Recent Advances in the Prediction of Fouling in Membrane Bioreactors
Abstract
:1. Introduction
2. Method Based on Artificial Neural Networks to Predict Membrane Fouling
3. Prediction of Membrane Fouling Based on Mathematical Models
4. Conclusions
- (1)
- Membrane fouling mechanisms in MBRs of different structures and scales should be studied. An important premise of accurate and rapid membrane fouling prediction is the thorough understanding of the underlying mechanisms. Meanwhile, the development of an accurate and real-time online collection system of membrane fouling data can help to build a more comprehensive prediction model with higher prediction accuracy.
- (2)
- Further research should focus on remaining useful life (RUL) prediction of the membrane modules at various failure modes. Most of the current research has focused on the residual life prediction at a single failure mode, ignoring that the failure of the membrane modules is usually caused by the synergistic effect of multiple failure modes. Under certain external impacts, the membranes could suddenly fail to provide normal functions. Therefore, residual life prediction at various failure modes is worthy of further study.
- (3)
- Intelligent feature extraction and remaining useful life prediction should be addressed in future research. An accurate prediction of remaining useful life of membrane components is dependent on the extraction of effective information from the large amount of data obtained from monitoring. However, traditional extraction methods for statistical data and shallow machine learning strategies need to rely on a large number of signal data and expert experience to extract the feature information manually. When processing a large amount of monitoring data from complex engineering equipment, these subjective data extraction methods are seriously limited. Deep learning, such as deep belief network and convolutional neural network, can overcome such problems to some extent, but relevant research is still scarce, suggesting the necessity for further research.
Funding
Conflicts of Interest
References
- Lares, M.; Ncibi, M.C.; Sillanpaa, M.; Sillanpaa, M. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res. 2018, 133, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Krzeminski, P.; Leverette, L.; Malamis, S.; Katsou, E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel configurations, LCA and market prospects. J. Membr. Sci. 2017, 527, 207–227. [Google Scholar] [CrossRef] [Green Version]
- Du, X.J.; Shi, Y.K.; Jegatheesan, V.; Haq, I.U. A review on the mechanism, impacts and control methods of membrane fouling in MBR system. Membranes 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alturki, A.A.; Tadkaew, N.; McDonald, J.A.; Khan, S.J.; Price, W.E.; Nghiem, L.D. Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. J. Membr. Sci. 2010, 365, 206–215. [Google Scholar] [CrossRef]
- Miura, Y.; Watanabe, Y.; Okabe, S. Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater. Environ. Sci. Technol. 2007, 41, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.; McCarty, P.L.; Kim, J.; Bae, J. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresour. Technol. 2014, 159, 95–103. [Google Scholar] [CrossRef]
- Abegglen, C.; Joss, A.; McArdell, C.S.; Fink, G.; Schlusener, M.P.; Ternes, T.A.; Siegrist, H. The fate of selected micropollutants in a single-house MBR. Water Res. 2009, 43, 2036–2046. [Google Scholar] [CrossRef]
- Chu, H.P.; Li, X.-Y. Membrane fouling in a membrane bioreactor (MBR): Sludge cake formation and fouling characteristics. Biotechnol. Bioeng. 2005, 90, 323–331. [Google Scholar]
- Zhao, C.Q.; Xu, X.C.; Chen, J.; Wang, G.W.; Yang, F.L. Highly effective antifouling performance of PVDF/graphene oxide composite membrane in membrane bioreactor (MBR) system. Desalination 2014, 340, 59–66. [Google Scholar] [CrossRef]
- Verrecht, B.; Maere, T.; Nopens, I.; Brepols, C.; Judd, S. The cost of a large-scale hollow fibre MBR. Water Res. 2010, 44, 5274–5283. [Google Scholar] [CrossRef]
- Jegatheesan, V.; Pramanik, B.K.; Chen, J.Y.; Navaratna, D.; Chang, C.Y.; Shu, L. Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresour. Technol. 2016, 204, 202–212. [Google Scholar] [CrossRef]
- Dolar, D.; Gros, M.; Rodriguez-Mozaz, S.; Moreno, J.; Comas, J.; Rodriguez-Roda, I.; Barcelo, D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBR-RO. J. Hazard. Mater. 2012, 239, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Du, X.J.; Shi, Y.K.; Jegatheesan, V.; Liyanaarachch, S. A new hybrid RO/FO system and its digital simulation. Membr. Sci. Tech. 2020, 40, 117–127. [Google Scholar]
- Linares, R.V.; Li, Z.; Yangali-Quintanilla, V.; Ghaffour, N.; Amy, G.; Leiknes, T.; Vrouwenvelder, J.S. Life cycle cost of a hybrid forward osmosis low pressure reverse osmosis system for seawater desalination and wastewater recovery. Water Res. 2016, 88, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, F.; Banu, R.; Yeom, I.T.; Do, K.U. Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. Biochem. Eng. J. 2018, 133, 47–58. [Google Scholar] [CrossRef]
- Shakil, M.; Elshafei, M.; Habib, M.A.; Maleki, F.A. Soft sensor for nox and o using dynamic neural networks. Comput. Electr. Eng. 2009, 35, 5578–5864. [Google Scholar] [CrossRef]
- Chellam, S. Artificial neural network model for transient crossflow microfiltration of polydispersed suspensions. J. Membr. Sci. 2005, 258, 35–42. [Google Scholar] [CrossRef]
- Al-Zoubi, H.; Hilal, N.; Darwish, N.A.; Mohammad, A.W. Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: Neural network and Spiegler-Kedem model. Desalination 2006, 206, 42–60. [Google Scholar] [CrossRef]
- Mirbagheri, S.A.; Bagheri, M.; Bagheri, Z. Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm. Process. Saf. Environ. Prot. 2015, 96, 111–124. [Google Scholar] [CrossRef]
- Han, H.G.; Zhang, S.; Qiao, J.F. Soft-sensor Method for Permeability of the Membrane Bio-Reactor Based on Recurrent Radial Basis Function Neural Network. J. Beijing Univ. Technol. 2017, 43, 1168–1174. [Google Scholar]
- Han, H.G.; Zhang, Q.; Qiao, J.F. Multi-step prediction of permeability of the membrane bio- reactor based on fuzzy neural network. In Proceedings of the 38th Chinese Control Conference, Guangzhou, China, 27–30 July 2019. [Google Scholar]
- Fenu, A.; Wilde, W.D.; Gaertner, M.; Weemaes, M.; Gueldre, G.D. Elaborating the membrane life concept in a full scale hollow-fibers MBR. J. Membr. Sci. 2012, 421–422, 349–354. [Google Scholar]
- Martín-Pascual, J.; Leyva-Díaz, J.C.; López-López, C.; Munñio, M.M.; Hontoria, E.; Poyatos, J.M. Effects of temperature on the permeability and critical flux of the membrane in a moving bed membrane bioreactor. Desalin. Water Treat. 2015, 53, 3439–3448. [Google Scholar] [CrossRef]
- Park, H.D.; Lee, Y.H.; Kim, H.B. Reduction of membrane fouling by simultaneous upward and downward air sparging in a pilot-scale submerged membrane bioreactor treating municipal wastewater. Desalination 2010, 251, 75–82. [Google Scholar] [CrossRef]
- Trussell, R.S.; Merlo, R.P.; Hermanowicz, S.W. Influence of mixed liquor properties and aeration intensity on membrane fouling in a submerged membrane bioreactor at high mixed liquor suspended solids concentrations. Water Res. 2007, 41, 947–958. [Google Scholar] [CrossRef]
- Hwang, B.K.; Lee, W.N.; Park, P.K. Effect of membrane fouling reducer on cake structure and membrane permeability in membrane bioreactor. J. Membr. Sci. 2007, 288, 149–156. [Google Scholar] [CrossRef]
- Luna, H.J.; Baeta, B.E.L.; Aquino, S.F. EPS and SMP dynamics at different heights of a submerged anaerobic membrane bioreactor (SAMBR). Process. Biochem. 2014, 49, 2241–2248. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.C.; Yang, S.Y.; Liu, F.; Wang, S.G.; Feng, Z.X. Seventy years beyond neural networks: Retrospect and prospect. Chin. J. Comput. 2016, 39, 1697–1716. [Google Scholar]
- Yao, Y.D.; He, J.J.; Li, Y.L.; Xie, D.Y.; Li, Y. ET0 simulation of self-constructed improved whale optimized BP neural network. J. Jilin Univ. 2021, 1–10. [Google Scholar] [CrossRef]
- Fan, Z.; Tian, R.Z.; Lin, L.; Han, Y.Z.; Guo, Y.; Dou, L.L.; Jing, G.H.; Agi, D.T. Desulfurization optimization of reforming catalytic dry gas using radial basis artificial neural network based on PSO algorithm. Chem. Ind. Eng. Prog. 2021, 1–15. [Google Scholar] [CrossRef]
- Wang, J.; Cao, J.X.; Zhou, X. Reservoir Porosity Prediction Based on Deep Bidirectional Recurrent Neural Network. Prog. Geophys. 2021, 1–10. Available online: http://kns.cnki.net/kcms/detail/11.2982.P.20210208.1016.052.html (accessed on 20 May 2021).
- Liu, G.G.; Pei, L.Y.; Yang, Y.M.; Li, S.N. Compactness prediction of airport soil field based on artificial neural network. J. Shenzhen Univ. Sci. Eng. 2021, 38, 54–60. [Google Scholar]
- Dornier, M.; Trystram, G.; Lebert, A. Dynamic modeling of crossflow microfiltration using neural networks. J. Membr. Sci. 1995, 98, 263–273. [Google Scholar] [CrossRef]
- Shetty, G.R.; Chellam, S. Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks. J. Membr. Sci. 2003, 217, 69–86. [Google Scholar] [CrossRef]
- Delgrange, N.; Cabassud, C.; Cabassud, M.; Durand-Bourlier, L.; Lainé, J.M. Neural networks for prediction of ultrafiltration transmembrane pressure—Application to drinking water production. J. Membr. Sci. 1998, 11, 11–123. [Google Scholar] [CrossRef]
- Li, W.W.; Li, C.Q.; Wang, T. Application of machine learning algorithms in MBR simulation under big data platform. Water Pract. Technol. 2020, 15, 1–2. [Google Scholar] [CrossRef]
- Montserrat, D.A.; Nataa, A.B.; Sara, G.A. Comparison of a deterministic and a data driven model to describe mbr fouling. Biochem. Eng. J. 2015, 260, 300–308. [Google Scholar]
- Dou, P.W.; Wang, Z.; She, K.K.; Fan, W.L. Study on Forecasting Ceramic Membrane Fouling in TCM Extracts Based on Improved BP Neural Network. Chin. J. Inf. TCM 2017, 24, 92–96. [Google Scholar]
- Yang, X.X.; Li, C.Q. Research of MBR simulation predictions based on improved extreme learning machine. Comput. Eng. Softw. 2016, 37, 17–20. [Google Scholar]
- Wang, H.; Wang, Y.; Ji, Z.C. Simulation of Wind Power Prediction Based on Improved ELM. J. Syst. Simul. 2018, 30, 4437–4447. [Google Scholar]
- Tang, J.; Li, C.Q. Research of RBF neural network based on genetic algorithm optimization in MBR membrane pollution simulation. Comput. Eng. Softw. 2016, 19, 11–13. [Google Scholar]
- Jin, Y.; Liu, S.J.; Zhang, J.G. Fatigue reliability of high speed bearing based on genetic algorithm optimized artificial neural network. J. Aerosp. Power 2018, 33, 2748–2755. [Google Scholar]
- Li, J.J.; Li, X.F.; Pian, J.X. Temperature control of annealing furnaces based on improved PSO and fuzzy RBF neural network. J. Nanjing Univ. Sci. Technol. 2014, 38, 337–341. [Google Scholar]
- Tao, Y.X.; Li, C.Q.; Su, H. Prediction of MBR membrane pollution based on improved PSO and fuzzy RBF neural network. Comput. Eng. Softw. 2018, 39, 52–56. [Google Scholar]
- Griffiths, I.M.; Kumar, A.; Stewart, P.S. A combined network model for membrane fouling. J. Colloid Interface Sci. 2014, 432, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Pimentel, G.A.; Dalmau, M.; Vargas, A.; Comas, J.; Rodriguez-Roda, I.; Rapaport, A.; Vande Wouwer, A. Validation of a simple fouling model for a submerged membrane bioreactor, IFAC-Pap. Online 2015, 48, 737–742. [Google Scholar]
- Zuthi, M.F.R.; Guo, W.; Ngo, H.H.; Nghiem, D.L.; Hai, F.I.; Xia, S.; Li, J.; Liu, Y. New and practical mathematical model of membrane fouling in an aerobic submerged membrane bioreactor. Bioresour. Technol. 2017, 238, 86–94. [Google Scholar] [CrossRef]
- Charfi, A.; Aslam, M.; Lesage, G.; Heran, M.; Kim, J. Macroscopic approach to develop fouling model under GAC fluidization in anaerobic fluidized bed membrane bioreactor. J. Ind. Eng. Chem. 2017, 49, 219–229. [Google Scholar] [CrossRef]
- Zhang, W.; Ruan, X.; Ma, Y.; Jiang, X.; Zheng, W.; Liu, Y.; He, G. Modeling and simulation of mitigating membrane fouling under a baffle-filled turbulent flow with permeate boundary. Sep. Purif. Technol. 2017, 179, 13–24. [Google Scholar] [CrossRef]
- Boyle-Gotla, A.; Jensen, P.D.; Yap, S.D.; Pidou, M.; Wang, Y.; Batstone, D.J. Dynamic multidimensional modelling of submerged membrane bioreactor fouling. J. Membr. Sci. 2014, 467, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Piron, E.; Latrille, E.; René, F. Application of artificial neural networks for crossflow microfiltration modelling: Black-box and semi-physical approaches. Comput. Chem. Eng. 1997, 21, 1021–1030. [Google Scholar] [CrossRef]
- Hamachi, M.; Cabassud, M.; Davin, A. Mietton Peuchot, M. Dynamic modelling of crossflow microfiltration of bentonite suspension using recurrent neural networks. Chem. Eng. Process. Process. Intensif. 1999, 38, 203–210. [Google Scholar] [CrossRef]
- Geissler, S.; Wintgens, T.; Melin, T.; Vossenkaul, K.; Kullmann, C. Modelling approaches for filtration processes with novel submerged capillary modules in membrane bioreactors for wastewater treatment. Desalination 2005, 178, 125–134. [Google Scholar] [CrossRef]
- Jawada, J.; Hawarib, A.H.; Zaidia, S. Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux. Desalination 2020, 484, 114427. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.F. Creep rupture life estimation of P91 steel pipes through artificial neural network based hardness prediction. J. Chin. Soc. Power Eng. 2020, 40, 936–939. [Google Scholar]
- Yu, W.L.; Wang, Y.; Ji, Z.C. Modeling and process parameters optimization of GlcN fermentation process based on improved MVO-LSSVM. J. Syst. Simul. 2020, 32, 1–8. [Google Scholar]
- Nie, J.Y.; Li, C.Q.; Li, W.W.; Wang, T. Research on the least squares support vector machine optimized by genetic algorithm in the simulation MBR prediction. Comput. Eng. Softw. 2015, 36, 40–44. [Google Scholar]
- Zhou, Y.; Chang, F.J.; Chang, L.C.; Kao, I.F.; Wang, Y.S. Explore a deep learning multi- output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2019, 209, 134–145. [Google Scholar] [CrossRef]
- Wilamowski, B.M.; Yu, H. Improved computation for Levenberg-Marquardt training. IEEE Trans. Neural Netw. 2010, 21, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Altunkaynak, A.; Chellam, S. Prediction of specific permeate flux during crossflow microfiltration of polydispersed colloidal suspensions by fuzzy logic models. Desalination 2010, 253, 188–194. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Zhou, J.L.; Altaee, A.; Baziar, M.; Li, X.W. Modeling water flux in osmotic membrane bioreactor by adaptive networkbased fuzzy inference system and artificial neural network. Bioresour. Technol. 2020, 310, 123391. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, A.; Baziar, M.; Alidadi, H.; Zhou, J.L.; Altaee, A.; Najafpoor, A.A.; Jafarpour, S. Application of artificial neural network and multiple linear regression in modeling nutrient recovery in vermicompost under different conditions. Bioresour. Technol. 2020, 303, 122926. [Google Scholar] [CrossRef]
- Alami, N.; Meknassi, M.; En-nahnahi, N. Enhancing unsupervised neural networks based text summarization with word embedding and ensemble learning. Expert Syst. Appl. 2019, 123, 195–211. [Google Scholar] [CrossRef]
- Sudakov, O.; Burnaev, E.; Koroteev, D. Driving digital rock towards machine learning: Predicting permeability with gradient boosting and deep neural networks. Comput. Geosci. 2019, 127, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Chen, H.; Gao, D.K.; Xu, L.Z.; Zhang, Y.Y. Cleaning decision model of MBR membrane based on Bandelet neural network optimized by improved Bat algorithm. Appl. Soft Comput. J. 2020, 91, 106211. [Google Scholar] [CrossRef]
- Zhang, H.F.; Fan, X. Research progress in membrane fouling in membrane bioreactor based on XDLVO approach. Chemistry 2016, 79, 604–609. [Google Scholar]
- Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput. 2012, 29, 464–483. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Yang, S.; Wu, Y.; Zhang, H.W.; Wang, J.; Wang, L.T.; Hao, S.Z. Effect of floc surface morphology on membrane pollution prediction. Ciesc J. 2020, 71, 715–723. [Google Scholar]
- Chen, J.; Lin, H.; Shen, L.; He, Y.; Zhang, M.; Liao, B.Q. Realization of quantifying interfacial interactions between a randomly rough membrane surface and a foulant particle. Bioresour. Technol. 2017, 226, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.T.; Lou, Y.; Chen, Y.F.; Lin, H.J.; Li, R.J.; Yu, G.Y. Prediction of interfacial interactions related with membrane fouling in a membrane bioreactor based on radial basis function artificial neural network (ANN). Bioresour. Technol. 2019, 282, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lei, T.; Sun, J.Y.; Xia, J.L.; Xue, T.; Yu, K.C.; Guan, J.; Chen, Y.L.; Huang, X. Life-time assessment of membrane in large-scale MBR plants for municipal wastewater treatment. China Water Wastewater 2015, 31, 34–39. [Google Scholar]
- Wang, X.S.; Gao, J.H.; Ai, B.; Fu, Q.; Chang, J.; Gan, Y.P. Evaluation of membrane life span in a full scale MBR process for reclaimed water treatment plant. Water Purif. Technol. 2014, 33, 24–27. [Google Scholar]
- Jane Gao, W.J.; Lin, H.J.; Leung, K.T.; Liao, B.Q. Influence of elevated pH shocks on the performance of a submerged anaerobic membrane bioreactor. Process. Biochem. 2010, 45, 1279–1287. [Google Scholar]
- Jiang, S.H.; Xiao, S.Z.; Chu, H.Q.; Zhao, F.C.; Yu, Z.J.; Zhou, X.F.; Zhang, Y.L. Intelligent mitigation of fouling by means of membrane vibration for algae separation: Dynamics model, comprehensive evaluation, and critical vibration frequency. Water Res. 2020, 182, 115972. [Google Scholar] [CrossRef] [PubMed]
- Alkmim, A.R.; Costa, P.R.; Amaral, M.C.S. The application of filterability as a parameter to evaluate the biological sludge quality in an MBR treating refinery effluent. Desalin. Water Treat. 2015, 53, 1440–1449. [Google Scholar] [CrossRef]
- Babanezhad, M.; Masoumian, A.; Nakhjiri, A.; Marjani, A.; Shirazian, S. Infuence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS). Sci. Rep. 2020, 10, 16110. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Wang, Z.; Du, X.; Gong, B.; Jegatheesan, V.; Haq, I.U. Recent Advances in the Prediction of Fouling in Membrane Bioreactors. Membranes 2021, 11, 381. https://doi.org/10.3390/membranes11060381
Shi Y, Wang Z, Du X, Gong B, Jegatheesan V, Haq IU. Recent Advances in the Prediction of Fouling in Membrane Bioreactors. Membranes. 2021; 11(6):381. https://doi.org/10.3390/membranes11060381
Chicago/Turabian StyleShi, Yaoke, Zhiwen Wang, Xianjun Du, Bin Gong, Veeriah Jegatheesan, and Izaz Ul Haq. 2021. "Recent Advances in the Prediction of Fouling in Membrane Bioreactors" Membranes 11, no. 6: 381. https://doi.org/10.3390/membranes11060381
APA StyleShi, Y., Wang, Z., Du, X., Gong, B., Jegatheesan, V., & Haq, I. U. (2021). Recent Advances in the Prediction of Fouling in Membrane Bioreactors. Membranes, 11(6), 381. https://doi.org/10.3390/membranes11060381