Pilot Study on the Combination of Different Pre-Treatments with Nanofiltration for Efficiently Restraining Membrane Fouling While Providing High-Quality Drinking Water
Abstract
:1. Introduction
2. Experiment
2.1. Pilot System
2.2. Membrane Cleaning
2.3. Feed Water Quality Parameters
2.4. Analytical Methods
2.5. High-Performance Size-Exclusion Chromatography (HPSEC) Analysis
2.6. Fluorescence Excitation-Emission Matrix (EEM) Measurements and PARAFAC Modelling
2.7. Microscopy Imaging
3. Results and Discussion
3.1. Effectiveness of the Pre-Treatment on NF
3.2. Pre-Treatment Methods and Their Influence on DOM Characteristics
3.3. Identification of Individual Fluorescent Components
3.4. Surface Morphologies and Properties of the Virgin and Fouled NF Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cooray, T.; Wei, Y.; Zhang, J.; Zheng, L.; Zhong, H.; Weragoda, S.K.; Weerasooriya, R. Drinking Water supply for CKDu affected areas of Sri Lanka, using nanofiltration membrane technology: From laboratory to practice. Water 2019, 11, 2512. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Cabrera, J.; Zhong, L.; Wang, W.; Duan, D.; Wang, X.; Liu, S.; Xie, Y.F. Using loose nanofiltration membrane for lake water treatment: A pilot study. Front. Environ. Sci. Eng. 2021, 15, 69. [Google Scholar] [CrossRef]
- Foureaux, A.F.S.; Moreira, V.R.; Lebron, Y.A.R.; de Souza Santos, L.V.; Lange, L.C.; Amaral, M.C.S. Insights into the retention behavior of betamethasone by nanofiltration—An alternative for decentralized drinking water treatment. J. Water Process Eng. 2021, 40, 121–128. [Google Scholar] [CrossRef]
- Gao, P.; Xu, S.; Xu, Z.; Li, P.; Wu, Y.; Li, L.; Zhang, H. High-Flux Fine Hollow Fiber Nanofiltration Membranes for the Purification of Drinking Water. Ind. Eng. Chem. Res. 2021, 60, 1817–1828. [Google Scholar] [CrossRef]
- Huang, Z.; Gong, B.; Huang, C.P.; Pan, S.Y.; Wu, P.; Dang, Z.; Chiang, P.C. Performance evaluation of integrated adsorption-nanofiltration system for emerging compounds removal: Exemplified by caffeine, diclofenac and octylphenol. J. Environ. Manag. 2019, 231, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, A.; Imteaz, M. Nanofiltration membrane technology providing quality drinking water. In Nanotechnology in Water and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 291–295. [Google Scholar] [CrossRef]
- Zakmout, A.; Sadi, F.; Portugal, C.A.M.; Crespo, J.G.; Velizarov, S. Tannery effluent treatment by nanofiltration, reverse osmosis and chitosan modified membranes. Membranes 2020, 10, 378. [Google Scholar] [CrossRef]
- Religa, P.; Kowalik, A.; Gierycz, P. A new approach to chromium concentration from salt mixture solution using nanofiltration. Sep. Purif. Technol. 2011, 82, 114–120. [Google Scholar] [CrossRef]
- Ling, B.; Xie, P.; Ladner, D. Dynamic Modeling of Fouling in Reverse Osmosis Membranes. Membranes 2021, 11, 349. [Google Scholar] [CrossRef]
- Lin, D.; Bai, L.; Xu, D.; Wang, H.; Zhang, H.; Li, G.; Liang, H. Nanofiltration scaling influenced by coexisting pollutants considering the interaction between ferric coagulant and natural organic macromolecules. Chem. Eng. J. 2021, 413, 127403. [Google Scholar] [CrossRef]
- Chun, Y.; Hua, T.; Anantharaman, A.; Chew, J.W.; Cai, N.; Benjamin, M.; Wang, R. Organic matter removal from a membrane bioreactor effluent for reverse osmosis fouling mitigation by microgranular adsorptive filtration system. Desalination 2021, 506, 115016. [Google Scholar] [CrossRef]
- Park, S.; You, J.; Ahn, Y.; Jung, W.; Kim, J.; Lee, S.; Park, J.; Cho, K.H. Evaluating the effects of organic matter bioavailability on nanofiltration membrane using real-time monitoring. J. Memb. Sci. 2018, 548, 519–525. [Google Scholar] [CrossRef]
- Chon, K.; Jeong, N.; Rho, H.; Nam, J.Y.; Jwa, E.; Cho, J. Fouling characteristics of dissolved organic matter in fresh water and seawater compartments of reverse electrodialysis under natural water conditions. Desalination 2020, 496, 114478. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, S.J.; Hee Kim, L.; Seop Shin, M.; Vigneswaran, S.; Vinh Nguyen, T.; Kim, I.S. Foulant analysis of a reverse osmosis membrane used pretreated seawater. J. Memb. Sci. 2013, 428, 434–444. [Google Scholar] [CrossRef]
- Miao, R.; Wang, L.; Feng, L.; Liu, Z.W.; Lv, Y.T. Understanding PVDF ultrafiltration membrane fouling behaviour through model solutions and secondary wastewater effluent. Desalin. Water Treat. 2014, 52, 5061–5067. [Google Scholar] [CrossRef]
- Guo, Y.; Li, T.Y.; Xiao, K.; Wang, X.M.; Xie, Y.F. Key foulants and their interactive effect in organic fouling of nanofiltration membranes. J. Memb. Sci. 2020, 610, 118252. [Google Scholar] [CrossRef]
- Su, Z.; Liu, T.; Li, X.; Graham, N.J.D.; Yu, W. Tracking metal ion-induced organic membrane fouling in nanofiltration by adopting spectroscopic methods: Observations and predictions. Sci. Total Environ. 2020, 708, 135051. [Google Scholar] [CrossRef]
- Linlin, W.; Xuan, Z.; Meng, Z. Removal of dissolved organic matter in municipal effluent with ozonation, slow sand filtration and nanofiltration as high quality pre-treatment option for artificial groundwater recharge. Chemosphere 2011, 83, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.S.; Yuan, D.X.; Weng, T.P. Pilot study of drinking water treatment with GAC, O3/BAC and membrane processes in Kinmen Island, Taiwan. Desalination 2010, 263, 271–278. [Google Scholar] [CrossRef] [Green Version]
- Aryal, A.; Sathasivan, A.; Heitz, A.; Zheng, G.; Nikraz, H.; Ginige, M.P. Combined BAC and MIEX pre-treatment of secondary wastewater effluent to reduce fouling of nanofiltration membranes. Water Res. 2015, 70, 214–223. [Google Scholar] [CrossRef]
- Fan, G.; Li, Z.; Yan, Z.; Wei, Z.; Xiao, Y.; Chen, S.; Shangguan, H.; Lin, H.; Chang, H. Operating parameters optimization of combined UF/NF dual-membrane process for brackish water treatment and its application performance in municipal drinking water treatment plant. J. Water Process Eng. 2020, 38, 101547. [Google Scholar] [CrossRef]
- Fang, C.; Ou, T.; Wang, X.; Rui, M.; Chu, W. Effects of feed solution characteristics and membrane fouling on the removal of THMs by UF/NF/RO membranes. Chemosphere 2020, 260, 127625. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 2013, 5, 6557–6566. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.R.; Stedmon, C.A.; Waite, T.D.; Ruiz, G.M. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar. Chem. 2008, 108, 40–58. [Google Scholar] [CrossRef]
- Roy, Y.; Lienhard, J.H. Factors contributing to the change in permeate quality upon temperature variation in nanofiltration. Desalination 2019, 455, 58–70. [Google Scholar] [CrossRef]
- Elsayed, M.; Refaey, H.A.; Abdellatif, O.E.; Sakr, R.Y.; Afify, R.I. Experimental investigation on the performance of a small reverse osmosis unit. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 1–14. [Google Scholar] [CrossRef]
- Marconnet, C.; Houari, A.; Galas, L.; Vaudry, H.; Heim, V.; Di Martino, P. Biodegradable dissolved organic carbon concentration of feed water and NF membrane biofouling: A pilot train study. Desalination 2009, 242, 228–235. [Google Scholar] [CrossRef]
- Peng, W.; Escobar, I.C.; White, D.B. Effects of water chemistries and properties of membrane on the performance and fouling—A model development study. J. Memb. Sci. 2004, 238, 33–46. [Google Scholar] [CrossRef]
- Matilainen, A.; Lindqvist, N.; Korhonen, S.; Tuhkanen, T. Removal of NOM in the different stages of the water treatment process. Environ. Int. 2002, 28, 457–465. [Google Scholar] [CrossRef]
- Lou, J.C.; Yang, C.Y.; Chang, C.J.; Chen, W.H.; Tseng, W.B.; Han, J.Y. Analysis and removal of assimilable organic carbon (AOC) from treated drinking water using a biological activated carbon filter system. J. Environ. Chem. Eng. 2014, 2, 1684–1690. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Khojah, B.; Leiknes, T.; Alsogair, S.; Alsomali, M. Removal of bacteria and organic carbon by an integrated ultrafiltration—Nanofiltration desalination pilot plant. Membranes 2020, 10, 223. [Google Scholar] [CrossRef]
- Al-Amoudi, A.S. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review. Desalination 2010, 259, 1–10. [Google Scholar] [CrossRef]
- Sun, W.; Liu, J.; Chu, H.; Dong, B. Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes 2013, 3, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Stedmon, C.A.; Markager, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 2005, 50, 686–697. [Google Scholar] [CrossRef]
- Baghoth, S.A.; Sharma, S.K.; Amy, G.L. Tracking natural organic matter (NOM) in a drinking water treatment plant using fluorescence excitation-emission matrices and PARAFAC. Water Res. 2011, 45, 797–809. [Google Scholar] [CrossRef]
- Murphy, K.R.; Ruiz, G.M.; Dunsmuir, W.T.M.; Waite, T.D. Optimized parameters for fluorescence-based verification of ballast water exchange by ships. Environ. Sci. Technol. 2006, 40, 2357–2362. [Google Scholar] [CrossRef]
- Xu, H.; Cai, H.; Yu, G.; Jiang, H. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Res. 2013, 47, 2005–2014. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Zhang, J.; Dong, B. Pilot study on nanofiltration membrane in advanced treatment of drinking water. Water Sci. Technol. Water Supply 2020, 20, 2043–2053. [Google Scholar] [CrossRef]
- Park, M.; Anumol, T.; Simon, J.; Zraick, F.; Snyder, S.A. Pre-ozonation for high recovery of nanofiltration (NF) membrane system: Membrane fouling reduction and trace organic compound attenuation. J. Memb. Sci. 2017, 523, 255–263. [Google Scholar] [CrossRef]
- Aftab, B.; Cho, J.; Shin, H.S.; Hur, J. Using EEM-PARAFAC to probe NF membrane fouling potential of stabilized landfill leachate pretreated by various options. Waste Manag. 2020, 102, 260–269. [Google Scholar] [CrossRef]
- Li, K.; Li, S.; Sun, C.; Huang, T.; Li, G.; Liang, H. Membrane fouling in an integrated adsorption-UF system: Effects of NOM and adsorbent properties. Environ. Sci. Water Res. Technol. 2020, 6, 78–86. [Google Scholar] [CrossRef]
- Sun, L.; He, N.; Duan, X.; Yang, B.; Feng, C.; Zhang, Y. The membrane fouling mechanisms of the PAC/BPAC-UF combined process used to treat the secondary effluent from municipal wastewater treatment plant. Water Sci. Technol. 2018, 77, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Liang, H.; Qu, F.; Shao, S.; Yu, H.; Han, Z.S.; Du, X.; Li, G. Control of natural organic matter fouling of ultrafiltration membrane by adsorption pretreatment: Comparison of mesoporous adsorbent resin and powdered activated carbon. J. Memb. Sci. 2014, 471, 94–102. [Google Scholar] [CrossRef]
- Shao, S.; Liang, H.; Qu, F.; Yu, H.; Li, K.; Li, G. Fluorescent natural organic matter fractions responsible for ultrafiltration membrane fouling: Identification by adsorption pretreatment coupled with parallel factor analysis of excitation-emission matrices. J. Memb. Sci. 2014, 464, 33–42. [Google Scholar] [CrossRef]
- Shao, S.; Liang, H.; Qu, F.; Li, K.; Chang, H.; Yu, H.; Li, G. Combined influence by humic acid (HA) and powdered activated carbon (PAC) particles on ultrafiltration membrane fouling. J. Memb. Sci. 2016, 500, 99–105. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Li, H.; Pang, W.; Zhou, B.; Li, T.; Zhang, J.; Dong, B. Pilot Study on the Combination of Different Pre-Treatments with Nanofiltration for Efficiently Restraining Membrane Fouling While Providing High-Quality Drinking Water. Membranes 2021, 11, 380. https://doi.org/10.3390/membranes11060380
Chen Y, Li H, Pang W, Zhou B, Li T, Zhang J, Dong B. Pilot Study on the Combination of Different Pre-Treatments with Nanofiltration for Efficiently Restraining Membrane Fouling While Providing High-Quality Drinking Water. Membranes. 2021; 11(6):380. https://doi.org/10.3390/membranes11060380
Chicago/Turabian StyleChen, Yan, Huiping Li, Weihai Pang, Baiqin Zhou, Tian Li, Jian Zhang, and Bingzhi Dong. 2021. "Pilot Study on the Combination of Different Pre-Treatments with Nanofiltration for Efficiently Restraining Membrane Fouling While Providing High-Quality Drinking Water" Membranes 11, no. 6: 380. https://doi.org/10.3390/membranes11060380
APA StyleChen, Y., Li, H., Pang, W., Zhou, B., Li, T., Zhang, J., & Dong, B. (2021). Pilot Study on the Combination of Different Pre-Treatments with Nanofiltration for Efficiently Restraining Membrane Fouling While Providing High-Quality Drinking Water. Membranes, 11(6), 380. https://doi.org/10.3390/membranes11060380