Stability of Monolithic MOF Thin Films in Acidic and Alkaline Aqueous Media
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of HKUST-1 Surface-Anchored Metal-Organic Framework (SURMOF) Films
2.2. Preparation of ZIF-8 SURMOF Films
2.3. Preparation of UiO-66-NH2 SURMOF Films
2.4. Characterization Techniques
2.5. Chemical Stability Experiments in Acidic, Neutral, and Alkaline Media
3. Results and Discussion
3.1. HKUST-1 SURMOF Films
3.2. ZIF-8 SURMOF Films
3.3. UiO-66-NH2 SURMOF Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MOF | metal-organic framework |
SURMOF | surface-supported metal-organic framework |
LPE | liquid phase epitaxy |
LBL | layer-by-layer |
SAM | self-assembled monolayer |
MHDA | 16-mercaptohexadecanoic acid |
MUD | 11-mercapto-1-undecanol |
XRD | X-ray diffraction |
SEM | scanning electron microscopy |
FEG | Field Emission Gun |
IRRAS | infrared reflection absorption spectroscopy |
MCT | mercury cadmium telluride |
References
- Nikitenkov, N. Modern Technologies for Creating the Thin-Film Systems and Coatings; BoD—Books on Demand: Norderstedt, Germany, 2017. [Google Scholar]
- Kumar, C.S. Nanostructured Thin Films and Surfaces; John Wiley & Sons: New York, NY, USA, 2010. [Google Scholar]
- Ariga, K.; Ji, Q.; Nakanishi, W.; Hill, J.P. Thin film nanoarchitectonics. J. Inorg. Organomet. Polym. Mater. 2015, 25, 466–479. [Google Scholar] [CrossRef]
- Heinke, L.; Wöll, C. Surface-Mounted Metal–Organic Frameworks: Crystalline and Porous Molecular Assemblies for Fundamental Insights and Advanced Applications. Adv. Mater. 2019, 31, 1806324. [Google Scholar] [CrossRef]
- Schmitt, S.; Shishatskiy, S.; Krolla, P.; An, Q.; Begum, S.; Welle, A.; Hashem, T.; Grosjean, S.; Abetz, V.; Bräse, S.; et al. Synthesis, Transfer, and Gas Separation Characteristics of MOF-Templated Polymer Membranes. Membranes 2019, 9, 124. [Google Scholar] [CrossRef] [Green Version]
- Nair, S.S.; Illyaskutty, N.; Tam, B.; Yazaydin, A.O.; Emmerich, K.; Steudel, A.; Hashem, T.; Schöttner, L.; Wöll, C.; Kohler, H.; et al. ZnO@ ZIF-8: Gas sensitive core-shell hetero-structures show reduced cross-sensitivity to humidity. Sens. Actuators B Chem. 2020, 304, 127184. [Google Scholar] [CrossRef]
- Begum, S.; Hashem, T.; Tsotsalas, M.; Wöll, C.; Alkordi, M.H. Electrolytic Conversion of Sacrificial Metal–Organic Framework Thin Films into an Electrocatalytically Active Monolithic Oxide Coating for the Oxygen-Evolution Reaction. Energy Technol. 2019, 7, 1900967. [Google Scholar] [CrossRef]
- Hassan, M.H.; Haikal, R.R.; Hashem, T.; Rinck, J.; Koeniger, F.; Thissen, P.; Heiβler, S.; Wöll, C.; Alkordi, M.H. Electrically Conductive, Monolithic Metal–Organic Framework–Graphene (MOF@ G) Composite Coatings. ACS Appl. Mater. Interfaces 2019, 11, 6442–6447. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.-H.; Tian, C.-B.; Li, Q.-H.; Du, S.-W. Highly chemical and thermally stable luminescent EuxTb1−x MOF materials for broad-range pH and temperature sensors. J. Mater. Chem. C 2014, 2, 8065–8070. [Google Scholar] [CrossRef]
- Gu, Z.-G.; Zhang, J. Epitaxial growth and applications of oriented metal–organic framework thin films. Coord. Chem. Rev. 2019, 378, 513–532. [Google Scholar] [CrossRef]
- Bradshaw, D.; Garai, A.; Huo, J. Metal–organic framework growth at functional interfaces: Thin films and composites for diverse applications. Chem. Soc. Rev. 2012, 41, 2344–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betard, A.; Fischer, R.A. Metal–organic framework thin films: From fundamentals to applications. Chem. Rev. 2012, 112, 1055–1083. [Google Scholar] [CrossRef]
- Liu, J.; Wöll, C. Surface-supported metal–organic framework thin films: Fabrication methods, applications, and challenges. Chem. Soc. Rev. 2017, 46, 5730–5770. [Google Scholar] [CrossRef]
- Gu, Z.-G.; Chen, S.-C.; Fu, W.-Q.; Zheng, Q.; Zhang, J. Epitaxial growth of MOF thin film for modifying the dielectric layer in organic field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 7259–7264. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.P.V.; Gliemann, H.; Haas-Santo, K.; Wöll, C.; Dittmeyer, R. ZIF-8 SURMOF Membranes Synthesized by Au-Assisted Liquid Phase Epitaxy for Application in Gas Separation. Chem. Ing. Tech. 2016, 88, 1798–1805. [Google Scholar] [CrossRef]
- Hashem, T.; Sánchez, E.P.V.; Weidler, P.G.; Gliemann, H.; Alkordi, M.H.; Wöll, C. Liquid-Phase Quasi-Epitaxial Growth of Highly Stable, Monolithic UiO-66-NH2 MOF thin Films on Solid Substrates. ChemistryOpen 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haldar, R.; Heinke, L.; Wöll, C. Advanced Photoresponsive Materials Using the Metal–Organic Framework Approach. Adv. Mater. 2020, 32, 1905227. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.-Q.; Liu, C.-Y.; Zeng, X.-Y.; Chen, J.; Lü, J.; Lin, R.-G.; Cao, R.; Lin, Z.-J.; Su, J.-W. MOF-808: A metal–organic framework with intrinsic peroxidase-like catalytic activity at neutral pH for colorimetric biosensing. Inorg. Chem. 2018, 57, 9096–9104. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Huang, D.D.; Wu, Y.P.; Zhao, J.; Wu, T.; Zhang, J.; Li, D.S.; Sun, C.; Feng, P.; Bu, X. Stable hierarchical bimetal–organic nanostructures as highperformance electrocatalysts for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2019, 58, 4227–4231. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wan, Y.; Huang, J.K.; Assen, A.H.; Hsiung, C.E.; Jiang, H.; Han, Y.; Eddaoudi, M.; Lai, Z.; Ming, J.; et al. Metal–organic framework-based separators for enhancing Li–S battery stability: Mechanism of mitigating polysulfide diffusion. ACS Energy Lett. 2017, 2, 2362–2367. [Google Scholar] [CrossRef]
- Kadhom, M.; Deng, B. Metal-organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 2018, 11, 219–230. [Google Scholar] [CrossRef]
- Cai, H.; Huang, Y.-L.; Li, D. Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications. Coord. Chem. Rev. 2019, 378, 207–221. [Google Scholar] [CrossRef]
- Hanke, M.; Arslan, H.K.; Bauer, S.; Zybaylo, O.; Christophis, C.; Gliemann, H.; Rosenhahn, A.; Wöll, C. The biocompatibility of metal–organic framework coatings: An investigation on the stability of SURMOFs with regard to water and selected cell culture media. Langmuir 2012, 28, 6877–6884. [Google Scholar] [CrossRef]
- El-Mehalmey, W.A.; Ibrahim, A.H.; Abugable, A.A.; Hassan, M.H.; Haikal, R.R.; Karakalos, S.G.; Zaki, O.; Alkordi, M.H. Metal–organic framework@ silica as a stationary phase sorbent for rapid and cost-effective removal of hexavalent chromium. J. Mater. Chem. A 2018, 6, 2742–2751. [Google Scholar] [CrossRef]
- Zybaylo, O.; Shekhah, O.; Wang, H.; Tafipolsky, M.; Schmid, R.; Johannsmann, D.; Wöll, C. A novel method to measure diffusion coefficients in porous metal–organic frameworks. Phys. Chem. Chem. Phys. 2010, 12, 8092–8098. [Google Scholar] [CrossRef] [PubMed]
- Petit, C.; Burress, J.; Bandosz, T.J. The synthesis and characterization of copper-based metal–organic framework/graphite oxide composites. Carbon 2011, 49, 563–572. [Google Scholar] [CrossRef]
- Ordoñez, M.J.C.; Balkus, K.J.; Ferraris, J.P.; Musselman, I.H. Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci. 2010, 361, 28–37. [Google Scholar] [CrossRef]
- James, J.B.; Lin, Y. Thermal stability of ZIF-8 membranes for gas separations. J. Membr. Sci. 2017, 532, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X.; Perman, J.A.; Ma, S. A metal–organic framework and conducting polymer based electrochemical sensor for high performance cadmium ion detection. J. Mater. Chem. A 2017, 5, 8385–8393. [Google Scholar] [CrossRef]
- Bunge, M.A.; Davis, A.B.; West, K.N.; West, C.W.; Glover, T.G. Synthesis and Characterization of UiO-66-NH2 Metal–Organic Framework Cotton Composite Textiles. Ind. Eng. Chem. Res. 2018, 57, 9151–9161. [Google Scholar] [CrossRef]
- Todaro, M.; Buscarino, G.; Sciortino, L.; Alessi, A.; Messina, F.; Taddei, M.; Ranocchiari, M.; Cannas, M.; Gelardi, F.M. Decomposition process of carboxylate MOF HKUST-1 unveiled at the atomic scale level. J. Phys. Chem. C 2016, 120, 12879–12889. [Google Scholar] [CrossRef] [Green Version]
- Gul-E-Noor, F.; Jee, B.; Pöppl, A.; Hartmann, M.; Himsl, D.; Bertmer, M. Effects of varying water adsorption on a Cu 3 (BTC) 2 metal–organic framework (MOF) as studied by 1 H and 13C solid-state NMR spectroscopy. Phys. Chem. Chem. Phys. 2011, 13, 7783–7788. [Google Scholar] [CrossRef]
- Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120, 325–330. [Google Scholar] [CrossRef]
- Yuan, B.; Yin, X.-Q.; Liu, X.-Q.; Li, X.-Y.; Sun, L.-B. Enhanced hydrothermal stability and catalytic performance of HKUST-1 by incorporating carboxyl-functionalized attapulgite. ACS Appl. Mater. Interfaces 2016, 8, 16457–16464. [Google Scholar] [CrossRef]
- Ahmed, A.; Forster, M.; Clowes, R.; Bradshaw, D.; Myers, P.; Zhang, H. Silica SOS@ HKUST-1 composite microspheres as easily packed stationary phases for fast separation. J. Mater. Chem. A 2013, 1, 3276–3286. [Google Scholar] [CrossRef]
- DeCoste, J.B.; Denny, M.S., Jr.; Peterson, G.W.; Mahle, J.J.; Cohen, S.M. Enhanced aging properties of HKUST-1 in hydrophobic mixed-matrix membranes for ammonia adsorption. Chem. Sci. 2016, 7, 2711–2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Safy, M.E.; Amin, M.; Haikal, R.R.; Elshazly, B.; Wang, J.; Wang, Y.; Wöll, C.; Alkordi, M.H. Probing the Water Stability Limits and Degradation Pathways of Metal-Organic Frameworks (MOFs). Chem. A Eur. J. 2020, 26, 7109–7117. [Google Scholar] [CrossRef]
- Müller, K.; Vankova, N.; Schöttner, L.; Heine, T.; Heinke, L. Dissolving uptake-hindering surface defects in metal–organic frameworks. Chem. Sci. 2019, 10, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P.; et al. Stable metal–organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Gupta, K.M.; Liu, Q.; Jiang, J.; Caro, J.; Huang, A. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. Desalination 2016, 385, 75–82. [Google Scholar] [CrossRef]
- Duke, M.C.; Zhu, B.; Doherty, C.M.; Hill, M.R.; Hill, A.J.; Carreon, M.A. Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes. Desalination 2016, 377, 128–137. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, Y.; Zeng, G.; Zhao, L.; Lai, Z. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem. Commun. 2011, 47, 2071–2073. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, D.; Yao, Y.; Zhang, B.; Lin, Y. Stability of ZIF-8 membranes and crystalline powders in water at room temperature. J. Membr. Sci. 2015, 485, 103–111. [Google Scholar] [CrossRef]
- Sheng, L.; Yang, F.; Wang, C.; Yu, J.; Zhang, L.; Pan, Y. Comparison of the hydrothermal stability of ZIF-8 nanocrystals and polycrystalline membranes derived from zinc salt variations. Mater. Lett. 2017, 197, 184–187. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, M.; Lin, Y. Stability of ZIF-8 in water under ambient conditions. Microporous Mesoporous Mater. 2019, 279, 201–210. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Chen, J.P.; Li, K. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66. Sci. Rep. 2015, 5, 16613. [Google Scholar] [CrossRef] [Green Version]
- Kandiah, M.; Nilsen, M.H.; Usseglio, S.; Jakobsen, S.; Olsbye, U.; Tilset, M.; Larabi, C.; Quadrelli, E.A.; Bonino, F.; Lillerud, K.P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater. 2010, 22, 6632–6640. [Google Scholar] [CrossRef]
- Leus, K.; Bogaerts, T.; De Decker, J.; Depauw, H.; Hendrickx, K.; Vrielinck, H.; Van Speybroeck, V.; Van Der Voort, P. Systematic study of the chemical and hydrothermal stability of selected “stable” Metal Organic Frameworks. Microporous Mesoporous Mater. 2016, 226, 110–116. [Google Scholar] [CrossRef]
- Lin, K.-Y.A.; Liu, Y.-T.; Chen, S.-Y. Adsorption of fluoride to UiO-66-NH2 in water: Stability, kinetic, isotherm and thermodynamic studies. J. Colloid Interface Sci. 2016, 461, 79–87. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashem, T.; Sanchez, E.P.V.; Bogdanova, E.; Ugodchikova, A.; Mohamed, A.; Schwotzer, M.; Alkordi, M.H.; Wöll, C. Stability of Monolithic MOF Thin Films in Acidic and Alkaline Aqueous Media. Membranes 2021, 11, 207. https://doi.org/10.3390/membranes11030207
Hashem T, Sanchez EPV, Bogdanova E, Ugodchikova A, Mohamed A, Schwotzer M, Alkordi MH, Wöll C. Stability of Monolithic MOF Thin Films in Acidic and Alkaline Aqueous Media. Membranes. 2021; 11(3):207. https://doi.org/10.3390/membranes11030207
Chicago/Turabian StyleHashem, Tawheed, Elvia P. Valadez Sanchez, Evgenia Bogdanova, Anna Ugodchikova, Alaa Mohamed, Matthias Schwotzer, Mohamed H. Alkordi, and Christof Wöll. 2021. "Stability of Monolithic MOF Thin Films in Acidic and Alkaline Aqueous Media" Membranes 11, no. 3: 207. https://doi.org/10.3390/membranes11030207
APA StyleHashem, T., Sanchez, E. P. V., Bogdanova, E., Ugodchikova, A., Mohamed, A., Schwotzer, M., Alkordi, M. H., & Wöll, C. (2021). Stability of Monolithic MOF Thin Films in Acidic and Alkaline Aqueous Media. Membranes, 11(3), 207. https://doi.org/10.3390/membranes11030207