Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery
Abstract
:1. Introduction
2. Skin Structure and Skin Permeation Routes
- ♦
- Low molecular mass (<500 Da);
- ♦
- Adequate solubility in oil and water (Cv is large);
- ♦
- Moderate lipophilicity (K = 1–5, a too-large value may inhibit clearance by viable tissues);
- ♦
- Low melting point (<250 °C); melting points reflect the non-covalent interactions between drug molecules and relate to drug solubility in the SC.
3. Permeation Enhancement Strategies and Mechanisms
4. Chemical Penetration Enhancers (CPEs)
- ♦
- It should be non-toxic, non-irritating, and non-allergenic;
- ♦
- It should be specific to drug permeation without any other bioactivity;
- ♦
- It should present a rapid onset of effect, foreseeable and reproducible;
- ♦
- Its effect should be reversible when removed from the application site;
- ♦
- It should present unidirectional activity, enabling drug permeation without water loss from inner tissues;
- ♦
- It should be biocompatible with drug and excipients;
- ♦
- It should have cosmetic acceptance from consumers.
4.1. Classification of CPE
4.2. Structure-Activity Relationships
4.3. Safety of CPE
5. Amino Acid-Based Enhancers
5.1. Free Amino Acids
5.2. Non-Ionic Amphiphiles
5.3. Surfactants
5.4. Gelling Agents
5.5. Ionic Liquids
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Alexander, A.; Dwivedi, S.; Ajazuddin Giri, T.K.; Saraf, S.; Saraf, S.; Tripathi, D.K. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J. Control. Release 2012, 164, 26–40. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Mitragotri, S.; Langer, R. Current status and future potential of transdermal drug delivery. Nat. Rev. Drug Discov. 2004, 3, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Barry, B.W. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur. J. Pharm. Sci. 2001, 14, 101–114. [Google Scholar] [CrossRef]
- Prausnitz, M.R.; Langer, R. Transdermal drug delivery. Nat. Biotechnol. 2008, 26, 1261–1268. [Google Scholar] [CrossRef] [PubMed]
- Forslind, B. A Domain Mosaic Model of the Skin Barrier. Acta Derm. Venereol. 1994, 74, 1–6. [Google Scholar]
- Bouwstra, J.A.; Honeywell-Nguyen, P.L.; Gooris, G.G.; Ponec, M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 2003, 42, 1–36. [Google Scholar] [CrossRef]
- Amjadi, M.; Mostaghaci, B.; Sitti, M. Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery. Curr. Gene Ther. 2017, 17, 139–146. [Google Scholar] [CrossRef]
- Tuan-Mahmood, T.M.; McCrudden, M.T.C.; Torrisi, B.M.; McAlister, E.; Garland, M.J.; Singh, T.R.R.; Donnelly, R.F. Microneedles for intradermal and transdermal drug delivery. Eur. J. Pharm. Sci. 2013, 50, 623–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prow, T.W.; Grice, J.E.; Lin, L.L.; Faye, R.; Butler, M.; Becker, W.; Wurm, E.M.T.; Yoong, C.; Robertson, T.A.; Soyer, H.P. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Deliv. Rev. 2011, 63, 470–491. [Google Scholar] [CrossRef]
- Ruan, R.; Chen, M.; Zou, L.; Wei, P.; Liu, J.; Ding, W.; Wen, L. Recent advances in peptides for enhancing transdermal macromolecular drug delivery. Ther. Deliv. 2016, 7, 89–100. [Google Scholar] [CrossRef]
- Vasyuchenko, E.P.; Orekhov, P.S.; Armeev, G.A.; Bozdaganyan, M.E. CPE-DB: An Open Database of Chemical Penetration Enhancers. Pharmaceutics 2021, 13, 66. [Google Scholar] [CrossRef]
- Menon, G.K. New insights into skin structure: Scratching the surface. Adv. Drug Deliv. Rev. 2002, 54, S3–S17. [Google Scholar] [CrossRef]
- Hansen, S.; Lehr, C.M.; Schaefer, U.F. Modeling the human skin barrier-Towards a better understanding of dermal absorption Preface. Adv. Drug Deliv. Rev. 2013, 65, 149–151. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.K.; Pandey, V.; Maheshwari, R.; Ghode, P.; Tekade, R.K. Chapter 15—Cutaneous and Transdermal Drug Delivery: Techniques and Delivery Systems. In Advances in Pharmaceutical Product Development and Research, Basic Fundamentals of Drug Delivery; Tekade, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 595–650. ISBN 9780128179093. [Google Scholar]
- Bouwstra, J.A.; Gooris, G.S. The Lipid Organisation in Human Stratum Corneum and Model Systems. Open Dermatol. J. 2010, 4, 10–13. [Google Scholar] [CrossRef]
- Madison, K.C. Barrier function of the skin: “La raison d’être” of the epidermis. J. Invest. Dermatol. 2003, 121, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhonen, T.M.; Bouwstra, J.A.; Urtti, A. Chemical enhancement of percutaneous absorption in relation to stratum corneum structural alterations. J. Control. Release 1999, 59, 149–161. [Google Scholar] [CrossRef]
- Menon, G.K.; Kligman, A.M. Barrier Functions of Human Skin: A Holistic View. Skin Pharmacol. Physiol. 2009, 22, 178–189. [Google Scholar] [CrossRef]
- Bouwstra, J.A.; Ponec, M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta 2006, 1758, 2080–2095. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, T.; Neubert, R.H.H. State of the art in Stratum Corneum research: The biophysical properties of ceramides. Chem. Phys. Lipids 2018, 216, 91–103. [Google Scholar] [CrossRef]
- Moniz, T.; Costa-Lima, S.A.; Reis, S. Application of the human stratum corneum lipid-based mimetic model in assessment of drug-loaded nanoparticles for skin administration. Int. J. Pharm. 2020, 591, 119960. [Google Scholar] [CrossRef]
- Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef]
- Benson, H.A.E. Skin Structure, Function, and Permeation. In Topical and Transdermal Drug Delivery: Principles and Practice; Benson, H.A., Wattkinson, A.C., Eds.; Jonhn Wiley & Sons Inc.: Hoboken, NJ, USA, 2012; pp. 1–22. [Google Scholar]
- Mitragotri, S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J. Control. Release 2003, 86, 69–92. [Google Scholar] [CrossRef]
- Barry, B.W. Drug delivery routes in skin: A novel approach. Adv. Drug Deliv. Rev. 2002, 54, S31–S40. [Google Scholar] [CrossRef]
- Lemos, C.N.; Pereira, F.; Dalmolin, L.F.; Cubayachi, C.; Ramos, D.N.; Lopez, R.F.V. Nanoparticles influence in skin penetration of drugs in vitro and in vivo characterization. In Nanostructures for the Engineering of Cells, Tissues and Organs; Grumezescu, A.M., Ed.; William Andrew: Norwich, NY, USA, 2018; pp. 187–248. [Google Scholar]
- Verma, A.; Jain, A.; Hurkat, P.; Jain, S.K. Transfollicular drug delivery: Current perspectives. Res. Rep. Transdermal Drug Deliv. 2016, 5, 1–17. [Google Scholar]
- Barry, B.W. Mode of action of penetration enhancers in human skin. J. Control. Release 1987, 6, 85–97. [Google Scholar] [CrossRef]
- Asbill, C.S.; El-Kattan, A.F.; Michniak, B. Enhancement of transdermal drug delivery: Chemical and physical approaches. Crit. Rev. Ther. Drug Carrier Syst. 2000, 17, 621–658. [Google Scholar] [CrossRef]
- Kováčik, A.; Kopečná, M.; Vávrová, K. Permeation enhancers in transdermal drug delivery: Benefits and limitations. Expert Opin. Drug Deliv. 2020, 17, 145–155. [Google Scholar] [CrossRef]
- Benson, H.A.E. Transdermal drug delivery: Penetration enhancement techniques. Curr. Drug. Deliv. 2005, 2, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Barry, B.W. Lipid-Protein-Partitioning theory of skin penetration enhancement. J. Control. Release 1991, 15, 237–248. [Google Scholar] [CrossRef]
- Schroeter, A.; Eichener, A.; Mueller, J.; Neubert, R.H.H. Penetration Enhancers and Their Mechanism Studied on a Molecular Level. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 29–37. [Google Scholar]
- Haq, A.; Chandler, M.; Michniak-Kohn, B. Solubility-physicochemical-thermodynamic theory of penetration enhancer mechanism of action. Int. J. Pharm. 2020, 575, 118920. [Google Scholar] [CrossRef]
- Schoellhammer, C.M.; Blankschtein, D.; Langer, R. Skin permeabilization for transdermal drug delivery: Recent advances and future prospects. Expert Opin. Drug Deliv. 2014, 11, 393–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ita, K. Transdermal Delivery of Drugs with Microneedles—Potential and Challenges. Pharmaceutics 2015, 7, 90–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragicevic, N.; Maibach, H.I. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–384. [Google Scholar]
- Monti, D.; Egiziano, E.; Burgalassi, S.; Tanpucci, S.; Terreni, E.; Tivegna, S.; Chetoni, P. Influence of a Combination of Chemical Enhancers and Iontophoresis on In Vitro Transungual Permeation of Nystatin. AAPS PharmSciTech 2018, 19, 1574–1581. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Essential oils as novel human skin penetration enhancers. Int. J. Pharm. 1989, 57, R7–R9. [Google Scholar] [CrossRef]
- Cornwell, P.A.; Barry, B.W.; Bouwstra, J.A.; Gorris, G.S. Modes of action of terpene penetration enhancers in human skin; Differential scanning calorimetry, small-angle X-ray diffraction and enhancer uptake studies. Int. J. Pharm. 1996, 127, 9–26. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Q.-D.; Chai, Y.-P.; Zhang, H.; Peng, P.; Yang, X.-X. Natural Terpenes as Penetration Enhancers for Transdermal Drug Delivery. Molecules 2016, 21, 1709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandit, J.; Aqil, M.; Sultana, Y. Terpenes and Essential Oils as Skin Penetration Enhancers. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 173–193. [Google Scholar]
- Roberts, M.S.; Walker, M. Water: The most natural penetration enhancer. In Pharmaceutical Skin Penetration Enhancement; Walters, K., Hadgraft, J., Eds.; Marcel Dekker: New York, NY, USA, 1993; pp. 1–30. [Google Scholar]
- Williams, A.C. Urea and Derivatives as Penetration Enhancers. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 301–308. [Google Scholar]
- Stoughton, R.B. Enhanced percutaneous penetration with 1-dodecylazacycloheptan-2-one. Arch. Dermatol. 1982, 118, 474–477. [Google Scholar] [CrossRef]
- Eichner, A.; Stahlberg, S.; Sonnenberger, S.; Lange, S.; Dobner, D.; Ostermann, A.; Schrader, T.E.; Hauß Schroeter, A.; Huster, D.; Neubert, R.H.H. Influence of the penetration enhancer isopropyl myristate on stratum corneum lipid model membranes revealed by neutron diffraction and 2H NMR experiments. Biochim. Biophys. Acta Biomembr. 2017, 1859, 745–755. [Google Scholar] [CrossRef]
- Babu, R.J.; Chen, L. Pyrrolidones as Penetration Enhancers. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 291–299. [Google Scholar]
- Silva, S.M.C.; Sousa, J.J.S.; Marques, E.F.; Pais, A.A.C.C.; Michniak-Kohn, B.B. Structure Activity Relationships in Alkylammonium C12-Gemini Surfactants Used as Dermal Permeation Enhancers. AAPS J. 2013, 15, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, R.S.; Cova, T.F.G.G.; Silva, S.M.C.; Oliveira, R.; do Vale, M.L.C.; Marques, E.F.; Pais, A.A.C.C.; Veiga, F.J.B. Novel serine-based gemini surfactants as chemical permeation enhancers of local anesthetics: A comprehensive study on structure–activity relationships, molecular dynamics and dermal delivery. Eur. J. Pharm. Biopharm. 2015, 93, 205–213. [Google Scholar] [CrossRef]
- Heard, C.M. Ethanol and Other Alcohols: Old Enhancers, Alternative Perspectives. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 151–172. [Google Scholar]
- Babu, R.J.; Chen, L.; Kanikkannan, N. Fatty Alcohols, Fatty Acids, and Fatty Acid Esters as Penetration Enhancers. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 133–150. [Google Scholar]
- Hori, M.; Satoh, S.; Maibach, H.I.; Guy, R.H. Enhancement of Propranolol Hydrochloride and Diazepam Skin Absorption In Vitro: Effect of Enhancer Lipophilicity. J. Pharm. Sci. 1991, 80, 32–35. [Google Scholar] [CrossRef]
- Andega, S.; Kanikkannan, N.; Singh, M. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin. J. Control. Release 2001, 77, 17–25. [Google Scholar] [CrossRef]
- Francoeur, M.L.; Golden, G.M.; Potts, R.O. Oleic acid: Its effects on stratum corneum in relation to (trans) dermal drug delivery. Pharm. Res. 1990, 7, 621–627. [Google Scholar] [CrossRef]
- Som, I.; Bhatia, K.; Yasir, M. Status of surfactants as penetration enhancers in transdermal drug delivery. J. Pharm. Bioall. Sci. 2012, 4, 2. [Google Scholar]
- Wong, O.; Huntington, J.; Nishihata, T.; Rytting, J.H. New Alkyl N, N-Dialkyl-Sustituted Amino Acetates as Transdermal Penetration Enhancers. Pharm. Res. 1989, 6, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, J.; Rytting, J.H.; Paronen, P.; Urti, A.; Dodecyl, N. N-dimethylamino acetate and azone enhance drug penetration across human, snake, and rabbit skin. Pharm. Res. 1991, 8, 933–937. [Google Scholar] [CrossRef] [PubMed]
- Doležal, P.; Hrabálek, A.; Semecký, V. ε-Aminocaproic Acid Esters as Transdermal Penetration Enhancing Agents. Pharm. Res. 1993, 10, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Hrabalek, A.; Doležal, P.; Roman, M.; Machácek, M.; Sklubalová, Z. Esters of omega-amino acids as flexible penetration enhancers. Pharmazie 1994, 49, 325–328. [Google Scholar]
- Vávrová, K.; Hrabálek, A.; Doležal, P.; Holas, T.; Zbytovská, J. L-Serine and glycine based ceramide analogues as transdermal permeation enhancers: Polar head size and hydrogen bonding. Bioorg. Med. Chem. Lett. 2003, 13, 2351–2353. [Google Scholar] [CrossRef]
- Novotny, J.; Kovaríková, P.; Novotný, M.; Janůsová, B.; Hrabálek, A.; Vávrová, K. Dimethylamino acid esters as biodegradable and reversible transdermal permeation enhancers: Effects of linking chain length, chirality and polyfluorination. Pharm. Res. 2009, 26, 811–821. [Google Scholar] [CrossRef]
- Mlchniak, B.B.; Chapman, J.M.; Seyda, K.L. Facilitated Transport of Two Model Steroids by Esters and Amides of Clofibric Acid. J. Pharm. Sci. 1993, 82, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Marren, K. Dimethyl sulfoxide: An effective penetration enhancer for topical administration of NSAIDs. Phys. Sportsmed. 2011, 39, 75–82. [Google Scholar] [CrossRef]
- Karande, P.; Mitragotri, S. Enhancement of transdermal drug delivery via synergistic action of chemicals. Biochim. Biophys. Acta-Biomembr. 2009, 1788, 2362–2373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, M.E. Skin penetration enhancers. Int. J. Pharm. 2013, 447, 12–21. [Google Scholar] [CrossRef]
- Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2004, 56, 603–618. [Google Scholar] [CrossRef]
- Vávrová, K.; Hrabálek, A.; Dolezal, P.; Sámalová, L.; Palát, K.; Zbytovská, J.; Holas, T.; Klimentová, J. Synthetic ceramide analogues as skin permeation enhancers: Structure-activity relationships. Bioorg. Med. Chem. 2003, 11, 5381–5390. [Google Scholar] [CrossRef] [PubMed]
- Vávrová, K.; Zbytovska, J.; Hrabalek, A. Amphiphilic Transdermal Permeation Enhancers: Structure-Activity Relationships. Curr. Med. Chem. 2005, 12, 2273–2291. [Google Scholar] [CrossRef]
- Jafri, I.; Shoaib, M.H.; Yousuf, R.I.; Ali, F.R. Effect of permeation enhancers on in vitro release and transdermal delivery of lamotrigine from Eudragit ®RS100 polymer matrix-type drug in adhesive patches. Prog. Biomater. 2019, 8, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Ibraim, S.; Li, S.K. Efficiency of Fatty Acids as Chemical Penetration Enhancers: Mechanisms and Structure Enhancement Relationship. Pharm. Res. 2010, 27, 115–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karande, P.; Jain, A.; Ergun, K.; Kispersky, V.; Mitragotri, S. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. USA 2005, 102, 4688–4693. [Google Scholar] [CrossRef] [Green Version]
- Arora, A.; Kisak, E.; Karande, P.; Newsam, J.; Mitragotri, S. Multicomponent chemical enhancer formulations for transdermal drug delivery: More is not always better. J. Control. Release 2010, 144, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Buyuktimkin, N.; Buyuktimkin, S.; Rytting, J.H. Chemical means of transdermal drug permeation enhancement. In Transdermal and Topical Drug Delivery Systems; Ghosh, T.K., Pfister, W.R., Yum, S., Eds.; Informa Health Care: London, UK, 1997; pp. 357–475. [Google Scholar]
- Williams, A.C.; Barry, B.W. Skin absorption enhancers. Crit. Rev. Ther. Drug Carrier Syst. 1992, 9, 305–353. [Google Scholar] [PubMed]
- Karande, P.; Jain, A.; Mitragotri, S. Insights into synergistic interactions in binary mixtures of chemical permeation enhancers for transdermal drug delivery. J. Control. Release 2006, 115, 85–93. [Google Scholar] [CrossRef]
- Middleton, J.D. The mechanism of water binding in stratum corneum. Br. J. Dermatol. 1968, 80, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Vávrová, K.; Hrabálek, A. Amino Acid-Based Transdermal Penetration Enhancers. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 325–336. [Google Scholar]
- Nasrollahi, A.; Taghibiglou, C.; Azizi, E.; Farboud, E.S. Cell-penetrating Peptides as a Novel Transdermal Drug Delivery System. Chem. Biol. Drug Des. 2012, 80, 639–646. [Google Scholar] [CrossRef]
- Singh, G.; Karande, P. Peptide-Mediated Transdermal Drug Delivery. In Penetration Enhancement: Modification of the Stratum Corneum; Dragicevic, N., Maibach, H.I., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 353–361. [Google Scholar]
- Kim, Y.-C.; Ludovice, P.J.; Prausnitz, M.R. Transdermal delivery enhanced by antimicrobial peptides. J. Biomed. Nanotechnol. 2010, 6, 612–620. [Google Scholar] [CrossRef]
- Rambharose, S.; Kalhapure, R.S.; Jadhay, M.; Govender, T. Novel mono, di and tri-fatty acid esters bearing secondary amino acid ester head groups as transdermal permeation enhancers. New J. Chem. 2018, 42, 2232–2242. [Google Scholar] [CrossRef]
- Dahlizar, S.; Futaki, M.; Okada, A.; Yatomi, C.; Todo, H.; Sugibayashi, K. Combined Use of N-Palmitoyl-Glycine-Histidine Gel and Several Penetration Enhancers on the Skin Permeation and Concentration of Metronidazole. Pharmaceutics 2018, 10, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Zhao, Z.; Yang, Y.; Li, Y.; Wang, C. Novel skin permeation enhancers based on amino acid ester ionic liquid: Design and permeation mechanism. Int. J. Pharm. 2020, 576, 119031. [Google Scholar] [CrossRef]
- Wiechers, J.W.; De Zeeuw, R.A. Transdermal drug delivery: Efficacy and potential applications of the penetration enhancer Azone. Drug Des. Deliv. 1990, 6, 87–100. [Google Scholar] [PubMed]
- Ruland, A.; Kreuter, J. Transdermal permeability and skin accumulation of amino acids. Int. J. Pharm. 1991, 72, 149–155. [Google Scholar] [CrossRef]
- Sznitowska, M.; Berner, B.; Maibach, H.I. In vitro permeation of human skin by multipolar ions. Int. J. Pharm. 1993, 99, 43–49. [Google Scholar] [CrossRef]
- Fix, J.A.; Pogany, S.A. Lysine Esters Used as Absorption Enhancing Agents. Patent No. EP-0162747, 7 December 1988. [Google Scholar]
- Hrabálek, A.; Doležal, P.; Vávrová, K.; Zbytovská, J.; Holas, T.; Klimentová, J.; Novotný, J. Synthesis and Enhancing Effect of Transkarbam 12 on the Transdermal Delivery of Theophylline, Clotrimazole, Flobufen, and Griseofulvin. Pharm. Res. 2006, 23, 912–919. [Google Scholar] [CrossRef]
- Büyüktimkin, S.; Büyüktimkin, N.; Rytting, J.H. Synthesis and enhancing effect of dodecyl 2-(N,N-dimethylamino) propionate on the transepidermal delivery of indomethacin, clonidine, and hydrocortisone. Pharm. Res. 1993, 10, 1632–1637. [Google Scholar] [CrossRef] [PubMed]
- Wolka, A.M.; Rytting, J.H.; Reed, B.L.; Finnin, B.C. The interaction of the penetration enhancer DDAIP with a phospholipid model membrane. Int. J. Pharm. 2004, 271, 5–10. [Google Scholar] [CrossRef]
- Janůšová, B.; Školová, B.; Tükörová, K.; Wojnarová, L.; Šimůnek, T.; Mladěnka, P.; Filipský, T.; Říha, M.; Roh, J.; Palát, K. Amino acid derivatives as transdermal permeation enhancers. J. Control. Release 2013, 165, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.T.; Tenjarla, S.N.; Holbrook, J.M.; Smith, J.; Mead, C.; Entrekin, J. n-pentyl N-acetylprolinate. A new skin penetration enhancer. J Pharm Sci. 1995, 84, 640–642. [Google Scholar] [CrossRef] [PubMed]
- Fincher, T.K.; Yoo, S.D.; Player, M.R.; Sowell, J.W.; Michniak, B.B. In Vitro Evaluation of a Series of N-Dodecanoyl-L-Amino Acid Methyl Esters as Dermal Penetration Enhancers. J. Pharm. Sci. 1996, 85, 920–923. [Google Scholar] [CrossRef] [PubMed]
- Tenjarla, S.N.; Kasina, R.; Puranajoti, P.; Omar, M.S.; Harris, W.T. Synthesis and evaluation of N-acetylprolinate esters—novel skin penetration enhancers. Int. J. Pharm. 1999, 192, 147–158. [Google Scholar] [CrossRef]
- Teixeira, R.S.; Cova, T.F.G.G.; Silva, S.M.C.; Oliveira, R.; Araújo, M.J.A.; Marques, E.F.; Pais, A.A.C.C.; Veiga, F.J.B. Lysine-based surfactants as chemical permeation enhancers for dermal delivery of local anesthetics. Int. J. Pharm. 2014, 474, 212–222. [Google Scholar] [CrossRef]
- Muzzalupo, R.; Pérez, L.; Pinazo, A.; Tavano, L. Pharmaceutical versatility of cationic niosomes derived from amino acid-based surfactants: Skin penetration behavior and controlled drug release. Int. J. Pharm. 2017, 529, 245–252. [Google Scholar] [CrossRef]
- Cooper, E.R. Increased Skin Permeability for Lipophilic Molecules. J. Pharm. Sci. 1984, 73, 1153–1156. [Google Scholar] [CrossRef]
- Vávrová, K.; Zbytovská, J.; Palát, K.; Holas, T.; Klimentová, J.; Hrabálek, A.; Dolezal, P. Ceramide analogue 14S24 ((S)-2-tetracosanoylamino-3-hydroxypropionic acid tetradecyl ester) is effective in skin barrier repair in vitro. Eur. J. Pharm. Sci. 2004, 21, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Ongpipattanakul, B.; Burnette, R.R.; Potts, R.O.; Francoeur, M.L. Evidence that oleic acid exists in a separate phase within stratum corneum lipids. Pharm Res. 1991, 8, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Kopečná, M.; Macháček, M.; Nováčková, A.; Paraskevopoulos, G.; Roh, J.; Vávrová, K. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Sci. Rep. 2019, 9, 14617. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Singh, J. In vitro percutaneous absorption enhancement of a lipophilic drug tamoxifen by terpenes. J. Control. Release 1998, 51, 193–199. [Google Scholar] [CrossRef]
- Godwin, D.A.; Michniak, B.B. Influence of drug lipophilicity on terpenes as penetration enhancers. Drug Dev. Ind. Pharm. 1999, 25, 905–915. [Google Scholar] [CrossRef]
- Vaddi, H.K.; Ho, P.C.; Chan, S.Y. Terpenes in propylene glycol as skin-penetration enhancers: Permeation and partition of haloperidol, fourier transform infrared spectroscopy, and differential scanning calorimetry. J. Pharm. Sci. 2002, 91, 1639–1651. [Google Scholar] [CrossRef] [PubMed]
- Takada, H.; Yonemochi, E.; Iida, C.; Ohta, N. Effect of various vehicles on skin permeation of ondansetron hydrochloride, and their mechanism of permeation enhancement. Asian J. Pharm. Sci. 2009, 4, 81–88. [Google Scholar]
- Ashton, P.; Walters, K.A.; Brain, K.R.; Hadgraft, J. Surfactant effects in percutaneous absorption I. Effects on the transdermal flux of methyl nicotinate. Int. J. Pharm. 1992, 87, 261–264. [Google Scholar] [CrossRef]
- Nokhodchi, A.; Shokri, J.; Dashbolaghi, A.; Hassan-Zadeh, D.; Ghafourian, T.; Barzegar-Jalali, M. The enhancement effect of surfactants on the penetration of lorazepam through rat skin. Int. J. Pharm. 2003, 250, 359–369. [Google Scholar] [CrossRef]
- Rosen, M.J.; Tracy, D.J. Gemini Surfactants. J. Surfactants Deterg. 1998, 1, 547–554. [Google Scholar] [CrossRef]
- Tan, E.L.; Lid, J.-C.; Chien, Y.W. Effect of Cationic Surfactants on the Transdermal Permeation of Ionized Indomethacin. Drug Dev. Ind. Pharm. 1993, 19, 685–699. [Google Scholar] [CrossRef]
- Infante, M.R.; Pérez, L.; Pinazo, A.; Clapés, P.; Morán, M.C.; Angelet, M.; García, M.T.; Vinardell, M.P. Amino acid-based surfactants. C. R. Chim. 2004, 7, 583–592. [Google Scholar] [CrossRef]
- Zhang, N.; Qi, R.; Chen, Y.; Ji, X.; Han, Y.; Wang, Y. Partition of Glutamic Acid-Based Single-Chain and Gemini Amphiphiles into Phospholipid Membranes. Langmuir 2018, 34, 13652–13661. [Google Scholar] [CrossRef]
- Brito, R.O.; Marques, E.F.; Silva, S.G.; do Vale, M.L.; Gomes, P.; Araujo, M.J.; Rodriguez-Borges, J.E.; Infante, M.R.; Garcia, M.T.; Ribosa, I. Physicochemical and toxicological properties of novel amino acid-based amphiphiles and their spontaneously formed catanionic vesicles. Colloids Surf. B Biointerfaces 2009, 72, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.G.; Alves, C.; Cardoso, A.M.S.; Jurado, A.S.; Pedroso de Lima, M.C.; Vale, M.L.C.; Marques, E.F. Synthesis of Gemini Surfactants and Evaluation of Their Interfacial and Cytotoxic Properties: Exploring the Multifunctionality of Serine as Headgroup. Eur. J. Org. Chem. 2013, 9, 1758–1769. [Google Scholar] [CrossRef]
- Hikima, T.; Tamuram, Y.; Yamawaki, Y.; Yamamoto, M.; Tojo, K. Skin accumulation and penetration of a hydrophilic compound by a novel gemini surfactant, sodium dilauramidoglutamide lysine. Int. J. Pharm. 2013, 443, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Dahlizar, S.; Futaki, M.; Okada, A.; Radhi Kadhum, W.R.; Todo, H.; Sugibayashi, K. Design of a Topically Applied Gel Spray Formulation with Ivermectin Using a Novel Low Molecular Weight Gelling Agent, Palmitoyl-Glycine-Histidine, to Treat Scabies. Chem. Pharm. Bull. 2018, 66, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Dobler, D.; Schmidts, T.; Klingenhöfer, I.; Runkel, F. Ionic liquids as ingredients in topical drug delivery systems. Int. J. Pharm. 2013, 441, 620–627. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Tahara, Y.; Tamura, M.; Kamiya, N.; Goto, M. Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem. Commun. 2010, 46, 1452–1454. [Google Scholar] [CrossRef] [PubMed]
- Kundu, N.; Roy, S.; Mukherjee, D.; Maiti, T.K.; Sarkar, N. Unveiling the Interaction between Fatty-Acid-Modified Membrane and Hydrophilic Imidazolium-Based Ionic Liquid: Understanding the Mechanism of Ionic Liquid Cytotoxicity. J. Phys. Chem. B 2017, 121, 8162–8170. [Google Scholar] [CrossRef] [PubMed]
- Moshikur, R.; Chowdhury, R.; Fujisawa, H.; Wakabayashi, R.; Moniruzzaman, M.; Goto, M. Design and Characterization of Fatty Acid-Based Amino Acid Ester as a New “Green” Hydrophobic Ionic Liquid for Drug Delivery. ACS Sustain. Chem. Eng. 2020, 8, 3660–13671. [Google Scholar] [CrossRef]
- Jesus, A.R.; Soromenho, M.R.; Raposo, L.R.; Esperança, J.M.S.S.; Baptista, P.V.; Fernandes, A.R.; Reis, P.M. Enhancement of water solubility of poorly water-soluble drugs by new biocompatible N-acetyl amino acid N-alkyl cholinium-based ionic liquids. Eur. J. Pharm. Biopharm. 2019, 137, 227–232. [Google Scholar] [CrossRef]
Solvents | |
Fatty acids and alcohols | |
Lactams | |
Terpenes | |
Sugar and vitamin derivatives | |
Esters | |
Amino acid derivatives |
Polar Head Amino Acid | Enhancer Structure | ER | Flux Rate /µg·cm−2·h−1 | Drug | Donor Conditions | Cytotoxicity | Ref | |
---|---|---|---|---|---|---|---|---|
6-(Dimethylamino)hexanoic acid | DDAK | 17.8 | 42.2 ± 14.3 | Theophylline | 5% drug in 60% PG | 75.6 ± 12.7 µM IC50—HaCaT | 175.2 ± 27.6 µM IC50—3T3 | [61] |
43.2 | 4.78 | Hydrocortisone | 2% drug in 60% PG | |||||
13.6 | 19.0 | Adefovir | 2% drug in PB pH 4.8 | |||||
- | 8.7 | Indomethacin | 2% drug in 60% PG | |||||
L-Proline | L-Pro2 | 40.0 | 70.3 ± 7.7 | Theophylline | 5% drug in 60% PG | 68.2 ± 11.5 µM IC50—HaCaT) | 182.6 ± 6.7 µM IC50—3T3 | [60] |
47.0 | 6.54 ± 0.87 | Hydrocortisone | 2% drug in 60% PG | |||||
β-Alanine | 5.87 | 240.55 ± 21.06 | Tenofovir | 2% drug in 4 % HPMC | 80 % viability for Hep G2, MCF 7 and A549 cells, at 100 µg/mL | [81] | ||
Serine | 1.87 | 37.08 ± 1.85 | Tetracaine | 2.5% drug in 1 % HPMC and HP-β-CD | 100 % HEK cells viability at 0.14 µM | [49] | ||
2.96 | 5.74 ± 0.74 | Ropivacaine | 2.5% drug in 1 % HPMC | |||||
Glycine-Histidine | Pal-GH | 7.2 | 17.7 ± 1.3 | Metronidazole | 1% drug in gel formed with 5 % enhancer | ------------------------- | [82] | |
L-Leucine | 7.14 | 851.47 ± 69.49 | Fluorouracil | 0.5% drug in water | 177 ± 14 µM TC50—HaCaT | 387 ± 19 µM TC50—3T3 | [83] | |
2.28 | 29.92 ± 5.33 | Hydrocortisone | 0.1% drug in water |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, R.; Silva, S.G.; Pinheiro, M.; Reis, S.; Vale, M.L.d. Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery. Membranes 2021, 11, 343. https://doi.org/10.3390/membranes11050343
Pereira R, Silva SG, Pinheiro M, Reis S, Vale MLd. Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery. Membranes. 2021; 11(5):343. https://doi.org/10.3390/membranes11050343
Chicago/Turabian StylePereira, Rui, Sandra G. Silva, Marina Pinheiro, Salette Reis, and M. Luísa do Vale. 2021. "Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery" Membranes 11, no. 5: 343. https://doi.org/10.3390/membranes11050343
APA StylePereira, R., Silva, S. G., Pinheiro, M., Reis, S., & Vale, M. L. d. (2021). Current Status of Amino Acid-Based Permeation Enhancers in Transdermal Drug Delivery. Membranes, 11(5), 343. https://doi.org/10.3390/membranes11050343