Modeling Electro-Chemo-Mechanical Behaviors within the Dense BaZr0.8Y0.2O3−δ Protonic-Ceramic Membrane in a Long Tubular Electrochemical Cell
Abstract
:1. Introduction
2. Defect Chemistry
3. Extended NP Membrane Model
3.1. Chemical-Expansion Coefficient
3.2. Electrostatic Potential
3.3. Defect Diffusion Coefficients
3.4. Stress, Strain, and Displacement
3.5. Computational Implementation
4. Results and Discussion
4.1. Concentration Profiles
4.2. Proton Flux Profiles
4.3. Stress Profiles
4.4. Sensitivity Analysis
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kreuer, K. Proton-conducting oxides. Annu. Rev. Mater. 2003, 33, 333–359. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, E.; Pergolesi, D.; Licoccia, S.; Traversa, E. Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes? Solid State Ion. 2010, 181, 1043. [Google Scholar] [CrossRef]
- Imashuku, S.; Uda, T.; Nose, Y.; Taniguchi, G.; Ito, Y.; Awakura, Y. Dependence of dopant cations on microstructure and proton conductivity of barium zirconate. J. Electrochem. Soc. 2009, 156, BI. [Google Scholar] [CrossRef]
- Zhu, H.; Ricote, S.; Duan, C.; O’Hayre, R.; Tsvetkov, D.; Kee, R. Defect Incorporation and Transport within Dense BaZr0.8Y0.2O3−δ(BZY20) Proton-Conducting Membranes. J. Electrochem. Soc. 2018, 165, F581–F588. [Google Scholar] [CrossRef]
- Duan, C.; Tong, J.; Shang, M.; Nikodemski, S.; Sanders, M.; Ricote, S.; Almansoori, A.; O’Hayre, R. Readily processed protonic ceramic fuel cells with high performance at low temperature. Science 2015, 349, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Kee, R.; Zhu, H.; Karakaya, C.; Chen, Y.; Ricote, S.; Jarry, A.; Crumlin, E.; Hook, D.; Braun, R.; et al. Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cell. Nature 2018, 557, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Malerød-Fjeld, H.; Clark, D.; Yuste-Tirados, I.; Zanón, R.; Catalán-Martinez, D.; Beeaff, D.; Morejudo, S.; Vestre, P.; Norby, T.; Haugsrud, R.; et al. Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy 2017, 2, 923–931. [Google Scholar] [CrossRef]
- Adler, S. Chemical expansivity of electrochemical ceramics. J. Am. Ceram. Soc. 2001, 84, 2117–2119. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Adler, S. Thermal and chemical expansion of Sr-doped lanthanum cobalt oxide (La1−xSrxCoO3−δ). Chem. Mater. 2005, 17, 4537–4546. [Google Scholar] [CrossRef]
- Li, J.C.M. Physical chemistry of some microstructural phenomena. Metall. Mater. Trans. A 1978, 9, 1353–1380. [Google Scholar]
- Larché, F.; Cahn, J. The effect of self-stress on diffusion in solids. Acta Metall. 1982, 30, 1835–1846. [Google Scholar] [CrossRef]
- Larché, F.C.; Cahn, J.W. The Interactions of composition and stress in crystalline solids. Acta Metall. 1985, 33, 331–357. [Google Scholar] [CrossRef]
- Yang, F. Interaction between diffusion and chemical stresses. Mater. Sci. Eng. 2005, 409, 153–159. [Google Scholar] [CrossRef]
- Atkinson, A. Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes. Solid State Ion. 1997, 95, 249. [Google Scholar] [CrossRef]
- Atkinson, A.; Ramos, T. Chemically-induced stresses in ceramic oxygen ion-conducting membranes. Solid State Ion. 2000, 129, 259. [Google Scholar] [CrossRef]
- Euser, B.; Berger, J.; Zhu, H.; Kee, R. Defect-Transport-Induced Stress in Mixed Ionic-Electronic Conducting (MIEC) Ceramic Membranes. J. Electrochem. Soc. 2016, 163, F264–F271. [Google Scholar] [CrossRef]
- Euser, B.; Berger, J.; Zhu, H.; Kee, R. Chemically Induced Stress in Tubular Mixed Ionic-Electronic Conducting (MIEC) Ceramic Membranes. J. Electrochem. Soc. 2016, 163, F1294–F1301. [Google Scholar] [CrossRef]
- Euser, B.; Zhu, H.; Berger, J.; Lewinsohn, C.; Kee, R. Electrochemical-mechanical coupling in composite planar structures that integrate flow channels and ion-conducting membranes. J. Electrochem. Soc. 2017, 164, F732. [Google Scholar] [CrossRef]
- Andersson, A.; Selbach, S.; Knee, C.; Grande, T. Chemical Expansion Due to Hydration of Proton-Conducting Perovskite Oxide Ceramics. J Am. Ceram. Soc. 2014, 97, 2654–2661. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Hatada, N.; Uda, T. Chemical Expansion of Yttrium-Doped Barium Zirconate and Correlation with Proton Concentration and Conductivity. J. Am. Ceram. Soc. 2016, 99, 3745–3753. [Google Scholar] [CrossRef]
- Marrocchelli, D.; Perry, N.; Bishop, S. Understanding chemical expansion in perovskite-structured oxides. Phys. Chem. Chem. Phys. 2015, 17, 10028–10039. [Google Scholar] [CrossRef] [PubMed]
- Bishop, S.; Marrocchelli, D.; Chatzichristodoulou, C.; Perry, N.; Mogensen, M.; Tuller, H.; Wachsman, E. Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices. Annu. Rev. Mater. Res. 2014, 44, 205–239. [Google Scholar] [CrossRef]
- Dubois, A.; Taghikhani, K.; Berger, J.; Zhu, H.; O’Hayre, R.; Braun, R.; Kee, R.; Ricote, S. Chemo-thermo-mechanical coupling in protonic ceramic fuel cells from fabrication to operation. J. Electrochem. Soc. 2019, 166, F1007–F1015. [Google Scholar] [CrossRef]
- Ricote, S.; Hudish, G.; O’Brien, J.; Perry, N. Non stoichiometry and lattice expansion of BaZr0.9Dy0.1O3−δ in oxidizing atmospheres. Solid State Ion. 2019, 330, 33–39. [Google Scholar] [CrossRef]
- Yamanaka, S.; Fujikane, M.; Hamaguchi, T.; Muta, H.; Oyama, T.; Matsuda, T.; Kobayashi, S.I.; Kurosaki, K. Thermophysical properties of BaZrO3 and BaCeO3. J. Alloy. Compd. 2003, 359, 109–113. [Google Scholar] [CrossRef]
- Schober, T.; Krug, F.; Schilling, W. Criteria for the application of high temperature proton conductors in SOFCs. Solid State Ion. 1997, 97, 369–373. [Google Scholar] [CrossRef]
- Hashim, S.; Somalu, M.; Loh, K.; Liu, S.; Zhou, W.; Sunarso, J. Perovskite-based proton conducting membranes for hydrogen separation: A review. Int. J. Hydrog. 2018, 43, 15281–15305. [Google Scholar] [CrossRef]
- Løken, A.; Ricote, S.; Wachowski, S. Thermal and chemical expansion in proton ceramic electrolytes and compatible electrodes. Crystals 2018, 8, 365. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Gao, J.; Zhao, Z.; Amoroso, J.; Tong, J.; Brinkman, K. recent progress in low-temperature proton-conducting ceramics. J. Mater. Sci. 2019, 54, 9291–9312. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Zhang, J.; Yuan, Z.; Liu, J.; Ni, M.; Chen, F. Progress Report on Proton Conducting Solid Oxide Electrolysis Cells. Adv. Funct. Mater. 2019, 29, 1903805. [Google Scholar] [CrossRef]
- Medvedev, D. Trends in research and development of protonic ceramic electrolysis cells. Int. J. Hydrog. Energy 2019, 44, 26711–26740. [Google Scholar] [CrossRef]
- Zhu, H.; Kee, R. Membrane polarization in mixed-conducting ceramic fuel cells and electrolyzers. Int. J. Hydrog. 2016, 41, 2931–2943. [Google Scholar] [CrossRef] [Green Version]
- Kee, R.; Zhu, H.; Hildenbrand, B.; Vøllestad, E.; Sanders, M.; O’Hayre, R. Modeling the steady-state and transient response of polarized and non-polarized proton-conducting doped-perovskite membranes. J. Electrochem. Soc. 2013, 160, F290–F300. [Google Scholar] [CrossRef]
- Vøllestad, E.; Zhu, H.; Kee, R. Interpretation of defect and gas-phase fluxes through mixed-conducting ceramics using Nernst–Planck–Poisson and integral formulations. J. Electrochem. Soc. 2014, 161, F114–F124. [Google Scholar] [CrossRef]
Reaction | ||
---|---|---|
−228.36 | −54.80 | |
115.31 | −45.89 | |
−93.30 | −100.00 | |
−90.30 | −6.71 | |
−248.11 | −55.48 |
Charged Defects | (m s) | (kJ mol) |
---|---|---|
OH | 5.18 | 60.66 |
V | 2.03 | 85.19 |
O | 1.38 | 7.18 |
Parameter | Value |
---|---|
Temperature, T | C |
Molar volume, | [4] |
Outer support radius, | m |
Inner membrane radius, | m |
Outer membrane radius, | m |
Membrane Young’s modulus, | 205 GPa |
BZY20 | |
Support Young’s modulus, | 108 GPa |
Ni-BZY20 (Dry–25% porosity) | |
Membrane Poisson’s ratio, | |
BZY20 | |
Support Poisson’s ratio, | |
Ni-BZY20 (Dry–25% porosity) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghikhani, K.; Dubois, A.; Berger, J.R.; Ricote, S.; Zhu, H.; Kee, R.J. Modeling Electro-Chemo-Mechanical Behaviors within the Dense BaZr0.8Y0.2O3−δ Protonic-Ceramic Membrane in a Long Tubular Electrochemical Cell. Membranes 2021, 11, 378. https://doi.org/10.3390/membranes11060378
Taghikhani K, Dubois A, Berger JR, Ricote S, Zhu H, Kee RJ. Modeling Electro-Chemo-Mechanical Behaviors within the Dense BaZr0.8Y0.2O3−δ Protonic-Ceramic Membrane in a Long Tubular Electrochemical Cell. Membranes. 2021; 11(6):378. https://doi.org/10.3390/membranes11060378
Chicago/Turabian StyleTaghikhani, Kasra, Alexis Dubois, John R. Berger, Sandrine Ricote, Huayang Zhu, and Robert J. Kee. 2021. "Modeling Electro-Chemo-Mechanical Behaviors within the Dense BaZr0.8Y0.2O3−δ Protonic-Ceramic Membrane in a Long Tubular Electrochemical Cell" Membranes 11, no. 6: 378. https://doi.org/10.3390/membranes11060378
APA StyleTaghikhani, K., Dubois, A., Berger, J. R., Ricote, S., Zhu, H., & Kee, R. J. (2021). Modeling Electro-Chemo-Mechanical Behaviors within the Dense BaZr0.8Y0.2O3−δ Protonic-Ceramic Membrane in a Long Tubular Electrochemical Cell. Membranes, 11(6), 378. https://doi.org/10.3390/membranes11060378