Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater
Abstract
:1. Introduction
The Use of Genetic Algorithms for Developing a Global Optimisation Solution
2. Materials and Methods
2.1. Modelling of a Spiral Wound Membrane Module of RO Process
- (a)
- The solution-diffusion model characterises the solvent and solute fluxes.
- (b)
- The film theory identifies the membrane wall concentration.
- (c)
- Darcy’s law quantifies the pressure drop along the feed side of the module.
- (d)
- There is a fixed 1 atm pressure at the permeate side.
- (e)
- Membrane transport parameters are fixed, i.e., solute, and solvent transport parameters and constant friction parameter.
- (f)
- No temperature difference throughout the operation.
- (g)
- Constant high-pressure pump (HPP) efficiency of 80%.
- (h)
- The influence of pH variation has not been considered.
2.2. Experimental Setup
2.3. Model Validation by Al-Obaidi et al.
2.4. Optimisation Methodology
2.4.1. Problem Description
Max and Min | Rej, EC, respectively |
L, W, tf | |
Subject to: Equality constraints: | |
Process Model: | f (x, u, v) = 0 |
Inequality constraints: | 0.5 ≤ L ≤ 1.0 |
5.0 ≤ W ≤ 15.69 | |
5.93 × 10−4 ≤ tf ≤ 1 × 10−3 | |
Equality end-point constraint: | A = 7.84 m2 |
2.4.2. Description of Species Conserving Genetic Algorithm (SCGA)
- Identifying species seeds: This operator was developed to explore all the possible species from the current population. Firstly, all the individuals are set as untreated. Then, a best untreated individual is chosen to be a species seed of a species. An individual will be marked as the member of the species if its distance to the species seed is smaller than the species radius, and will therefore be marked as “processed”. This practice is recurrent until all the individuals have been marked.
- Conserving species seeds: The selected species seed is imitated back to the population and will replace the nearest individual if it is better the individual. The goal of this process is to ensure that all the species can continue in the next generation.
- Identifying global solutions: This is achieved by choosing the top species from xs due to saving the best individual in a species in the set xs. A threshold rf (0 < rf ≤ 1) is used to find the global solutions. A species seed x is therefore treated as a solution, if:
3. Results and Discussions
3.1. Steady-State Simulation
3.2. Influence of Membrane Design Parameters
3.2.1. Influence of Membrane Dimensions of Length and Width
3.2.2. Influence of Feed Channel Height
3.3. Optimisation Results Based on a Species Conserving Genetic Algorithm (SCGA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Effective membrane area (m²) | |
Water membrane transport parameter (m/atm s) | |
Friction factor of feed channel of the membrane module (atm s/m4) | |
Dimethylphenol membrane transport parameter (m/s) | |
Bulk dimethylphenol concentrations at the feed channel (kmol/m³) | |
Inlet feed dimethylphenol concentrations (kmol/m³) | |
Dimensionless dimethylphenol concentration in Equation (A5) in Table A1 of Appendix A (dimensionless) | |
Permeate dimethylphenol concentration (kmol/m³) | |
Dimethylphenol concentration at the membrane wall (kmol/m³) | |
Dimethylphenol diffusion parameter at the feed side (m²/s) | |
Dimethylphenol diffusion parameter at the permeate side (m²/s) | |
Equivalent diameters of the feed channel (m) | |
Equivalent diameters of the permeate channel (m) | |
Specific energy consumption (kWh/m³) | |
Dimethylphenol molar flux through the membrane pores (kmol/m² s) | |
Permeate flux (m/s) | |
Mass transfer coefficient of dimethylphenol (m/s) | |
Membrane length (m) | |
Parameter in Equations (A10) and (A11) in Table A1 of Appendix A | |
Inlet pressure of the feed (atm) | |
Retentate pressure exit the membrane module (atm) | |
Permeate side pressure (atm) | |
Bulk feed flow rate (m³/s) | |
Inlet feed flow rate of the membrane module (m³/s) | |
Permeate flow rate of the membrane module (m³/s) | |
Retentate flow rate of the membrane module (m³/s) | |
Gas low constant (R = 0.082 atm m³/ K kmol) | |
Reynold number at the feed side (dimensionless) | |
Overall permeate recovery of a single membrane module (dimensionless) | |
Dimethylphenol rejection of a single membrane module (dimensionless) | |
Reynold number at the permeate side (dimensionless) | |
Feed temperature (°C) | |
Height of feed channel of the membrane module (m) | |
Height of permeate channel of the membrane module (m) | |
Bulk feed velocity (m/s) | |
Membrane width (m) | |
Greek | |
Feed viscosity (kg/m s) | |
Permeate viscosity (kg/m s) | |
Feed density (kg/m³) | |
Permeate density (kg/m³) | |
Molal density of water (55.56 kmol/m³) | |
Parameter in Equation (A24) in Table A1 of Appendix A |
Appendix A
Model Equations | Equation No. |
---|---|
(A1) | |
(A2) | |
(A3) | |
(A4) | |
(A5) | |
(A6) | |
(A7) | |
(A8) | |
(A9) | |
(A10) | |
(A11) | |
(A12) | |
(A13) | |
(A14) | |
(A15) | |
(A16) | |
(A17) | |
(A18) | |
Model Equations | Equation No. |
(A19) | |
(A20) | |
(A21) | |
(A22) | |
(A23) | |
(A24) | |
(A25) | |
(A26) | |
(A27) | |
(A28) | |
(A29) |
Operating Conditions | Validation | Optimisation | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Exp. Nu. | (kmol/m3) | (°C) | (m3/s) | (atm) | %Error | %Error | %Error | %Error | Exp. EC (kWh/m³) | Rec% | Rej% | EC (kWh/m³) | Energy Saving% | ||||||||
Exp. | Model | Exp. | Model | Exp. | Model | Exp. | Model | ||||||||||||||
1 | 0.819 | 32.5 | 9.71 | 2.166 | 8.14 | 8.013 | 1.55 | 1.590 | 1.60 | −0.78 | 92.7 | 96.258 | −3.83 | 26.592 | 26.015 | 2.17 | 1.284 | 27.547 | 98.141 | 1.240 | 3.599 |
2 | 1.637 | 31.0 | 9.71 | 2.166 | 8.09 | 8.002 | 1.08 | 1.630 | 1.63 | −0.14 | 94.3 | 96.196 | −2.01 | 24.746 | 24.636 | 0.44 | 1.380 | 26.778 | 98.193 | 1.275 | 8.274 |
3 | 1.637 | 31.0 | 11.64 | 2.166 | 9.93 | 9.992 | −0.62 | 1.523 | 1.50 | 1.695 | 94.9 | 96.599 | −1.79 | 29.686 | 30.878 | −4.01 | 1.379 | 33.372 | 98.438 | 1.227 | 12.42 |
4 | 1.637 | 31.0 | 13.58 | 2.166 | 11.76 | 11.991 | −1.97 | 1.416 | 1.36 | 3.746 | 95.3 | 96.894 | −1.67 | 34.626 | 37.075 | −7.07 | 1.379 | 39.963 | 98.533 | 1.195 | 15.41 |
5 | 2.455 | 31.0 | 9.71 | 2.166 | 8.05 | 7.995 | 0.67 | 1.666 | 1.65 | 0.945 | 94.3 | 96.651 | −2.49 | 23.084 | 23.810 | −3.14 | 1.479 | 26.245 | 98.367 | 1.301 | 13.75 |
6 | 4.092 | 30.0 | 7.77 | 2.166 | 6.17 | 5.984 | 3.00 | 1.808 | 1.82 | −0.55 | 94.0 | 96.066 | −2.19 | 16.528 | 16.067 | 2.78 | 1.653 | 18.656 | 98.021 | 1.465 | 12.89 |
7 | 4.092 | 30.0 | 9.71 | 2.166 | 8.00 | 7.979 | 0.25 | 1.681 | 1.69 | −0.62 | 94.9 | 96.676 | −1.87 | 22.391 | 21.907 | 2.16 | 1.525 | 25.046 | 98.382 | 1.364 | 11.85 |
8 | 6.548 | 31.5 | 7.77 | 2.166 | 6.13 | 5.978 | 2.46 | 1.828 | 1.83 | −0.37 | 95.2 | 96.985 | −1.87 | 15.604 | 15.290 | 2.01 | 1.751 | 17.757 | 98.381 | 1.527 | 14.72 |
9 | 0.819 | 32.5 | 9.71 | 2.33 | 8.06 | 7.863 | 2.43 | 1.742 | 1.77 | −1.64 | 93.0 | 96.293 | −3.54 | 25.236 | 24.007 | 4.86 | 1.353 | 25.450 | 98.150 | 1.342 | 0.871 |
10 | 0.819 | 32.5 | 11.64 | 2.33 | 9.90 | 9.857 | 0.43 | 1.639 | 1.63 | 0.636 | 93.5 | 96.512 | −3.22 | 29.656 | 30.104 | −1.50 | 1.380 | 31.720 | 98.395 | 1.291 | 6.961 |
11 | 0.819 | 32.5 | 13.58 | 2.33 | 11.73 | 11.860 | −1.11 | 1.542 | 1.49 | 3.585 | 94.8 | 96.806 | −2.11 | 33.819 | 36.192 | −7.01 | 1.412 | 38.005 | 98.574 | 1.257 | 12.37 |
12 | 1.637 | 31.0 | 9.71 | 2.33 | 8.02 | 7.853 | 2.07 | 1.794 | 1.80 | −0.30 | 94.3 | 96.239 | −2.05 | 23.004 | 22.771 | 1.01 | 1.485 | 24.759 | 98.202 | 1.379 | 7.688 |
13 | 1.637 | 31.0 | 11.64 | 2.33 | 9.86 | 9.843 | 0.16 | 1.684 | 1.66 | 1.233 | 94.9 | 96.639 | −1.83 | 27.725 | 28.617 | −3.21 | 1.477 | 30.912 | 98.445 | 1.324 | 11.56 |
14 | 1.637 | 31.0 | 13.58 | 2.33 | 11.68 | 11.844 | −1.40 | 1.594 | 1.53 | 4.162 | 95.3 | 96.932 | −1.71 | 31.587 | 34.435 | −9.01 | 1.512 | 37.069 | 98.543 | 1.288 | 14.78 |
15 | 2.455 | 31.0 | 9.71 | 2.33 | 7.97 | 7.847 | 1.54 | 1.815 | 1.82 | −0.10 | 94.4 | 96.686 | −2.42 | 22.103 | 22.025 | 0.35 | 1.545 | 24.278 | 98.373 | 1.407 | 9.849 |
16 | 2.455 | 31.0 | 11.64 | 2.33 | 9.81 | 9.836 | −0.26 | 1.707 | 1.68 | 1.378 | 95.0 | 97.065 | −2.17 | 26.738 | 27.748 | −3.77 | 1.531 | 30.362 | 98.603 | 1.348 | 13.62 |
17 | 6.548 | 31.5 | 7.77 | 2.33 | 6.05 | 5.833 | 3.57 | 1.987 | 1.99 | −0.28 | 95.3 | 97.319 | −2.11 | 14.721 | 14.477 | 1.65 | 1.856 | 16.581 | 98.397 | 1.648 | 12.68 |
18 | 6.548 | 31.5 | 9.71 | 2.33 | 7.88 | 7.829 | 0.63 | 1.902 | 1.86 | 2.007 | 96.2 | 97.815 | −1.67 | 18.369 | 20.008 | −8.92 | 1.859 | 22.485 | 98.717 | 1.519 | 18.30 |
19 | 0.819 | 32.5 | 13.58 | 2.583 | 11.61 | 11.630 | −0.17 | 1.720 | 1.74 | −1.43 | 95.9 | 96.858 | −0.99 | 33.410 | 32.456 | 2.85 | 1.430 | 34.087 | 98.582 | 1.401 | 2.070 |
20 | 1.637 | 31.0 | 9.71 | 2.583 | 7.89 | 7.623 | 3.37 | 2.042 | 2.06 | −0.77 | 94.3 | 96.298 | −2.11 | 20.944 | 20.334 | 2.91 | 1.631 | 22.135 | 98.214 | 1.543 | 5.707 |
21 | 1.637 | 31.0 | 11.64 | 2.583 | 9.73 | 9.614 | 1.18 | 1.947 | 1.92 | 1.369 | 94.8 | 96.696 | −2.00 | 24.622 | 25.654 | −4.19 | 1.663 | 27.708 | 98.455 | 1.477 | 12.60 |
22 | 2.455 | 31.0 | 9.71 | 2.583 | 7.85 | 7.617 | 2.96 | 2.080 | 2.07 | 0.265 | 94.4 | 96.734 | −2.47 | 19.473 | 19.687 | −1.09 | 1.754 | 21.718 | 98.383 | 1.572 | 11.59 |
23 | 2.455 | 31.0 | 11.64 | 2.583 | 9.66 | 9.607 | 0.54 | 1.970 | 1.94 | 1.536 | 95.3 | 97.111 | −1.90 | 23.732 | 24.903 | −4.93 | 1.725 | 27.234 | 98.611 | 1.503 | 14.81 |
24 | 4.092 | 29.0 | 9.71 | 2.583 | 7.8 | 7.599 | 2.57 | 2.113 | 2.13 | −0.57 | 95.3 | 96.297 | −1.04 | 18.195 | 17.721 | 2.60 | 1.877 | 20.541 | 98.225 | 1.663 | 12.89 |
25 | 6.548 | 31.5 | 7.77 | 2.583 | 5.93 | 5.602 | 5.52 | 2.253 | 2.26 | −0.25 | 95.4 | 97.029 | −1.70 | 12.775 | 12.556 | 1.71 | 2.139 | 14.626 | 98.387 | 1.854 | 15.41 |
26 | 6.548 | 31.5 | 9.71 | 2.583 | 7.75 | 7.597 | 1.96 | 2.170 | 2.13 | 1.798 | 96.3 | 97.573 | −1.32 | 15.989 | 17.500 | −9.44 | 2.136 | 20.151 | 98.722 | 1.695 | 20.66 |
Membrane design parameters: 0.934 (m), 8.4 (m), and 5 × 10−4 (m) of membrane width, length, and feed channel height, respectively | Membrane design parameters: 10.809 m, 0.725 m, and 5.93 × 10−4 m of membrane width, length, and feed channel height, respectively |
References
- Bolong, N.; Ismail, A.F.; Salim, M.R.; Matsuura, T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009, 239, 229–246. [Google Scholar] [CrossRef]
- Pomiès, M.; Choubert, J.M.; Wisniewski, C.; Coquery, M. Modelling of micropollutant removal in biological wastewater treatments: A review. Sci. Total Environ. 2013, 443, 733–748. [Google Scholar] [CrossRef]
- Mohammed, A.E.; Jarullah, A.T.; Gheni, S.A.; Mujtaba, I.M. Optimal design and operation of an industrial three phase reactor for the oxidation of phenol. Comput. Chem. Eng. 2016, 94, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Rasul, M.G.; Martens, W.N.; Brown, R.; Hashib, M.A. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 2010, 261, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Al-Huwaidi, J.S.; Al-Obaidi, M.A.; Jarullah, A.T.; Kara-Zaïtri, C.; Mujtaba, I.M. Modelling and simulation of a hybrid system of trickle bed reactor and multistage reverse osmosis process for the removal of phenol from wastewater. Comput. Chem. Eng. 2021, 153, 107452. [Google Scholar] [CrossRef]
- Gami, A.A.; Shukor, M.Y.; Khalil, K.A.; Dahalan, F.A.; Khalid, A.; Ahmad, S.A. Phenol and Phenolic Compounds Toxicity. J. Environ. Microbiol. Toxicol. 2014, 2, 11–23. [Google Scholar]
- ATSDR. ASTDR’s Substance Priority List. 2015. Available online: https://www.atsdr.cdc.gov/spl/index.html (accessed on 21 January 2021).
- Fujioka, T. Assessment and Optimisation of N-Nitrosamine Rejection by Reverse Osmosis for Planned Potable Water Recycling Applications. Ph.D. Thesis, University of Wollongong, Dubai, United Arab Emirates, 2014. [Google Scholar]
- Akin, O.; Temelli, F. Probing the hydrophobicity of commercial reverse osmosis membranes produced by interfacial polymerization using contact angle, XPS, FTIR, FE-SEM and AFM. Desalination 2011, 278, 387–396. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114569. [Google Scholar] [CrossRef]
- Lee, S.; Lueptow, R.M. Rotating reverse osmosis: A dynamic model for flux and rejection. J. Membr. Sci. 2001, 192, 129–143. [Google Scholar] [CrossRef]
- Mohsen-Nia, M.; Montazeri, P.; Modarress, H. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 2007, 217, 276–281. [Google Scholar] [CrossRef]
- Bódalo-Santoyo, A.; Gomez-Carrasco, J.L.; Gomez-Gomez, E.; Maximo-Martin, M.F.; Hidalgo-Montesinos, A.M. Spiral-wound membrane reverse osmosis and the treatment of industrial effluents. Desalination 2004, 160, 151–158. [Google Scholar] [CrossRef]
- Mujtaba, I.M.; Al-Obaidi, M.A.; Kara-Zaïtri, C. Applications of Reverse Osmosis for the Removal of Organic Compounds from Wastewater: A state-of-the-art from Process Modelling to Simulation. In Organic Pollutants in Wastewater II: Methods of Analysis, Removal and Treatment; Inamuddin, A.M.I., Hasan, S.W., Eds.; Materials Research Forum LLC.: Millersville, PA, USA, 2018; pp. 35–92. [Google Scholar]
- Al-Obaidi, M.A.; Kara-Zaïtri, C.; Mujtaba, I.M. Performance evaluation of multi-stage reverse osmosis process with permeate and retentate recycling strategy for the removal of chlorophenol from wastewater. Comput. Chem. Eng. 2019, 121, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, A.; Nuez, I. Performance assessment of SWRO spiral-wound membrane modules with different feed spacer dimensions. Processes 2020, 8, 692. [Google Scholar] [CrossRef]
- Boudinar, M.; Hanbury, W.T.; Avlonitis, S. Numerical simulation and optimization of spiral-wound modules. Desalination 1992, 86, 273–290. [Google Scholar] [CrossRef]
- Sharifanfar, R.; Mirsaeedghazi, H.; Fadavi, A.; Kianmehr, H.M. Evaluation of the effect of feed canal height on membrane clarification efficiency of pomegranate juice using computational fluid dynamics (CFD). Desalin. Water Treat. 2014, 1–7. [Google Scholar] [CrossRef]
- Karabelas, A. Key issues for improving the design and operation of spiral-wound membrane modules in desalination plants. Desalin. Water Treat. 2014, 52, 1820–1832. [Google Scholar] [CrossRef]
- Gu, B.; Xu, X.T.; Adjiman, C.S. A predictive model for spiral wound reverse osmosis membrane modules: The effect of winding geometry and accurate geometric details. Comput. Chem. Eng. 2016, 96, 248–265. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-García, A.; de la Nuez Pestana, I. Feed spacer geometries and permeability coefficients. Effect on the performance in BWRO spriral-wound membrane modules. Water 2019, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Toh, K.Y.; Liang, Y.Y.; Lau, W.J.; Weihs, G.F. 3D CFD study on hydrodynamics and mass transfer phenomena for SWM feed spacer with different floating characteristics. Chem. Eng. Res. Des. 2020, 159, 36–46. [Google Scholar] [CrossRef]
- Luo, J.; Li, M.; Heng, Y. A hybrid modeling approach for optimal design of non-woven membrane channels in brackish water reverse osmosis process with high-throughput computation. Desalination 2020, 489, 114463. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Kara-Zaïtri, C.; Mujtaba, I.M. Optimisation of membrane design parameters of a spiral-wound reverse osmosis module for high rejection of dimethylphenol from wastewater at low energy consumption. Comput. Aided Process Eng. 2017, 40, 2713–2718. [Google Scholar] [CrossRef]
- Savic, D. Single-objective vs. multi-objective optimisation for integrated decision support. Int. Congr. Environ. Model. Softw. 2002, 119. [Google Scholar]
- Kumar, M.; Husian, M.; Upreti, N.; Gupta, D. Genetic algorithm: Review and application. Int. J. Inf. Technol. Knowl. Manag. 2010, 2, 451–454. [Google Scholar] [CrossRef]
- Li, J.P.; Balazs, M.; Parks, G.; Clarkson, P. A Species Conserving Genetic Algorithm for Multimodal Function Optimization. Evol. Comput. 2002, 10, 207–234. [Google Scholar] [CrossRef]
- Li, J.P.; Wood, A.S. An Adaptive Species Conservation Genetic Algorithm for Multimodal Optimization. Int. J. Numer. Methods Eng. 2009, 13, 1–29. [Google Scholar] [CrossRef]
- Gulayeva, N.M.; Yaremko, S.A. Experimental Analysis of Multinational Genetic Algorithm and its Modifications. Radio Electron. Comput. Sci. Control 2021, 71–83. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Li, J.-P.; Kara-Zaïtri, C.; Mujtaba, I.M. Optimisation of reverse osmosis based wastewater treatment system for the removal of chlorophenol using genetic algorithms. Chem. Eng. J. 2017, 316, 91–100. [Google Scholar] [CrossRef] [Green Version]
- Al-Obaidi, M.A.; Li, J.-P.; Kara-Zaïtri, C.; Mujtaba, I.M. Modelling and optimisation of a multistage reverse osmosis processes with permeate reprocessing and recycling for the removal of N-nitrosodimethylamine from wastewater using species conserving genetic algorithm. Chem. Eng. J. 2018, 350, 824–834. [Google Scholar] [CrossRef] [Green Version]
- Sundaramoorthy, S.; Srinivasan, G.; Murthy, D.V.R. An analytical model for spiral wound reverse osmosis membrane modules: Part I—model development and parameter estimation. Desalination 2011, 280, 403–411. [Google Scholar] [CrossRef]
- Srinivasan, G.; Sundaramoorthy, S.; Murthy, D.V.R. Validation of an analytical model for spiral wound reverse osmosis membrane module using experimental data on the removal of dimethylphenol. Desalination 2011, 281, 199–208. [Google Scholar] [CrossRef]
- Koroneos, C.; Dompros, A.; Roumbas, G. Renewable energy driven desalination systems modelling. J. Clean. Prod. 2007, 15, 449–464. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Kara-Zaïtri, C.; Mujtaba, I.M. Simulation of full-scale reverse osmosis system for the removal of N-nitrosodimethylamine from wastewater. Asia-Pacific J. Chem. Eng. 2017, e2167, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Sablani, S.S.; Goosen, M.F.A.; Al-Belushi, R.; Gerardos, V. Influence of spacer thickness on permeate flux in spiral-wound seawater reverse osmosis systems. Desalination 2002, 146, 225–230. [Google Scholar] [CrossRef]
Parameter | Ion Exchange, India Ltd. 1 |
---|---|
Module configuration | Spiral wound membrane |
Membrane material | Thin Film Composite Polyamide |
Feed (tf) and permeate (tp) channel thickness | 0.0008 (m) and 0.0005 (m) |
Actual membrane area (A) | 7.8456 m² |
Length (L) and width (W) of the membrane | 0.934 (m) and 8.4 (m) |
b | 9400.9 ((atm s)/m4) |
Bs (dimethylphenol) | 1.5876 × 10−8 (m/s) |
Aw | 9.7388 × 10−7 (m/(atm s)) |
Control Variables (Case 1) | 0.819 × 10−3 kmol/m³, 9.71 atm, 2.166 × 10−4 m³/s and 32.5 °C) | ||||
---|---|---|---|---|---|
Solutions | Variables | Objectives | |||
(m) | (m) | ||||
1 | 0.725 | 10.809 | 0.593 | 98.141 | 1.240 |
2 | 0.724 | 10.822 | 0.719 | 96.935 | 1.264 |
3 | 0.728 | 10.763 | 0.782 | 96.096 | 1.282 |
Control Variables (Case 2) | 1.637 × 10−3 kmol/m³, 11.64 atm, 2.166 × 10−4 m³/s and 31 °C) | ||||
1 | 0.765 | 10.244 | 0.593 | 98.455 | 1.230 |
2 | 0.770 | 10.177 | 0.744 | 97.134 | 1.286 |
3 | 0.803 | 9.770 | 0.652 | 98.055 | 1.251 |
Control Variables (Case 3) | 6.548 × 10−3 kmol/m³, 7.77 atm, 2.166 × 10−4 m³/s and 31.5 °C) | ||||
1 | 0.756 | 10.374 | 0.593 | 98.400 | 1.528 |
2 | 0.770 | 10.186 | 0.626 | 98.222 | 1.559 |
Control Variables (Case 4) | 6.548 × 10−3 kmol/m³, 7.77 atm, 2.33 × 10−4 m³/s and 31.5 °C) | ||||
1 | 0.716 | 10.951 | 0.593 | 98.395 | 1.646 |
Control Variables (Case 5) | 2.455 × 10−3 kmol/m³, 9.71 atm, 2.583 × 10−4 m³/s and 31 °C) | ||||
1 | 0.726 | 10.791 | 0.716 | 97.454 | 1.637 |
Control Variables (Case 6) | 1.637 × 10−3 kmol/m³, 11.64 atm, 2.583 × 10−4 m³/s and 31 °C) | ||||
1 | 0.822 | 9.534 | 0.677 | 97.894 | 1.520 |
Experimental data of Srinivasan et al. [33] | 0.934 | 8.400 | 0.800 | 97.300 | 2.157 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Obaidi, M.A.; Ruiz-García, A.; Hassan, G.; Li, J.-P.; Kara-Zaïtri, C.; Nuez, I.; Mujtaba, I.M. Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater. Membranes 2021, 11, 595. https://doi.org/10.3390/membranes11080595
Al-Obaidi MA, Ruiz-García A, Hassan G, Li J-P, Kara-Zaïtri C, Nuez I, Mujtaba IM. Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater. Membranes. 2021; 11(8):595. https://doi.org/10.3390/membranes11080595
Chicago/Turabian StyleAl-Obaidi, Mudhar A., Alejandro Ruiz-García, Ghanim Hassan, Jian-Ping Li, Chakib Kara-Zaïtri, Ignacio Nuez, and Iqbal M. Mujtaba. 2021. "Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater" Membranes 11, no. 8: 595. https://doi.org/10.3390/membranes11080595
APA StyleAl-Obaidi, M. A., Ruiz-García, A., Hassan, G., Li, J. -P., Kara-Zaïtri, C., Nuez, I., & Mujtaba, I. M. (2021). Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater. Membranes, 11(8), 595. https://doi.org/10.3390/membranes11080595