Study of the Ecological Footprint and Carbon Footprint in a Reverse Osmosis Sea Water Desalination Plant
Abstract
:1. Introduction
Literature Review
- It defines sustainability objectives in specific and measurable terms by providing great information to Nongovernmental Organizations (NGOs) and governments to establish sustainability-oriented measures, creating a meaningful context for decision-making.
- See the areas where there is the greatest room for improvement in reducing consumption and promoting sustainability. Once the mostly guilty camps have been analyzed, the ecological footprint also allows us to examine the costs of reducing it.
- It develops activities that maintain the citizen’s interest in ensuring a sustainable future. It is a concept that is easily conveyed and helps to raise awareness of the importance of sustainability and promote initiatives or actions for it. This footprint provides more information to existing sustainability projects.
- Create strategies to speed up the process. It promotes the reduction of the ecological footprint by improving the quality of life of people. Create a platform to be able to properly plan important topics such as the field of housing, transport or energy and its infrastructures.
2. Materials and Methods
Energy Analysis, Costs, and Emissions of Desalinated Water in the Canary Islands
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Galli, A.; Giampietro, M.; Goldfinger, S.; Lazarus, E.; Lin, D.; Saltelli, A.; Wackernagel, M.; Müller, F. Questioning the ecological footprint. Ecol. Indic. 2016, 69, 224–232. [Google Scholar] [CrossRef]
- Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M.S.; Martindill, J.; Medouar, F.-Z.; Huang, S.; et al. Ecological footprint accounting for countries: Updates and results of the national footprint accounts, 2012–2018. Resources 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Borucke, M.; Moore, D.; Cranston, G.; Gracey, K.; Iha, K.; Larson, J.; Lazarus, E.; Morales, J.C.; Wackernagel, M.; Galli, A. Accounting for demand and supply of the biosphere’s regenerative capacity: The National Footprint Accounts’ underlying methodology and framework. Ecol. Indic. 2013, 24, 518–533. [Google Scholar] [CrossRef]
- Kitzes, J.; Galli, A.; Bagliani, M.; Barrett, J.; Dige, G.; Ede, S.; Erb, K.; Giljum, S.; Haberl, H.; Hails, C.; et al. A research agenda for improving national Ecological Footprint accounts. Ecol. Econ. 2009, 68, 1991–2007. [Google Scholar] [CrossRef]
- Pascual, J.L. Propuesta Metodológica para la Determinación de la huella Ecológica en el sector Hotelero. Aplicación para las islas Canarias. (Methodological Proposal for the Determination of the Ecological Footprint in the Hotel Sector. Application for the Canary Islands). Ph.D. Thesis, Universidad de Las Palmas de Gran Canaria (University of Las Palmas de Gran Canaria), Las Palmas de Gran Canaria, Spain, 2015. [Google Scholar]
- Kurihara, M. Seawater reverse osmosis desalination. Membranes 2021, 11, 243. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-García, A.; Melián-Martel, N.; Nuez, I. Short review on predicting fouling in RO desalination. Membranes 2017, 7, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leon, F.; Ramos, A.; Vaswani, J.; Mendieta, C.; Brito, S. Climate change mitigation strategy through membranes replacement and determination methodology of carbon footprint in reverse osmosis RO desalination plants for islands and isolated territories. Water 2021, 13, 293. [Google Scholar] [CrossRef]
- Magazzino, C. The relationship among economic growth, CO2 emissions, and energy use in the APEC countries: A panel VAR approach. Environ. Syst. Decis. 2017, 37, 353–366. [Google Scholar] [CrossRef]
- Magazzino, C. Marco mele and nicolas schneider. A Machine Learning approach on the relationship among solar and wind energy production, coal consumption, GDP, and CO2 emissions. Renew. Energy 2021, 167, 99–115. [Google Scholar] [CrossRef]
- Magazzino, C.; Cerulli, G. The determinants of CO2 emissions in MENA countries: A responsiveness scores approach. Int. J. Sustain. Dev. World Ecol. 2019, 26, 522–534. [Google Scholar] [CrossRef]
- Long, X.; Yu, H.; Sun, M.; Wang, X.C.; Klemeš, J.J.; Xie, W.; Wang, C.; Li, W.; Wang, Y. Sustainability evaluation based on the Three-dimensional Ecological Footprint and Human Development Index: A case study on the four island regions in China. J. Environ. Manag. 2020, 265, 110509. [Google Scholar] [CrossRef] [PubMed]
- Kovács, Z.; Harangozó, G.; Szigeti, C.; Koppány, K.; Kondor, A.C.; Szabó, B. Measuring the impacts of suburbanization with ecological footprint calculations. Cities 2020, 101, 102715. [Google Scholar] [CrossRef]
- Schallenberg-Rodríguez, J.; Veza, J.M.; Blanco-Marigorta, A. Energy efficiency and desalination in the Canary Islands. Renew. Sustain. Energy Rev. 2014, 40, 741–748. [Google Scholar] [CrossRef]
- Kheriji, J.; Mnif, A.; Bejaoui, I.; Hamrouni, B. Study of the influence of operating parameters on boron removal by a reverse osmosis membrane. Desal. Water Treat. 2015, 56, 2653–2662. [Google Scholar] [CrossRef]
- Davenport, D.M.; Deshmukh, A.; Werber, J.R.; Elimelech, M. High-Pressure reverse osmosis for energy-efficient hypersaline brine desalination: Current status, design considerations, and research needs. Environ. Sci. Technol. Lett. 2018, 5, 467–475. [Google Scholar] [CrossRef]
- Patel, S.K.; Ritt, C.L.; Deshmukh, A.; Wang, Z.; Qin, M.; Epsztein, R.; Elimelech, M. The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. 2020, 13, 1694–1710. [Google Scholar] [CrossRef] [Green Version]
- Boo, C.; Winton, R.K.; Conway, K.M.; Yip, N.Y. Membrane-less and non-evaporative desalination of hypersaline brines by temperature swing solvent extraction. Environ. Sci. Technol. Lett. 2019, 6, 359–364. [Google Scholar] [CrossRef]
- Finkbeiner, M. Carbon footprinting—opportunities and threats. Int. J. LCA 2009, 14, 91–94. [Google Scholar] [CrossRef] [Green Version]
- Wiedmann, T.; Minx, J. A definition of ‘carbon footprint’. In Ecological Economics Research Trends; Pertsova, C.C., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2008; Chapter 1; pp. 1–11. [Google Scholar]
- Carbon Trust. Carbon Footprints in the Supply Chain: The Next Step for Business; Report No. CTC616. Available online: https://www.carbontrust.com/resources/carbon-footprints-in-the-supply-chain-the-next-step-for-business (accessed on 26 November 2020).
- Matthews, H.S.; Weber, C.L.; Hendrickson, C.T. Estimating carbon footprints with input-output models. In Proceedings of the International Input-Output Meeting on Managing the Environment, Seville, Spain, 9–11 July 2008. [Google Scholar]
- Minx, J.; Scott, K.; Peters, G.; Barrett, J. An Analysis of Sweden‘s Carbon Footprint—A Report to WWF Sweden; WWF: Stockholm, Sweden, 2008. [Google Scholar]
- Weber, C.L.; Matthews, H.S. Quantifying the global and distributional aspects of American household carbon footprint. Ecol. Econ. 2008, 66, 379–391. [Google Scholar] [CrossRef]
- Wiedmann, T.; Wood, R.; Lenzen, M.; Minx, J.; Guan, D.; Barrett, J. Development of an Embedded Carbon Emissions Indicator—Producing a Time Series of Input-Output Tables and Embedded Carbon Dioxide Emissions for the UK by Using a MRIO Data Optimisation System; Final Report to the Department for Environment, Food and Rural Affairs by Stockholm Environment Institute at the University of York and Centre for Integrated Sustainability Analysis at the University of Sydney; Project Ref.EV02033; Defra: London, UK, 2008. [Google Scholar]
- Matthews, H.S.; Hendrickson, C.T.; Weber, C.L. The importance of carbon footprint estimation boundaries. Environ. Sci. Technol. 2008, 42, 5839–5842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minx, J.; Wiedmann, T.; Barrett, J.; Suh, S. Methods REVIEW TO SUPPORT THE PAS Process for the Calculation of Greenhouse Gas Emissions Embodied in Goods and Services; Report to the UK Department for Environment, Food and Rural Affairs by Stockholm Environment Institute at the University of York and Department for Bio-Based Products at the University of Minnesota; Project Ref.: EV2074; Defra: London, UK, 2008. [Google Scholar]
- Penela, A.C. Utilidad de la Huella Ecológica y del Carbono en el Ámbito de la Responsabilidad Social Corporativa (RSC) y el Ecoetiquetado de Bienes y Servicios (Usefulness of the Ecological and Carbon Footprint in the Field of Corporate Social Responsibility (CSR) and the Ecolabeling of Goods and Services). 2009. Available online: http://www.eumed.net/rev/delos/08 (accessed on 26 November 2020).
- Consejería de Medio Ambiente de la Junta de Andalucía (Ministry of the Environment of the Andalusian Government). La huella ecológica de Andalucía, una Herramienta para medir la Sostenibilidad (The Ecological Footprint of Andalusia, a Tool to Measure Sustainability). Available online: http://www.juntadeandalucia.es/medioambiente/web/Bloques_Tematicos/Publicaciones_Divulgacion_Y_Noticias/Documentos_Tecnicos/huella.pdf (accessed on 26 November 2020).
- Ministerio de Medio Ambiente medio Rural y Marino (Ministry of the Rural and Marine Environment). Análisis de la huella ecológica de España (Analysis of the Ecological Footprint of Spain). Available online: https://www.footprintnetwork.org/content/images/uploads/Huella%20ecologica%20de%20Espana.pdf (accessed on 26 November 2020).
- Anuario Energético de Canarias 2017 (Canary Islands Energy Yearbook 2017). Dirección General de Industria y Energía. Gobierno de Canarias (Directorate General for Industry and Energy. Canary Islands Government). Available online: energiagrancanaria.com/wp-content/uploads/2019/02/A-ENERGETICO-CANARIAS-2017.pdf (accessed on 26 November 2020).
Category by Surface | ABS Average (tCO2/ha/year) | Surface (Millions ha) | % | Abs. Gha Equivalent (tCO2/ha/year) | Equivalence Factor (fi) |
---|---|---|---|---|---|
Forests | 19.35 | 3858.10 | 7.56 | 1.46 | 9.66 |
Crops | 8.09 | 1958.32 | 3.84 | 0.31 | 4.04 |
Meadows and pastures | 2.44 | 3363.72 | 6.59 | 0.16 | 1.22 |
Oceans, seas, etc… | 0.10 | 36,010.00 | 70.60 | 0.07 | 0.05 |
Deserts | 0.00 | 3600.00 | 7.06 | 0.00 | 0.00 |
Others | 0.00 | 2217.06 | 4.35 | 0.00 | 0.00 |
Total Surface | 51,007.20 | 2.00 | 1.00 |
Data of the Year 2015 Except Those of Tenerife (2012) | Annual Gridded Energy (GWh) | Percentage of Energy Used to Desalinate (%) | ||
---|---|---|---|---|
Gran Canaria | 3376.68 | 78.15 | 382.15 | 11.31% |
Tenerife | 5571.04 | 26.64 | 130.27 | 2.34% |
Lanzarote | 817.23 | 24.4 | 119.32 | 14.6% |
Fuerteventura | 640.79 | 79.78 | 390.12 | 60.88% |
La Gomera | 69.23 | 6.07 | 29.68 | 42% |
El Hierro | 42.99 | 1.37 | 6.7 | 15.56% |
Time (h) | Gran Canaria | Tenerife | Fuerteventura | Lanzarote | La Gomera | El Hierro |
---|---|---|---|---|---|---|
1:00 | 0.503 | 0.437 | 0.604 | 0.637 | 0.747 | 0.591 |
3:00 | 0.562 | 0.441 | 0.649 | 0.699 | 0.738 | 0.453 |
5:00 | 0.584 | 0.5 | 0.658 | 0.671 | 0.75 | 0.453 |
7:00 | 0.682 | 0.468 | 0.594 | 0.663 | 0.753 | 0.564 |
9:00 | 0.758 | 0.571 | 0.593 | 0.78 | 0.656 | 0.564 |
11:00 | 0.721 | 0.427 | 0.591 | 0.778 | 0.672 | 0.637 |
13:00 | 0.766 | 0.453 | 0.568 | 0.753 | 0.68 | 0.61 |
15:00 | 0.776 | 0.429 | 0.657 | 0.752 | 0.688 | 0.637 |
17:00 | 0.730 | 0.480 | 0.713 | 0.791 | 0.671 | 0.75 |
19:00 | 0.738 | 0.650 | 0.637 | 0.823 | 0.658 | 0.702 |
21:00 | 0.717 | 0.708 | 0.874 | 0.769 | 0.725 | 0.66 |
23:00 | 0.596 | 0.636 | 0.666 | 0.639 | 0.718 | 0.703 |
1:00 | 0.568 | 0.629 | 0.836 | 0.605 | 0.729 | 0.625 |
Average value | 0.669 | 0.525 | 0.665 | 0.72 | 0.706 | 0.612 |
Data of the Year 2015 Except Those of Tenerife | Desalination Emissions CO2 by Island (t) | ||
---|---|---|---|
Gran Canaria | 78.15 | 382.15 × | 255,658.4 |
Tenerife | 26.64 | 130.27 × | 68,391.8 |
Lanzarote | 24.40 | 119.32 × | 85,910.4 |
Fuerteventura | 79.78 | 390.12 × | 259,429.8 |
La Gomera | 6.07 | 29.68 × | 20,954.1 |
El Hierro | 1.37 | 6.70 × | 4100.4 |
Consumption of Natural Resources | Waste Production |
---|---|
Electricity Construction desalination plant |
Reverse osmosis membranes Brine spills |
Type of Space or Activity | Gha |
---|---|
Desalination to 4.89 kWh/ | 6060.5 |
Agriculture (mainlands) | 13,393.71 |
Agriculture (marginal lands) | 10,848.3 |
Forests | 6060.5 |
Livestock | 2969.65 |
Fishing (sea waters) | 2181.78 |
Fishing (inland waters)) | 2181.78 |
Artificialized | 13,393.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon, F.; Ramos-Martin, A.; Perez-Baez, S.O. Study of the Ecological Footprint and Carbon Footprint in a Reverse Osmosis Sea Water Desalination Plant. Membranes 2021, 11, 377. https://doi.org/10.3390/membranes11060377
Leon F, Ramos-Martin A, Perez-Baez SO. Study of the Ecological Footprint and Carbon Footprint in a Reverse Osmosis Sea Water Desalination Plant. Membranes. 2021; 11(6):377. https://doi.org/10.3390/membranes11060377
Chicago/Turabian StyleLeon, Federico, Alejandro Ramos-Martin, and Sebastian Ovidio Perez-Baez. 2021. "Study of the Ecological Footprint and Carbon Footprint in a Reverse Osmosis Sea Water Desalination Plant" Membranes 11, no. 6: 377. https://doi.org/10.3390/membranes11060377
APA StyleLeon, F., Ramos-Martin, A., & Perez-Baez, S. O. (2021). Study of the Ecological Footprint and Carbon Footprint in a Reverse Osmosis Sea Water Desalination Plant. Membranes, 11(6), 377. https://doi.org/10.3390/membranes11060377