The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Membranes
2.1.2. A, B and R Values of Investigated Membranes
2.2. Methods
2.2.1. Membrane Characterization
2.2.2. Determination of the Pure Water and the Solute (NaCl) Permeability Coefficients
2.2.3. Determination of the Osmotic Pressure
2.2.4. Evaluation of the Osmotic Water Flux and Solute Flux
2.2.5. Prediction of the Structural Parameter
3. Theoretical Development
3.1. Prediction of the Osmotic Pressure Difference, Δπm
3.2. Prediction of the Membrane Structural Parameter
4. Results and Discussion
4.1. Characterization of the NanoH2O and the Porifera (PFO) Membranes
4.2. Osmotic Performance of Membranes
4.3. Theoretical Analyses of the Membrane Performance with Typical Parameter Values
4.3.1. Effect of Osmotic Pressure and Transport Parameters on Water Flux and Power Density
Effect of Draw Concentration on Power Density
Effect of Hydraulic Pressure Difference on Water Flux and Power Density
Effect of the Membrane Structural Parameter, S on Water Flux
Effect of the Water Permeability, A, on Power Density
Effect of the Solute Permeability, B, on Power Density
4.3.2. Membrane Structural Parameter, S
Effect of the Draw Side Mass Transfer Coefficient in PRO Mode
Effect of the Draw Side Mass Transfer Coefficient in FO Mode
Value of S/S∞ as a Function of Draw Side Mass Transfer Coefficient by Both of PRO and FO Operation
4.3.3. The Effect of the External Mass Transfer Coefficient as a Function of A and B
4.4. Evaluation of Measured Data Focusing on Values of the Membrane Structural Parameter
4.4.1. Prediction of S Values Based on Measured Data Using NanoH2O and Porifera Membranes
4.4.2. Prediction of S Values Based on PRO and FO Data in Manickam and McCutcheon
4.4.3. Prediction of S Values Based on PRO and FO Data in Tang et al.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
A | water permeability, m/(s bar) |
B | salt permeability, m/s |
C | salt concentration, mol/L |
D | fluid diffusion coefficient, m2/s |
E | power density, W/m2 |
Js | solute transport rate, kg/m2s |
Jw | water flux, m/s |
Jw,∞ | water flux at kd = kf→∞, m/s |
k | diffusive mass transfer coefficient, m/s |
P | hydraulic pressure, bar |
R | rejection coefficient |
S | structural parameter, m |
S∞ | structural parameter without external mass transfer resistances, m |
v | convective fluid velocity perpendicular to the membrane surface, m/s |
Greek | |
β | diffusive plus convective transport coefficient, m/s |
π | osmotic pressure, bar |
δ | thickness of the fluid boundary layer, m |
ε | porosity, |
τ | tortuosity, |
ΔCm | concentration difference on the active layer, mol/L |
ΔP | hydraulic pressure difference, bar |
Δπ | effective osmotic pressure difference on the active layer, bar |
Subscripts | |
b | bulk solute concentration |
d | draw solution |
f | feed solution |
m | membrane active layer |
i | interface between selective and the support layer (with P, π, β, or C) |
p | permeate |
s | support layer (with S, τ, ε, δ, or D) |
sp | external interface of the support layer |
w | water |
Appendix A. Concentration Distribution and Nomination of Transport Parameters in PRO and FO
Appendix B. Osmotic Pressure as a Function of Draw Concentration
Appendix C. Estimation of the Uncertainty of Predicted Data
References
- Achilli, A.; Cath, T.Y.; Childress, A.E. Power generation with pressure retarded osmosis: An experimental and theoretical investigation. J. Membr. Sci. 2009, 343, 42–52. [Google Scholar] [CrossRef]
- Cath, T.Y.; Elimelech, M.; McCutcheon, J.R.; McGinnis, R.L.; Achilli, A.; Anastasio, D.; Brady, A.R.; Childress, A.E.; Farr, I.V.; Hancock, N.T.; et al. Standard Methodology for Evaluating Membrane Performance in Osmotically Driven Membrane Processes. Desalination 2013, 312, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Altaee, A.; Sharif, A. Pressure retarded osmosis: Advancement in the process applications for power generation and desalination. Desalination 2015, 356, 31–46. [Google Scholar] [CrossRef]
- Cath, T.; Childress, A.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- McGovern, R.K.; Lienhard, J.H. On the potential of forward osmosis to energetically outperform reverse osmosis desalination. J. Membr. Sci. 2014, 469, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Shaffer, D.L.; Werber, J.R.; Jaramillo, H.; Lin, S.; Elimelech, M. Forward osmosis: Where are we now? Desalination 2015, 356, 271–284. [Google Scholar] [CrossRef]
- Mohammadifakhr, M.; De Grooth, J.; Roesink, H.D.W.; Kemperman, A.J.B. Forward Osmosis: A Critical Review. Processes 2020, 8, 404. [Google Scholar] [CrossRef] [Green Version]
- Tiraferri, A.; Yip, N.Y.; Straub, A.P.; Castrillon, S.R.-V.; Elimelech, M. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes. J. Membr. Sci. 2013, 444, 523–538. [Google Scholar] [CrossRef]
- Kim, D.I.; Kim, J.; Hong, S. Changing membrane orientation in pressure retarded osmosis for sustainable power generation with low fouling. Desalination 2016, 389, 197–206. [Google Scholar] [CrossRef]
- Loeb, S. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. J. Membr. Sci. 1997, 129, 243–249. [Google Scholar] [CrossRef]
- Wang, J.; Dlamini, D.S.; Mishra, A.K.; Pendergast, M.T.M.; Wong, M.C.; Mamba, B.B.; Freger, V.; Verliefde, A.R.; Hoek, E.M. A critical review of transport through osmotic membranes. J. Membr. Sci. 2014, 454, 516–537. [Google Scholar] [CrossRef]
- Bui, N.-N.; Arena, J.T.; McCutcheon, J.R. Proper accounting of mass transfer resistances in forward osmosis: Improving the accuracy of model predictions of structural parameter. J. Membr. Sci. 2015, 492, 289–302. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Z.L.; Chung, T.-S. Mass transport of various membrane configurations in pressure retarded osmosis (PRO). J. Membr. Sci. 2017, 537, 160–176. [Google Scholar] [CrossRef]
- Anissimov, Y. Aspects of Mathematical Modelling of Pressure Retarded Osmosis. Membranes 2016, 6, 13. [Google Scholar] [CrossRef]
- Kishimoto, M.; Tanaka, Y.; Yasukawa, M.; Goda, S.; Higa, M.; Matsuyama, H. Optimization of Pressure-Retarded Osmosis with Hollow-Fiber Membrane Modules by Numerical Simulation. Ind. Eng. Chem. Res. 2019, 58, 6687–6695. [Google Scholar] [CrossRef]
- Chae, S.H.; Kim, Y.M.; Park, H.; Seo, J.; Lim, S.J.; Kim, J.H. Modeling and Simulation Studies Analyzing the Pressure-Retarded Osmosis (PRO) and PRO-Hybridized Processes. Energies 2019, 12, 243. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhou, Z.; Li, J.; Tang, Q.; Hu, Y. Investigation of the reduced specific energy consumption of the RO-PRO hybrid system based on temperature-enhanced pressure retarded osmosis. J. Membr. Sci. 2019, 581, 439–452. [Google Scholar] [CrossRef]
- Kurihara, M.; Takeuchi, H. SWRO-PRO System in “Mega-ton Water System” for Energy Reduction and Low Environmental Impact. Water 2018, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Choi, J.; Park, Y.-G.; Shon, H.; Ahn, C.H.; Kim, S.-H. Hybrid desalination processes for beneficial use of reverse osmosis brine: Current status and future prospects. Desalination 2019, 454, 104–111. [Google Scholar] [CrossRef]
- Bargiacchi, E.; Orciuolo, F.; Ferrari, L.; Desideri, U. Use of Pressure-Retarded-Osmosis to reduce Reverse Osmosis energy consumption by exploiting hypersaline flows. Energy 2020, 211, 118969. [Google Scholar] [CrossRef]
- Altaee, A.; AlZainati, N. Novel Thermal Desalination Brine Reject-Sewage Effluent Salinity Gradient for Power Generation and Dilution of Brine Reject. Energies 2020, 13, 1756. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Wan, C.F.; Xiong, J.Y.; Chung, T.-S. Pre-treatment of wastewater retentate to mitigate fouling on the pressure retarded osmosis (PRO) process. Sep. Purif. Technol. 2019, 215, 390–397. [Google Scholar] [CrossRef]
- Sanahuja-Embuena, V.; Khensir, G.; Yusuf, M.; Andersen, M.F.; Nguyen, X.T.; Trzaskus, K.; Pinelo, M.; Nielsen, C. Role of Operating Conditions in a Pilot Scale Investigation of Hollow Fiber Forward Osmosis Membrane Modules. Membranes 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Loh, C.H.; Zhang, L.; Setiawan, L.; She, Q.; Fang, W.; Hu, X.; Wang, R. Module scale-up and performance evaluation of thin film composite hollow fiber membranes for pressure retarded osmosis. J. Membr. Sci. 2018, 548, 398–407. [Google Scholar] [CrossRef]
- Chen, Y.; AlAnezi, A.A.; Zhou, J.; Altaee, A.; Shaheed, M.H. Optimization of module pressure retarded osmosis membrane for maximum energy extraction. J. Water Process. Eng. 2019, 32, 100935. [Google Scholar] [CrossRef]
- Yadav, S.; Saleem, H.; Ibrar, I.; Naji, O.; Hawari, A.A.; AlAnezi, A.A.; Zaidi, S.J.; Altaee, A.; Zhou, J. Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination 2020, 482, 114375. [Google Scholar] [CrossRef]
- Lim, S.; Park, M.J.; Phuntsho, S.; Mai-Prochnow, A.; Murphy, A.B.; Seo, D.; Shon, H.K. Dual-layered nanocomposite membrane incorporating graphene oxide and halloysite nanotube for high osmotic power density and fouling resistance. J. Membr. Sci. 2018, 564, 382–393. [Google Scholar] [CrossRef]
- Akther, N.; Phuntsho, S.; Chen, Y.; Ghaffour, N.; Shon, H.K. Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J. Membr. Sci. 2019, 584, 20–45. [Google Scholar] [CrossRef]
- Gai, W.; Zhao, D.L.; Chung, T.-S. Novel thin film composite hollow fiber membranes incorporated with carbon quantum dots for osmotic power generation. J. Membr. Sci. 2018, 551, 94–102. [Google Scholar] [CrossRef]
- Park, M.J.; Lim, S.; Gonzales, R.R.; Phuntsho, S.; Han, D.S.; Abdel-Wahab, A.; Adham, S.; Shon, H.K. Thin-film composite hollow fiber membranes incorporated with graphene oxide in polyethersulfone support layers for enhanced osmotic power density. Desalination 2019, 464, 63–75. [Google Scholar] [CrossRef]
- Ren, J.; Chowdhury, M.R.; Qi, J.; Xia, L.; Huey, B.D.; McCutcheon, J. Relating osmotic performance of thin film composite hollow fiber membranes to support layer surface pore size. J. Membr. Sci. 2017, 540, 344–353. [Google Scholar] [CrossRef]
- Mistry, K.H.; Lienhard, J.H. Effect of Nonideal Solution Behavior on Desalination of a Sodium Chloride Solution and Comparison to Seawater. J. Energy Resour. Technol. 2013, 135, 042003. [Google Scholar] [CrossRef]
- Mistry, K.H.; Hunter, H.A.; Lienhard, J.H. Effect of composition and nonideal solution behavior on desalination calculations for mixed electrolyte solutions with comparison to seawater. Desalination 2013, 318, 34–47. [Google Scholar] [CrossRef] [Green Version]
- Ives, D.J.G. Chemical Thermodynamics: With Special Reference to Inorganic Chemistry; (University chemistry series); Macdonald Technical and Scientific: London, UK, 1971. [Google Scholar]
- OLI Stream Analyzer 2.0, OLI Systems Inc. Available online: https://silo.tips/download/analyzer-20-installation-guide-contents (accessed on 13 February 2021).
- Nagy, E.; Hegedus, I.; Tow, E.W.; Lienhard, J.H. Effect of fouling on performance of pressure retarded osmosis (PRO) and forward osmosis (FO). J. Membr. Sci. 2018, 565, 450–462. [Google Scholar] [CrossRef]
- Tang, C.Y.; She, Q.; Lay, W.C.; Wang, R.; Fane, A.G. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J. Membr. Sci. 2010, 354, 123–133. [Google Scholar] [CrossRef]
- Park, M.; Lee, J.J.; Lee, S.; Kim, J.H. Determination of a constant membrane structure parameter in forward osmosis processes. J. Membr. Sci. 2011, 375, 241–248. [Google Scholar] [CrossRef]
- Ghanbari, M.; Emadzadeh, D.; Lau, W.; Riazi, H.; Almasi, D.; Ismail, A. Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates. Desalination 2016, 377, 152–162. [Google Scholar] [CrossRef]
- Manickam, S.S.; McCutcheon, J.R. Model thin film composite membranes for forward osmosis: Demonstrating the inaccuracy of existing structural parameter models. J. Membr. Sci. 2015, 483, 70–74. [Google Scholar] [CrossRef]
- Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 2017, 356, eaab0530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yip, N.Y.; Tiraferri, A.; Phillip, W.A.; Schiffman, J.D.; Hoover, L.A.; Kim, Y.C.; Elimelech, M. Thin-Film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients. Environ. Sci. Technol. 2011, 45, 4360–4369. [Google Scholar] [CrossRef]
- Wan, C.F.; Li, B.; Yang, T.; Chung, N.T.-S. Design and fabrication of inner-selective thin-film composite (TFC) hollow fiber modules for pressure retarded osmosis (PRO). Sep. Purif. Technol. 2017, 172, 32–42. [Google Scholar] [CrossRef]
- Sivertsen, E.; Holt, T.; Thelin, W.R.; Brekke, G. Modelling mass transport in hollow fibre membranes used for pressure retarded osmosis. J. Membr. Sci. 2012, 69–79. [Google Scholar] [CrossRef]
- Cheng, Z.L.; Li, X.; Chung, T.-S. The forward osmosis-pressure retarded osmosis (FO-PRO) hybrid system: A new process to mitigate membrane fouling for sustainable osmotic power generation. J. Membr. Sci. 2018, 559, 63–74. [Google Scholar] [CrossRef]
- Nagy, E. Basic Equation of Mass Transport through a Membrane Layer, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Nagy, E.; Hegedüs, I. Diffusive Plus Convective Mass Transport, Accompanied by Biochemical Reaction, Across Capillary Membrane. Catalysts 2020, 10, 1115. [Google Scholar] [CrossRef]
- Alvarez-Fernandez, A.; Reid, B.; Fornerod, M.J.J.J.; Taylor, A.; Divitini, G.; Guldin, S. Structural Characterization of Mesoporous Thin Film Architectures: A Tutorial Overview. ACS Appl. Mater. Interfaces 2020, 12, 5195–5208. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Gwak, G.; Hong, S. Review on methodology for determining forward osmosis (FO) membrane characteristics: Water permeability (A), solute permeability (B), and structural parameter (S). Desalination 2017, 422, 5–16. [Google Scholar] [CrossRef]
- Holt, T.; Sivertsen, E.; Thelin, W.R.; Brekke, G. Pressure dependency of the membrane structure parameter and implication in pressure retarded osmosis (PRO). In Osmotically Driven Membrane Processes. Approach, Development and Current State, 1st ed.; Du, H., Thompson, A., Wang, X., Eds.; InTech: Zagreb, Chroatia, 2018; pp. 111–130. [Google Scholar]
- Lee, W.; Kang, P.K.; Kim, A.S.; Lee, S. Impact of surface porosity on water flux and structural parameter in forward osmosis. Desalination 2018, 439, 46–57. [Google Scholar] [CrossRef]
- Manickam, S.S.; Gelb, J.; McCutcheon, J.R. Pore structure characterization of asymmetric membranes: Non-destructive characterization of porosity and tortuosity. J. Membr. Sci. 2014, 454, 549–554. [Google Scholar] [CrossRef]
- Maisonneuve, J.; Pillay, P.; Laflamme, C.B. Pressure-retarded osmotic power system model considering non-ideal effects. Renew. Energy 2015, 75, 416–424. [Google Scholar] [CrossRef]
- Nagy, E. A general, resistance-in-series, salt- and water flux models for forward osmosis and pressure-retarded osmosis for energy generation. J. Membr. Sci. 2014, 460, 71–81. [Google Scholar] [CrossRef]
- Nagy, E.; Dudás, J.; Hegedus, I. Improvement of the energy generation by pressure retarded osmosis. Energy 2016, 116, 1323–1333. [Google Scholar] [CrossRef]
- Tiraferri, A.; Yip, N.Y.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure. J. Membr. Sci. 2011, 367, 340–352. [Google Scholar] [CrossRef] [Green Version]
- Yip, N.Y.; Elimelech, M. Performance Limiting Effects in Power Generation from Salinity Gradients by Pressure Retarded Osmosis. Environ. Sci. Technol. 2011, 45, 10273–10282. [Google Scholar] [CrossRef] [PubMed]
- Loeb, S. Production of energy from concentrated brines by pressure-retarded osmosis. J. Membr. Sci. 1976, 1, 49–63. [Google Scholar] [CrossRef]
- Lee, K.; Baker, R.; Lonsdale, H. Membranes for power generation by pressure-retarded osmosis. J. Membr. Sci. 1981, 8, 141–171. [Google Scholar] [CrossRef]
- Hofs, B.; Schurer, R.; Harmsen, D.; Ceccarelli, C.; Beerendonk, E.; Cornelissen, E. Characterization and performance of a commercial thin film nanocomposite seawater reverse osmosis membrane and comparison with a thin film composite. J. Membr. Sci. 2013, 446, 68–78. [Google Scholar] [CrossRef]
- Abdullah, W.N.A.S.; Tiandee, S.; Lau, W.; Aziz, F.; Ismail, A.F. Potential use of nanofiltration like-forward osmosis membranes for copper ion removal. Chin. J. Chem. Eng. 2020, 28, 420–428. [Google Scholar] [CrossRef]
- Motsa, M.M.; Mamba, B.B. Forward Osmosis as a Pre-Treatment Step for Seawater Dilution and Wastewater Reclamation. In Osmotically Driven Membrane Processes. Approach, Developmet and Current States; Du, H., Thompson, A., Wang, X., Eds.; InTech: Zagreb, Croatia, 2018; Volume i, pp. 207–234. [Google Scholar]
- She, Q.; Jin, X.; Tang, C.Y. Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion. J. Membr. Sci. 2012, 401–402, 262–273. [Google Scholar] [CrossRef]
- Roy, Y.; Lienhard, J.H. On the presence of solute-solvent transport coupling in reverse osmosis. J. Membr. Sci. 2020, 611, 118272. [Google Scholar] [CrossRef]
- Altaee, A.; Zhou, J.; AlAnezi, A.A.; Zaragoza, G. Pressure retarded osmosis process for power generation: Feasibility, energy balance and controlling parameters. Appl. Energy 2017, 206, 303–311. [Google Scholar] [CrossRef]
- Bilal, M.; Asgher, M.; Cheng, H.; Yan, Y.; Iqbal, H.M. Multi-point enzyme immobilization, surface chemistry, and novel platforms: A paradigm shift in biocatalyst design. Crit. Rev. Biotechnol. 2019, 39, 202–219. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Lee, J.H.; Park, S.-J. Novel crossflow membrane cell with asymmetric channels: Design and pressure-retarded osmosis performance test. J. Membr. Sci. 2015, 476, 76–86. [Google Scholar] [CrossRef]
- Wan, C.F.; Chung, N.T.-S. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed. J. Membr. Sci. 2015, 479, 148–158. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Y.-N.; Li, W.; Tang, C.Y. Characterization of internal and external concentration polarizations during forward osmosis processes. Desalination 2014, 338, 65–73. [Google Scholar] [CrossRef]
- Yip, N.Y.; Tiraferri, A.; Phillip, W.A.; Schiffman, J.D.; Elimelech, M. High Performance Thin-Film Composite Forward Osmosis Membrane. Environ. Sci. Technol. 2010, 44, 3812–3818. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Shi, L.; Tang, C.Y.; Chou, S.; Qiu, C.; Fane, A.G. Characterization of novel forward osmosis hollow fiber membranes. J. Membr. Sci. 2010, 355, 158–167. [Google Scholar] [CrossRef]
- Manickam, S.S.; McCutcheon, J.R. Understanding mass transfer through asymmetric membranes during forward osmosis: A historical perspective and critical review on measuring structural parameter with semi-empirical models and characterization approaches. Desalination 2017, 421, 110–126. [Google Scholar] [CrossRef]
- Lee, K.P.; Arnot, T.C.; Mattia, D. A review of reverse osmosis membrane materials for desalination—Development to date and future potential. J. Membr. Sci. 2011, 370, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Fujioka, T.; Oshima, N.; Suzuki, R.; Price, W.E.; Nghiem, L.D. Probing the internal structure of reverse osmosis membranes by positron annihilation spectroscopy: Gaining more insight into the transport of water and small solutes. J. Membr. Sci. 2015, 486, 106–118. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Miao, X.; Xu, J.; Pan, G.; Zhang, Y.; Shi, Y.; Guo, M.; Liu, Y. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes. J. Membr. Sci. 2015, 475, 504–510. [Google Scholar] [CrossRef]
- Vitagliano, V.; Lyons, P.A. Diffusion Coefficients for Aqueous Solutions of Sodium Chloride and Barium Chloride. J. Am. Chem. Soc. 1956, 78, 1549–1552. [Google Scholar] [CrossRef]
- Tow, E.W.; Lienhard, J.H. Quantifying osmotic membrane fouling to enable comparisons across diverse processes. J. Membr. Sci. 2016, 511, 92–107. [Google Scholar] [CrossRef] [Green Version]
Membrane | Water Permeability, A, 10−7 m/s·bar | Salt Permeability, B 10−7 m/s | NaCl Rejection Coefficient, %R |
---|---|---|---|
Porifera | 5.0 ± 0.15 | 1.5 ± 0.6 | 90 ± 4.6 |
NanoH2O | 1.0 ± 0.03 | 0.5± 0.12 | 90.2 ± 2.5 |
Parameters | Values |
---|---|
Feed solute concentration | 0.015 M |
Solute concentration in the draw solution | 0.6 M, or varies |
External mass transfer coefficients, draw side | 3.85 × 10−5 m/s |
External mass transfer coefficient, feed side | 3.85 × 10−5 m/s |
Diffusion coefficient at high salinity | 1.367 × 10−9 m2/s |
Diffusion coefficient at low salinity | 1.294 × 10−9 m2/s |
Hydraulic pressure difference | 10 bar (or 0 and 15 bar) |
Membrane transport parameters | A = 1.9 × 10−7 m/s·bar or varies B = 5.02 × 10−7 m/s or varies S = 5 × 10−4 m or varies |
PRO | FO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Cd, mol/L, PRO, FO | Jw, 10−6 m/s | S, 10−6 m NanoH2O | Jw, 10−6 m/s | S, 10−6 m NanoH2O | ||||||
van ’t Hoff | OLI * | van ’t Hoff | OLI * | |||||||
1 * | 2 * | 1 * | 2 * | 1 * | 2 * | 1 * | 2 * | |||
0.27 | 0.28 | 15,950 | 15,788 | 14,540 | 14,364 | 0.26 | 8438 | 8350 | 7267 | 7178 |
0.62 | 0.37 | 15,396 | 15,235 | 14,610 | 14,430 | 0.32 | 9898 | 9812 | 9086 | 8999 |
1.03 | 0.40 | 16,687 | 16,531 | 16,270 | 16,049 | 0.47 | 7262 | 7179 | 6887 | 6804 |
1.53 | 0.47 | 15,510 | 15,355 | 15,306 | 15,222 | 0.52 | 7531 | 7448 | 7418 | 7335 |
Average | 15,886 | 15,727 | 18,182 | 15,016 | 8282 | 8197 | 7665 | 7579 |
Draw Concentration, M | S (van ’t Hoff), 10−6 m | S (OLI, Interpolated from Table), 10−6 m | S (OLI, Curve Fit), 10−6 m; | |||
---|---|---|---|---|---|---|
1 * | 2 * | 1 * | 2 * | 1 * | 2 * | |
0.26 | 2057 | 1858 | 1976 | 1770 | 1815 | 1591 |
0.48 | 1370 | 893 | 1118 | 1327 | 1257 | 1034 |
0.50 | 1114 | 1169 | 1078 | 847 | 1019 | 766 |
0.60 | 1200 | 999 | 1169 | 962 | 1108 | 885 |
0.82 | 1250 | 1058 | 1228 | 1041 | 1191 | 1003 |
0.88 | 1049 | 856 | 1029 | 832 | 1002 | 799 |
1.28 | 1126 | 950 | 1163 | 989 | 1102 | 923 |
1.33 | 1055 | 877 | 1056 | 879 | 1150 | 973 |
Average: | 1169 | 991 | 1135 | 1024 | 1138 | 936 |
Cd mol/L | Jw, Measured 10−6 m/s | S, (OLI Software) 10−6 m | S, (van ’t Hoff), 10−6 m | Error, % | |||
---|---|---|---|---|---|---|---|
kd = kf→∞ | kd = 5 × 10−5 m/s, kf→∞ | kd = 2 × 10−5 m/s, kf→∞ | kd = kf→∞ | ||||
P | 0.5 | 2.8 | 791 | 649(S/S∞ = (0.82) | 356 (0.45) | 1117 | 29.1 |
R | 1.0 | 4.9 | 803 | 708 (0.88) | 514 (0.64) | 897 | 10.5 |
O | 1.5 | 6.4 | 789 | 726 (0.92) | 584 (0.74) | 816 | 3.3 |
F | 0.5 | 2.1 | 327 | 298 (0.91) | 252 (0.77) | 459 | 28.8 |
O | 1.0 | 3.0 | 434 | 404 (0.93) | 360 (0.83) | 491 | 11.6 |
1.5 | 4.0 | 395 | 360 (0.92) | 320 (0.81) | 415 | 4.8 |
Cd mol/L | Jw, Measured 10−6 m/s | S, (van ‘t Hoff) 10−6 m kd = kf→∞ | S, (OLI Software), 10−6 m, | |||
---|---|---|---|---|---|---|
kd = kf→∞ | kd = 5 × 10−5 m/s kf→∞ | kd = 2 × 10−5 m/s kf→∞ | ||||
0.5 | 4.2 | 581 | 210 | - | - | |
P | 1.0 | 7.3 | 546 | 474 | 320 (0.675) | - |
R | 2.0 | 11.6 | 471 | 481 | 407 (0.846) | 142 (0.295) |
O | 3.0 | 13.6 | 431 | 499 | 447 (0.896) | 332 (0.665) |
4.0 | 15.3 | 460 | 494 | 449 (0.91) | 361 (0.730) | |
0.25 | 1.6 | 467 | 227 | 197 (0.87) | 152 (0.67) | |
F | 0.75 | 3.0 | 460 | 381 | 352 (0.92) | 309 (0.81) |
O | 1.5 | 4.2 | 460 | 441 | 412 (0.93) | 369 (0.84) |
2.0 | 4.8 | 456 | 461 | 431 (0.93) | 385 (0.84) | |
3.0 | 5.6 | 456 | 490 | 458 (0.93) | 410 (0.84) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, E.; Hegedüs, I.; Rehman, D.; Wei, Q.J.; Ahdab, Y.D.; Lienhard, J.H. The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes. Membranes 2021, 11, 128. https://doi.org/10.3390/membranes11020128
Nagy E, Hegedüs I, Rehman D, Wei QJ, Ahdab YD, Lienhard JH. The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes. Membranes. 2021; 11(2):128. https://doi.org/10.3390/membranes11020128
Chicago/Turabian StyleNagy, Endre, Imre Hegedüs, Danyal Rehman, Quantum J. Wei, Yvana D. Ahdab, and John H. Lienhard. 2021. "The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes" Membranes 11, no. 2: 128. https://doi.org/10.3390/membranes11020128
APA StyleNagy, E., Hegedüs, I., Rehman, D., Wei, Q. J., Ahdab, Y. D., & Lienhard, J. H. (2021). The Need for Accurate Osmotic Pressure and Mass Transfer Resistances in Modeling Osmotically Driven Membrane Processes. Membranes, 11(2), 128. https://doi.org/10.3390/membranes11020128