Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Experimental Methods
2.2.1. Membrane Fabrication Process
2.2.2. CM–Ozone Coupling Experiments
2.3. Characterization of CMs and Analytical Methods
3. Results and Discussion
3.1. Fabrication and Characterization of CMs
3.1.1. Selection of s/c in the Membrane Fabrication Process
3.1.2. Characterization of CMs with Series of s/c Ratios
3.2. Degradation of Organic Pollutants by CM-Catalyzed Ozone
3.3. Effect of Initial pH
3.4. Reusability of CMs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karpińska, J.; Kotowska, U. Removal of Organic Pollution in the Water Environment. Water 2019, 11, 2017. [Google Scholar] [CrossRef] [Green Version]
- Chang, E.E.; Chiang, P.; Ko, Y.; Lan, W. Characteristics of organic precursors and their relationship with disinfection by-products. Chemosphere 2001, 44, 1231–1236. [Google Scholar] [CrossRef]
- Liu, H.; Sun, P.; He, Q.; Feng, M.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Ozonation of the UV filter benzophenone-4 in aquatic environments: Intermediates and pathways. Chemosphere 2016, 149, 76–83. [Google Scholar] [CrossRef]
- Liu, H.; Sun, P.; Feng, M.; Liu, H.; Yang, S.; Wang, L.; Wang, Z. Nitrogen and sulfur co-doped CNT-COOH as an efficient metal-free catalyst for the degradation of UV filter BP-4 based on sulfate radicals. Appl. Catal. B Environ. 2016, 187, 1–10. [Google Scholar] [CrossRef]
- Laurentiis, E.; Minella, M.; Sarakha, M.; Marrese, A.; Minero, C.; Mailhot, G.; Brigante, M.; Vione, D. Photochemical processes involving the UV absorber benzophenone-4 (2-hydroxy-4-methoxybenzophenone-5-sulphonic acid) in aqueous solution: Reaction pathways and implications for surface waters. Water Res. 2013, 47, 5943–5953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Harabi, A.; Zenikheri, F.; Boudaira, B.; Bouzerara, F.; Guechi, A.; Foughali, L. A new and economic approach to fabricate resistant porous membrane supports using kaolin and CaCO3. J. Eur. Ceram. Soc. 2014, 34, 1329–1340. [Google Scholar] [CrossRef]
- Pendergast, M.M.; Hoek, E.M.V. A review of water treatment membrane nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Yang, Y. Ultrafiltration-the 3 rd Generation Key Water Purification Technology for City. Water Technol. 2007, 1–3. [Google Scholar]
- Xu-Jiang, Y.; Dodds, J.; Leclerc, D.; Lenoel, M. A technique for the study of the fouling of microfiltration membranes using two membranes in series. J. Membr. Sci. 1995, 105, 23–30. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, H.; Qu, F.; Ding, A.; Chang, H.; Liu, B.; Tang, X.; Wu, D.; Li, G. Fabrication of Mn oxide incorporated ceramic membranes for membrane fouling control and enhanced catalytic ozonation of p-chloronitrobenzene. Chem. Eng. J. 2017, 308, 1010–1020. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry, 2nd ed.; Thomas Telford: London, UK, 1997; pp. 1–28. [Google Scholar]
- Luukkonen, T.; Heponiemi, A.; Runtti, H.; Pesonen, J.; Yliniemi, J.; Lassi, U. Application of alkali-activated materials for water and wastewater treatment: A review. Rev. Environ. Sci. Bio Technol. 2019, 18, 271–297. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Gao, X.; Ma, Z.; Wang, X.; Gao, C. Ice-templated porous silicate cement with hierarchical porosity. Mater. Lett. 2018, 217, 292–295. [Google Scholar] [CrossRef]
- Dong, S.; Wang, L.; Gao, X.; Zhu, W.; Wang, Z.; Ma, Z.; Gao, C. Freeze casting of novel porous silicate cement supports using tert-butyl alcohol-water binary crystals as template: Microstructure, strength and permeability. J. Membr. Sci. 2017, 541, 143–152. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Chang, J.; Shen, J.; Kang, J.; Chen, Q. Fabrication of a low-cost cementitious catalytic membrane for p-chloronitrobenzene degradation using a hybrid ozonation-membrane filtration system. Chem. Eng. J. 2015, 262, 904–912. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Chang, J.; Shen, J.; Kang, J.; Yang, L.; Chen, Q. A novel cementitious microfiltration membrane: Mechanisms of pore formation and properties for water permeation. RSC Adv. 2015, 99–108. [Google Scholar] [CrossRef]
- Sun, J.; Chen, Z.; Shen, J.; Wang, B.; Zhao, S.; Wang, W.; Zhu, X.; Wang, Z.; Kang, J. Improvement of the fabricated and application of aluminosilicate-based microfiltration membrane. Chemosphere 2021, 273, 129628. [Google Scholar] [CrossRef] [PubMed]
- Sakkas, V.A.; Giokas, D.L.; Lambropoulou, D.A.; Albanis, T.A. Aqueous photolysis of the sunscreen agent octyl-dimethyl-p-aminobenzoic acid: Formation of disinfection byproducts in chlorinated swimming pool water. J. Chromatogr. A 2003, 1016, 211–222. [Google Scholar] [CrossRef]
- Li, N.; Ho, W.; Wu, R.S.S.; Tsang, E.P.K.; Ying, G.; Deng, W. Ultra violet filters in the urine of preschool children and drinking water. Environ. Int. 2019, 133, 105246. [Google Scholar] [CrossRef] [PubMed]
- Rodil, R.; Quintana, J.B.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D. Multiclass Determination of Sunscreen Chemicals in Water Samples by Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chem. 2008, 80, 1307–1315. [Google Scholar] [CrossRef]
- Klotz, K.; Hof, K.; Hiller, J.; Goen, T.; Drexler, H. Quantification of prominent organic UV filters and their metabolites in human urine and plasma samples. J. Chromatogr. B 2019, 1125, 121706. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Sun, Z.; Ma, J.; Liu, H. Enhancement Mechanism of Heterogeneous Catalytic Ozonation by Cordierite-Supported Copper for the Degradation of Nitrobenzene in Aqueous Solution. Environ. Sci. Technol. 2009, 43, 2047–2053. [Google Scholar] [CrossRef]
- Bian, W.; Ying, X.; Shi, J. Enhanced degradation of p-chlorophenol in a novel pulsed high voltage discharge reactor. J. Hazard. Mater. 2009, 162, 906–912. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shen, J.; Chen, Z.; Yang, L.; Liu, Y.; Han, Y. Effects of amorphous-zinc-silicate-catalyzed ozonation on the degradation of p-chloronitrobenzene in drinking water. Appl. Catal. A Gen. 2011, 403, 112–118. [Google Scholar] [CrossRef]
- Song, Z.; Wang, M.; Wang, Z.; Wang, Y.; Li, R.; Zhang, Y.; Liu, C.; Liu, Y.; Xu, B.; Qi, F. Insights into Heteroatom-Doped Graphene for Catalytic Ozonation: Active Centers, Reactive Oxygen Species Evolution, and Catalytic Mechanism. Environ. Sci. Technol. 2019, 53, 5337–5348. [Google Scholar] [CrossRef]
- Bader, H.; Hoigné, J. Determination of ozone in water by the indigo method. Water Res. 1981, 15, 449–456. [Google Scholar] [CrossRef]
- American Society for Testing and Materials; Committee D-19 on Water. Standard Test Methods for Pore Size Characteristics of Membrane Filters by Bubble Point and Mean Flow Pore Test (ASTM F316-03); ASTM, 2019. Available online: https://www.astm.org/Standards/F316 (accessed on 14 July 2020).
- Kwan, Y.B.P.; Stephenson, D.J.; Alcock, J.R. The Dependence of Pore Size Distribution on Porosity in Hot Isostatically Pressed Porous Alumina. J. Porous Mater. 2001, 8, 119–127. [Google Scholar] [CrossRef]
- L Hôpital, E.; Lothenbach, B.; Le Saout, G.; Kulik, D.; Scrivener, K. Incorporation of aluminium in calcium-silicate-hydrates. Cem. Concr. Res. 2015, 75, 91–103. [Google Scholar] [CrossRef]
- Choobbasti, A.J.; Kutanaei, S.S. Microstructure characteristics of cement-stabilized sandy soil using nanosilica. J. Rock Mech. Geotech. Eng. 2017, 9, 981–988. [Google Scholar] [CrossRef]
- Sun, J.; Xu, Z.; Li, W.; Shen, X. Effect of Nano-SiO2 on the Early Hydration of Alite-Sulphoaluminate Cement. Nanomaterials 2017, 7, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konar, B.B.; Pariya, T.K. Study of Polymer-Cement Composite Containing Portland Cement and Aqueous Poly (methyl methacrylate) Latex Polymer by Fourier-Transform Infrared (FT-IR) Spectroscopy. J. Macromol. Sci. Part A 2009, 46, 802–806. [Google Scholar] [CrossRef]
- Dang, J.; Zhao, J. Influence of waste clay bricks as fine aggregate on the mechanical and microstructural properties of concrete. Constr. Build. Mater. 2019, 228, 116757. [Google Scholar] [CrossRef]
- Kupwade-Patil, K.; Palkovic, S.D.; Bumajdad, A.; Soriano, C.; Büyüköztürk, O. Use of silica fume and natural volcanic ash as a replacement to Portland cement: Micro and pore structural investigation using NMR, XRD, FTIR and X-ray microtomography. Constr. Build. Mater. 2018, 158, 574–590. [Google Scholar] [CrossRef]
- Seifan, M.; Mendoza, S.; Berenjian, A. Mechanical properties and durability performance of fly ash based mortar containing nano- and micro-silica additives. Constr. Build. Mater. 2020, 252, 119121. [Google Scholar] [CrossRef]
- Sarasa, J.; Cortes, S.; Ormad, P.; Gracia, R.; Ovelleiro, J.L. Study of the aromatic by-products formed from ozonation of anilines in aqueous solution. Water Res. 2002, 36, 3035–3044. [Google Scholar] [CrossRef]
- Tekle-Röttering, A.; von Sonntag, C.; Reisz, E.; Eyser, C.V.; Lutze, H.V.; Türk, J.; Naumov, S.; Schmidt, W.; Schmidt, T.C. Ozonation of anilines: Kinetics, stoichiometry, product identification and elucidation of pathways. Water Res. 2016, 98, 147–159. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, J.; Qin, Q.; Zhai, X. Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. J. Mol. Catal. A Chem. 2007, 267, 41–48. [Google Scholar] [CrossRef]
- Novais, R.M.; Buruberri, L.H.; Seabra, M.P.; Bajare, D.; Labrincha, J.A. Novel porous fly ash-containing geopolymers for pH buffering applications. J. Clean. Prod. 2016, 124, 395–404. [Google Scholar] [CrossRef]
- Guo, Y.; Song, Z.; Xu, B.; Li, Y.; Qi, F.; Croue, J.; Yuan, D. A novel catalytic ceramic membrane fabricated with CuMn2O4 particles for emerging UV absorbers degradation from aqueous and membrane fouling elimination. J. Hazard. Mater. 2018, 344, 1229–1239. [Google Scholar] [CrossRef]
- Song, Z.; Sun, J.; Wang, W.; Wang, Z.; Zhang, Y.; Xu, B.; Qi, F. Stable synergistic decontamination and self-cleaning performance of powerful N-rGO catalytic ozonation membrane: Clustering effect of free electrons and role of interface properties. Appl. Catal. B Environ. 2021, 283, 119662. [Google Scholar] [CrossRef]
s/c | Largest Pore Size μm | Average Pore Size μm | Mean Pore Size μm | Second Peak Pore Size μm |
---|---|---|---|---|
0.1 | 4.301 | 0.336 | 0.25 | 0.75 |
0.3 | 4.366 | 0.358 | 0.20 | 1.00 |
0.4 | 5.706 | 0.554 | 0.15 | 1.25 |
0.5 | 6.584 | 0.633 | 0.25 | - |
0.8 | 4.156 | 0.724 | 0.25 | 1.5 |
1 | 3.839 | 0.618 | 0.25 | 1.25 |
s/c | Porosity | Bending Strength | PWF |
---|---|---|---|
% | MPa | L m−2 h−1 bar−1 | |
0.1 | 25.31 | 5.89 | 984 |
0.3 | 31.15 | 5.55 | 228 |
0.4 | 34.58 | 4.87 | 847 |
0.5 | 37.90 | 4.40 | 2617 |
0.8 | 32.18 | 2.59 | 4117 |
1.0 | 33.56 | 1.42 | 5147 |
Organic Compounds | CM | Ozone Alone | ||
---|---|---|---|---|
kobs (min−1) | R2 | kobs (min−1) | R2 | |
Nitrobenzene | 0.1837 | 0.996 | 0.0861 | 0.995 |
p-CA | 0.7331 | 0.998 | 0.9521 | 0.991 |
BP-4 | 0.2849 | 0.998 | 0.0964 | 0.999 |
p-CP | 0.6836 | 0.995 | 0.2664 | 0.963 |
4-CNB | 0.1406 | 0.996 | 0.0834 | 0.978 |
p-CBA | 0.2039 | 0.998 | 0.1286 | 0.986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Liu, S.; Kang, J.; Chen, Z.; Cai, L.; Guo, Y.; Shen, J.; Wang, Z. Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants. Membranes 2021, 11, 532. https://doi.org/10.3390/membranes11070532
Sun J, Liu S, Kang J, Chen Z, Cai L, Guo Y, Shen J, Wang Z. Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants. Membranes. 2021; 11(7):532. https://doi.org/10.3390/membranes11070532
Chicago/Turabian StyleSun, Jingyi, Shan Liu, Jing Kang, Zhonglin Chen, Liming Cai, Yuhao Guo, Jimin Shen, and Zhe Wang. 2021. "Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants" Membranes 11, no. 7: 532. https://doi.org/10.3390/membranes11070532
APA StyleSun, J., Liu, S., Kang, J., Chen, Z., Cai, L., Guo, Y., Shen, J., & Wang, Z. (2021). Fabrication of Cementitious Microfiltration Membrane and Its Catalytic Ozonation for the Removal of Small Molecule Organic Pollutants. Membranes, 11(7), 532. https://doi.org/10.3390/membranes11070532