Catalytic Adsorptive Stripping Voltammetric Determination of Germanium Employing the Oxidizing Properties of V(IV)-HEDTA Complex and Bismuth-Modified Carbon-Based Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation
2.2. Reagents
2.3. Ex-Situ Electrode Preparation
2.4. Catalytic Adsorptive Stripping Determination of Ge(IV)
2.5. Design of Experiments
2.6. Contact Angle Measuring
3. Results and Discussion
3.1. Selection of an Optimal Support for Bismuth Film Deposition
3.2. Optimization of Bismuth Plating with the Use of Central Composite Design
3.3. Surface Morphology
3.4. Electrode Stability Test by Contact Angle Measurement
3.5. Analytical Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. The European Economic and Social Committee and the Committee of the Regions on the List of Critical Raw Materials for the EU; Publications Office of the European Union: Brussels, Belgium, 2017. [Google Scholar]
- Petty, T.R. Final list of critical minerals. Fed. Regist. 2018, 83, 23295–23296. [Google Scholar]
- Eggert, R.G. Minerals go critical. Nat. Chem. 2011, 3, 688–691. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Chang, B.C.; Chiu, K.L. Recovery of germanium from waste optical fibers by hydrometallurgical method. J. Environ. Chem. Eng. 2017, 5, 5215–5221. [Google Scholar] [CrossRef]
- Czae, M.Z.; Wang, J. Pushing the detectability of voltammetry: How low can we go? Talanta 1999, 50, 921–928. [Google Scholar] [CrossRef]
- Bobrowski, A.; Zarębski, J. Catalytic systems in adsorptive stripping voltammetry. Electroanalysis 2000, 12, 1177–1186. [Google Scholar] [CrossRef]
- Banica, F.G.; Ion, A. Electrocatalysis-based kinetics determination. In Encyclopedia of Analytical Chemistry: Instrumentation and Applications; Meyers, R.A., Ed.; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Bobrowski, A.; Zarębski, J. Application of catalytic adsorptive stripping voltammetry in water analysis. Water Sci. Technol. Water Supply 2001, 1, 1–8. [Google Scholar] [CrossRef]
- Bobrowski, A.; Zarebski, J. Catalytic adsorptive stripping voltammetry at film electrodes. Curr. Anal. Chem. 2008, 4, 191–201. [Google Scholar] [CrossRef]
- Zarębski, J.; Bobrowski, A.; Gonciarczyk, J.; Królicka, A. Extremely sensitive germanium stripping voltammetric determination with the use of a new Ge (IV)-catechol-V(IV)-HEDTA catalytic adsorptive system. Electrochim. Acta 2019, 324, 134859. [Google Scholar] [CrossRef]
- Zarębski, J.; Bobrowski, A.; Gonciarczyk, J.; Królicka, A. Selection of Optimal Ligand and Vanadium (IV) Complexonate for Sensitive Catalytic Adsorptive Stripping Voltammetric Quantification of Germanium. Electroanalysis 2020, 32, 2213–2219. [Google Scholar] [CrossRef]
- Zarębski, J.; Bobrowski, A.; Królicka, A.; Gonciarczyk, J.; Manolopoulou, V. Economou A novel catalytic adsorptive stripping voltammetric method for the determination of germanium ultratraces in the presence of chloranilic acid and the V (IV)· HEDTA complex. J. Solid State Electrochem. 2020, 24, 2891–2899. [Google Scholar] [CrossRef]
- Jinhui, S.; Kui, J. Adsorptive complex catalytic polarographic determination of germanium in soils and vegetables. Anal. Chim. Acta 1995, 309, 103–109. [Google Scholar] [CrossRef]
- Zhong, S.; Su, J.; Chen, L.; Tong, J.; Jia, W.; Li, X.; Zou, H. Determination of total germanium in Chinese herbal remedies by square-wave catalytic adsorptive cathodic stripping voltammetry at an improved bismuth film electrode. Int. J. Electrochem. 2013, 2013, 735019. [Google Scholar] [CrossRef]
- Muñiz, Á.J.L.; García, C.J.A.; López, F.J.M. Coupling of Ligand-Catalyzed Electroreduction of Metal Ions with Redox Electrocatalysis. Application of the o-Catechol-Ge(IV)-V(IV) Double Catalytic System for the Sensitive Determination of o-Catechol. Electroanalysis 2001, 13, 181–185. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y. Enhancement mechanism of the oscillopolarographic current of germanium (IV)-trihydroxybenzoic acid system and application. Anal. Sci. 1997, 13, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.H.; Chen, X.H.; Huang, M.H.; Zhou, F.Q. Catalytic Adsorptive Stripping Voltammetry of Germanium (IV) in the Presence of Gallic Acid and Vanadium (IV)-EDTA. Electroanalysis 2007, 19, 704–708. [Google Scholar] [CrossRef]
- Sun, C.; Gao, Q.; Xi, J.; Xu, H. Determination of germanium (IV) by catalytic cathodic stripping voltammetry. Anal. Chim. Acta 1995, 309, 89–93. [Google Scholar] [CrossRef]
- Kulpa, A.; Ryl, J.; Skowierzak, G.; Koterwa, A.; Schroeder, G.; Ossowski, T.; Niedziałkowski, P. Comparison of Cadmium Cd2+ and Lead Pb2+ Binding by Fe2O3@SiO2-EDTA Nanoparticles–Binding Stability and Kinetic Studies. Electroanalysis 2020, 32, 588–597. [Google Scholar] [CrossRef]
- Deshmukh, M.A.; Celiesiute, R.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper (II), lead (II) and mercury (II) ions. Electrochim. Acta 2018, 259, 930–938. [Google Scholar] [CrossRef]
- Deshmukh, M.A.; Patil, H.K.; Bodkhe, G.A.; Yasuzawa, M.; Koinkar, P.; Ramanaviciene, A.; Shirsat, M.D.; Ramanavicius, A. EDTA-modified PANI/SWNTs nanocomposite for differential pulse voltammetry based determination of Cu(II) ions. Sens. Actuators B 2018, 260, 331–338. [Google Scholar] [CrossRef]
- Švancara, I.; Prior, C.; Hocevar, S.B.; Wang, J. A decade with bismuth-based electrodes in electroanalysis. Electroanalysis 2010, 22, 1405–1420. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Adamczyk, M. Bismuth film electrode and chloranilic acid as a new alternative for simple, fast and sensitive Ge (IV) quantification by adsorptive stripping voltammetry. RSC Adv. 2018, 8, 15215–15221. [Google Scholar] [CrossRef] [Green Version]
- Renedo, O.D.; Alonso-Lomillo, M.; Martinez, M.A. Recent developments in the field of screen-printed electrodes and their related applications. Talanta 2007, 73, 202–219. [Google Scholar] [CrossRef]
- Li, M.; Li, Y.T.; Li, D.W.; Long, Y.T. Recent developments and applications of screen printed electrodes in environmental assays—A review. Anal. Chim. Acta 2012, 734, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Economou, A. Screen-printed electrodes modified with “green” metals for electrochemical stripping analysis of toxic elements. Sensors 2018, 18, 1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beitollahi, H.; Mohammadi, S.Z.; Safaei, M.; Tajik, S. Applications of electrochemical sensors and biosensors based on modified screen-printed electrodes: A review. Anal. Methods 2020, 12, 1547–1560. [Google Scholar] [CrossRef]
- Deshmukh, M.A.; Shirsat, M.D.; Ramanaviciene, A.; Ramanavicius, A. Composites Based on Conducting Polymers and Carbon Nanomaterials for Heavy Metal Ion Sensing (Review). Crit. Rev. Anal. Chem. 2018, 48, 293–304. [Google Scholar] [CrossRef]
- Bobrowski, A.; Królicka, A.; Śliwa, J.; Zarębski, J.; Januś, M.; Kyzioł, K. PVD fabrication of lead film electrodes and their catalytic adsorptive stripping voltammetric performance in the presence of oxidants. Electrochem. Commun. 2018, 94, 49–54. [Google Scholar] [CrossRef]
- Bobrowski, A.; Królicka, A.; Zarębski, J. Morphology and electrochemical properties of the bismuth film electrode ex situ electrochemically plated from perchloric acid. Electroanalysis 2010, 22, 1421–1427. [Google Scholar] [CrossRef]
- Królicka, A.; Bobrowski, A.; Pamuła, E. Microscopic and voltammetric properties of lustrous bismuth deposits. Sens. Electroanal. 2010, 5, 85–96. [Google Scholar]
- Available online: https://www.compoundchem.com/2014/02/19/the-chemical-elements-of-a-smartphone/ (accessed on 18 June 2021).
- Ding, Y.; Zhang, S.; Liu, B.; Zheng, H.; Chang, C.C.; Ekberg, C. Recovery of precious metals from electronic waste and spent catalysts: A review. Resour. Conserv. Recycl. 2019, 141, 284–298. [Google Scholar] [CrossRef]
Electrode Type | Calibration Formula * | Linear Range (nM) | R2 | LOD (nM) |
---|---|---|---|---|
BiFE/GC | y = (0.100 ± 0.003)x + (0.05 ± 0.05) | 1.5–24 | 0.9928 | 1.0 |
BiFE/SPE | y = (0.107 ± 0.004)x + (0.13 ± 0.05) | 1.5–19.5 | 0.9945 | 1.0 |
BiFE/SPEmeso | y = (0.0281 ± 0.0004)x + (−0.04 ± 0.02) | 5.0–70 | 0.9985 | 1.2 |
BiFE/SPEor-meso | y = (0.0276 ± 0.0009)x + (−0.02 ± 0.04) | 5.0–90 | 0.9931 | 0.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Królicka, A.; Zarębski, J.; Bobrowski, A. Catalytic Adsorptive Stripping Voltammetric Determination of Germanium Employing the Oxidizing Properties of V(IV)-HEDTA Complex and Bismuth-Modified Carbon-Based Electrodes. Membranes 2021, 11, 524. https://doi.org/10.3390/membranes11070524
Królicka A, Zarębski J, Bobrowski A. Catalytic Adsorptive Stripping Voltammetric Determination of Germanium Employing the Oxidizing Properties of V(IV)-HEDTA Complex and Bismuth-Modified Carbon-Based Electrodes. Membranes. 2021; 11(7):524. https://doi.org/10.3390/membranes11070524
Chicago/Turabian StyleKrólicka, Agnieszka, Jerzy Zarębski, and Andrzej Bobrowski. 2021. "Catalytic Adsorptive Stripping Voltammetric Determination of Germanium Employing the Oxidizing Properties of V(IV)-HEDTA Complex and Bismuth-Modified Carbon-Based Electrodes" Membranes 11, no. 7: 524. https://doi.org/10.3390/membranes11070524
APA StyleKrólicka, A., Zarębski, J., & Bobrowski, A. (2021). Catalytic Adsorptive Stripping Voltammetric Determination of Germanium Employing the Oxidizing Properties of V(IV)-HEDTA Complex and Bismuth-Modified Carbon-Based Electrodes. Membranes, 11(7), 524. https://doi.org/10.3390/membranes11070524