Preparation of Al-Containing ZSM-58 Zeolite Membranes Using Rapid Thermal Processing for CO2/CH4 Mixture Separation
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Preparation of Methyltropinium Iodide (MTI) as a Structure-Directing Agent
2.3. Synthesis of ZSM-58 Seed Crystals for Membrane Preparation
2.4. Preparation of Al-Containing ZSM-58 Crystals to Determine Optimal Conditions for Membrane Synthesis
2.5. Preparation of ZSM-58 Zeolite Membranes
2.6. Calcination of ZSM-58 Zeolite Membranes
2.7. Gas Permeation and Separation Measurements
2.8. Characterization
3. Results and Discussion
3.1. Si/Al Molar Ratios and Crystallization Rates of ZSM-58 Crystals at Various Gel Compositions
3.2. Influence of Synthesis Time on Al-Containing ZSM-58 Membranes
3.3. Membrane Structure of Al-Containing ZSM-58 Membranes
3.4. Comparison with All-Silica ZSM-58 Zeolite Membranes
3.5. Characteristics of ZSM-58 Crystals and Membranes with Different Si/Al Molar Ratios and Calcination Conditions by FTIR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MTI | Methyltropinium iodide |
SDA | Structure-directing agent |
XRD | X-ray diffraction |
SEM | Scanning electron microscopy |
EDS | Energy-dispersive X-ray spectrometry |
XRF | X-ray fluorescence spectroscopy |
FTIR | Fourier transform infrared |
ATR | Attenuated total reflectance |
RTP | Rapid thermal processing |
CTC | Conventional thermal calcination. |
References
- Wang, M.; Bai, L.; Li, M.; Gao, L.; Wang, M.; Rao, P.; Zhang, Y. Ultrafast synthesis of thin all-silica DDR zeolite membranes by microwave heating. J. Membr. Sci. 2019, 572, 567–579. [Google Scholar] [CrossRef]
- Yang, S.; Cao, Z.; Arvanitis, A.; Sun, X.; Xu, Z.; Dong, J. DDR-type zeolite membrane synthesis, modification and gas permea-tion studies. J. Membr. Sci. 2016, 505, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, E.; Himeno, S. Synthesis of a DDR-type zeolite membrane by using dilute solutions of various alkali metal salts. Sep. Purif. Technol. 2019, 218, 89–96. [Google Scholar] [CrossRef]
- Hayakawa, E.; Himeno, S. Synthesis of all-silica ZSM-58 zeolite membranes for separation of CO2/CH4 and CO2/N2 gas mixtures. Microporous Mesoporous Mater. 2020, 291, 109695. [Google Scholar] [CrossRef]
- Himeno, S.; Tomita, T.; Suzuki, K.; Nakayama, K.; Yajima, K.; Yoshida, S. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind. Eng. Chem. Res. 2007, 46, 6989–6997. [Google Scholar] [CrossRef]
- Tomita, T.; Nakayama, K.; Sakai, H. Gas separation characteristics of DDR type zeolite membrane. Microporous Mesoporous Mater. 2004, 68, 71–75. [Google Scholar] [CrossRef]
- Xu, N.; Liu, Z.; Zhang, Y.; Qiu, H.; Kong, L.; Tang, X.; Meng, D.; Kong, X.; Wang, M.; Zhang, Y. Fast synthesis of thin all-silica DDR zeolite membranes by co-template strategy. Microporous Mesoporous Mater. 2020, 298, 110091. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Gao, X.; Peng, L.; Jiang, J.; Gu, X. Preparation of defect-free DDR zeolite membranes by eliminating tem-plate with ozone at low temperature. J. Membr. Sci. 2017, 539, 152–160. [Google Scholar] [CrossRef]
- Dong, J.; Lin, Y.S.; Hu, M.; Peascoe, R.A.; Payzant, E.A. Template-removal-associated microstructural development of po-rous-ceramic-supported MFI zeolite membranes. Microporous Mesoporous Mater. 2000, 34, 241–253. [Google Scholar] [CrossRef]
- Kosinov, N.; Auffret, C.; Sripathi, V.G.P.; Gücüyener, C.; Gascon, J.; Kapteijn, F.; Hensen, E.J.M. Influence of support mor-phology on the detemplation and permeation of ZSM-5 and SSZ-13 zeolite membranes. Microporous Mesoporous Mater. 2014, 197, 268–277. [Google Scholar] [CrossRef]
- Park, S.H.; Grosse-Kunstleve, R.W.; Graetsch, H.; Gies, H. The thermal expansion of the zeolites MFI, AFI, DOH, DDR, and MTN in their calcined and as synthesized forms. Stud. Surf. Sci. Catal. 1997, 105, 1989–1994. [Google Scholar]
- Kuhn, J.; Gascon, J.; Gross, J.; Kapteijn, F. Detemplation of DDR type zeolites by ozonication. Microporous Mesoporous Mater. 2009, 120, 12–18. [Google Scholar] [CrossRef]
- Heng, S.; Lau, P.P.S.; Yeung, K.L.; Djafer, M.; Schrotter, J.C. Low-temperature ozone treatment for organic template removal from zeolite membrane. J. Membr. Sci. 2004, 243, 69–78. [Google Scholar] [CrossRef]
- Tang, H.; Bai, L.; Wang, M.; Zhang, Y.; Li, M.; Wang, M.; Kong, L.; Xu, N.; Zhang, Y.; Rao, P. Fast synthesis of thin high silica SSZ-13 zeolite membrane using oil-bath heating. Int. J. Hydrogen Energy 2019, 44, 23107–23119. [Google Scholar] [CrossRef]
- Choi, J.; Jeong, H.K.; Snyder, M.A.; Stoeger, J.A.; Masel, R.I.; Tsapatsis, M. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing. Science 2009, 325, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Stoeger, J.A.; Choi, J.; Tsapatsis, M. Rapid thermal processing and separation performance of columnar MFI membranes on porous stainless steel tubes. Energy Environ. Sci. 2011, 4, 3479–3486. [Google Scholar] [CrossRef]
- Chang, N.; Tang, H.; Bai, L.; Zhang, Y.; Zeng, G. Optimized rapid thermal processing for the template removal of SAPO-34 ze-olite membranes. J. Membr. Sci. 2018, 552, 13–21. [Google Scholar] [CrossRef]
- Kim, J.; Jang, E.; Hong, S.; Kim, D.; Kim, E.; Ricther, H.; Simon, A.; Choi, N.; Korelskiy, D.; Fouladvand, S.; et al. Micro-structural control of a SSZ-13 zeolite film via rapid thermal processing. J. Membr. Sci. 2019, 591, 117342. [Google Scholar] [CrossRef]
- Karge, H.G.; Weitkamp, J. Molecular Sieves; Springer Nature: Basingstoke, UK, 1998; Volume 1, pp. 67–72. [Google Scholar]
- Hadjiivanov, K. Identification and characterization of surface hydroxyl groups by infrared spectroscopy. Adv. Catal. 2014, 57, 99–318. [Google Scholar]
- Gucuyener, C.; van den Bergh, J.; Joaristi, A.M.; Magusin, P.C.M.M.; Hensen, E.J.M.; Gascon, J.; Kapteijn, F. Facile synthesis of the DD3R zeolite: Performance in the adsorptive separation of buta-1,3-diene and but-2-ene isomers. J. Mater. Chem. 2011, 21, 18386. [Google Scholar] [CrossRef] [Green Version]
- Rahman, S.K.; Rampun, E.L.A.; Rahma, A.; Elma, M. Deconvolution of carbon silica templated thin film us-ing ES40 and P123via rapid thermal processing method. Mater. Today: Proc. 2020, 31, 75–78. [Google Scholar]
- Wang, S.; Wang, D.K.; Motuzas, J.; Smart, S.; da Costa, J.C.D. Rapid thermal treatment of interlayer-free ethyl silicate 40 derived membranes for desalination. J. Membr. Sci. 2016, 516, 94–103. [Google Scholar] [CrossRef] [Green Version]
- Elma, M.; Wang, D.K.; Yacou, C.; da Costa, J.C.D. Interlayer-free P123 carbonised template silica membranes for desalina-tion with reduced salt concentration polarization. J. Membr. Sci. 2015, 475, 376–383. [Google Scholar] [CrossRef]
- Wojdyr, M. Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 2010, 43, 1126–1128. [Google Scholar] [CrossRef]
- Kyotani, T.; Sato, K.; Mizuno, T.; Kakui, S.; Aizawa, M.; Saito, J.; Ikeda, S.; Ichikawa, S.; Nakane, T. Characterization of zeolite NaA membrane by FTIR-ATR and its application to the rapid evaluation of dehydration performance. Anal. Sci. 2005, 21, 321–325. [Google Scholar] [CrossRef] [Green Version]
Crystal No. | Gel Molar Ratio | Me Source * | Measurement of Si/Al with XRF | |||
---|---|---|---|---|---|---|
MTI/SiO2 | MeOH/SiO2 | Si/Al | H2O/SiO2 | |||
C1 | 0.05 | 0.05 | 70 | 52 | NaOH | 116 |
C2 | 0.1 | 0.1 | 112 | |||
C3 | 0.1 | 0.3 | 82 | |||
C4 | 0.3 | 0.1 | 91 | |||
C5 | 0.05 | 0.05 | 70 | 52 | KOH | 79 |
C6 | 0.1 | 0.1 | 72 | |||
C7 | 0.1 | 0.3 | 52 | |||
C8 | 0.3 | 0.1 | 73 |
No. | Synthesis Time (h) | Thickness(μm) | CH4 Permeance of the Noncalcined Membrane * (×10−10 mol/m2/s/Pa) | Permeance (mol/m2/s/Pa) | CO2/CH4 Selectivity | |
---|---|---|---|---|---|---|
×10−8 PCO2 | ×10−10 PCH4 | |||||
M1 | 72 | 4.1 | 3.1 | 11 | 87 | 13 |
M2 | 84 | 8.5 | 1.8 | 8.5 | 29 | 29 |
M3 | 96 | 12 | 0.8 | 6.1 | 13 | 45 |
M4 | 120 | 8.0 | <0.1 | 7.8 | 5.3 | 150 |
No. | Calcination Method | Si/Al | Thickness(μm) | Weight Loss (%) | CH4 Permeance of Noncalcined Membrane * (×10−10 mol/m2/s/Pa) | Permeance (mol/s/m2/Pa) | CO2/CH4 Selectivity | |
---|---|---|---|---|---|---|---|---|
×10−8 PCO2 | ×10−10 PCH4 | |||||||
M5 | RTP + CTC | ∞ | 3.3 | 11 | 0.3 | 13 | 520 | 2.5 |
M6 | Ozone | ∞ | 3.4 | 6.6 | 6.3 | 8.0 | 5.5 | 150 |
Si/Al | MTI/SiO2 | KOH/SiO2 | H2O/SiO2 | Time (h) | Temperature (K) | Peak Area Ratio (Si–OH/Si–O–Si) | |
---|---|---|---|---|---|---|---|
Before RTP | After RTP | ||||||
40 | 0.25 | 0.33 | 40 | 96 | 433 | 0.082 | 0.010 |
70 | 0.05 | 0.05 | 52 | 120 | 413 | 0.083 | 0.022 |
300 | 0.1 | 0.1 | 52 | 72 | 413 | 0.071 | 0.040 |
∞ | 0.1 | 0.1 | 52 | 48 | 413 | 0.065 | 0.034 |
Si/Al | Peak Area Ratio (Si–OH/Si–O–Si) | |
---|---|---|
Before RTP | After RTP | |
∞ | 0.149 | 0.086 |
70 | 0.162 | 0.069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayakawa, E.; Himeno, S. Preparation of Al-Containing ZSM-58 Zeolite Membranes Using Rapid Thermal Processing for CO2/CH4 Mixture Separation. Membranes 2021, 11, 623. https://doi.org/10.3390/membranes11080623
Hayakawa E, Himeno S. Preparation of Al-Containing ZSM-58 Zeolite Membranes Using Rapid Thermal Processing for CO2/CH4 Mixture Separation. Membranes. 2021; 11(8):623. https://doi.org/10.3390/membranes11080623
Chicago/Turabian StyleHayakawa, Eiji, and Shuji Himeno. 2021. "Preparation of Al-Containing ZSM-58 Zeolite Membranes Using Rapid Thermal Processing for CO2/CH4 Mixture Separation" Membranes 11, no. 8: 623. https://doi.org/10.3390/membranes11080623
APA StyleHayakawa, E., & Himeno, S. (2021). Preparation of Al-Containing ZSM-58 Zeolite Membranes Using Rapid Thermal Processing for CO2/CH4 Mixture Separation. Membranes, 11(8), 623. https://doi.org/10.3390/membranes11080623