out–in | 673 | 4.6 | ≥10,000 | [22] |
PSS (1) | Fe2O3–Cr2O3/CeO2 | ELP-PP | Pure Pd | 15.4 | in–out | 673 | 4.8 | ≥10,000 | [22] |
PSS (1) | Fe2O3–Cr2O3/Pd-doped CeO2 | ELP-PP | Pure Pd | 9.1 | out–in | 673 | 5.1 | ≥10,000 | [35] |
PSS (1) | Fe2O3–Cr2O3/Pd-doped CeO2 | ELP-PP | Pure Pd | 9.1 | in–out | 673 | 5.3 | ≥10,000 | [35] |
Al2O3 (1) | Graphite | ELP | Pure Pd | 5 | out–in | 673 | 22.7 | 3100 | [26] |
NiO/Al2O3 (1) | Graphite | ELP | Pure Pd | 5 | out–in | 623–723 | 16–20 | 500–750 | [27] |
Al2O3 (1) | Graphite | ELP | Pure Pd | 5 | out–in | 623–723 | 14–18 | 5500–7500 | [27] |
Al2O3 (1) | Nontronite-15A | ELP | Pure Pd | 5 | out–in | 623–723 | 11.3–16.9 | 2000–3700 | [48] |
Al2O3 (3) | Graphite | ELP | Pure Pd | 1.81 | out–in | 573–723 | 0.8–8.9 | ∞ | [28] |
PSS (1) | Graphite | ELP | Pure Pd | 7 | out–in | 623–723 | 12–18 | 60–120 | [29] |
PSS (1) | Fe2O3–Cr2O3/Graphite | ELP-PP | Pure Pd | 17 | out–in | 623–723 | 3.7–4.8 | ≥10,000 | This work |
PSS (1) | Fe2O3–Cr2O3/Graphite | ELP-PP | Pure Pd | 17 | in–out | 673 | 4.4 | ≥10,000 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Diaz, D.; Sanz, R.; Carrero, A.; Calles, J.A.; Alique, D. Effective H2 Separation through Electroless Pore-Plated Pd Membranes Containing Graphite Lead Barriers. Membranes 2020, 10, 410. https://doi.org/10.3390/membranes10120410
Martinez-Diaz D, Sanz R, Carrero A, Calles JA, Alique D. Effective H2 Separation through Electroless Pore-Plated Pd Membranes Containing Graphite Lead Barriers. Membranes. 2020; 10(12):410. https://doi.org/10.3390/membranes10120410
Chicago/Turabian StyleMartinez-Diaz, David, Raúl Sanz, Alicia Carrero, José Antonio Calles, and David Alique. 2020. "Effective H2 Separation through Electroless Pore-Plated Pd Membranes Containing Graphite Lead Barriers" Membranes 10, no. 12: 410. https://doi.org/10.3390/membranes10120410
APA StyleMartinez-Diaz, D., Sanz, R., Carrero, A., Calles, J. A., & Alique, D. (2020). Effective H2 Separation through Electroless Pore-Plated Pd Membranes Containing Graphite Lead Barriers. Membranes, 10(12), 410. https://doi.org/10.3390/membranes10120410