Reactional Processes on Osmium–Polymeric Membranes for 5–Nitrobenzimidazole Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Methods
2.2.1. Preparation of the Osmium Nanoparticles Composite Polymer Membrane
2.2.2. Reduction of 5–Nitrobenzimidazole with Molecular Hydrogen in Membrane Reactor
2.3. Equipment
3. Results and Discussions
- Preparation of polymeric membranes containing osmium;
- The morphological and structural characterization of the prepared membranes;
- Reduction of 5–nitro benzimidazole to 5–aminobenzimidazole.
3.1. The Preparation and Characterization of Osmium–Polymer Membranes
3.2. Determination of Morpho-Structural Characteristics of Osmium–Polymer Membranes
3.2.1. Scanning Electron Microscopy (SEM), High-Resolution SEM (HR–SEM) for the Osmium–Polymer Membranes
3.2.2. Thermal Analysis for the Osmium–Polymer Membranes
3.2.3. Compositional Characterization of Membranes
- The carbon atoms in mass percentage differ greatly among the three membrane surfaces, but in number they are relatively closer;
- Oxygen atoms on the Os–PP membrane surface (coming from water or alcohol molecules or adsorbed in the membrane preparation process) are much less numerous than on the Os–PSf membrane, but especially on the Os–CA membrane;
- Osmium atoms are important in gravimetric weight on all three types of membranes, but from an atomic point of view they are below 10%;
- The sulfur atoms appear in a significant percentage only on the polysulfone membranes.
- For Os–CA membrane the carbonyl function of the ester (v C = O 1743 cm−1);
- For Os–PSf membrane sulfone function (v S = O occurs in the range 1100–1330 cm−1);
- For OS–PP membrane carbon–hydrogen bond (v C–H occurs in the range 2840–2955 cm−1), but also the slight “shoulder” of the hydrogen bond given by the traces of adsorbed water (3300–3600 cm−1).
3.3. The Performances of Osmium–Polymer Membranes (Os-P) in the Process of Reducing 5–Nitrobenzimidazole to 5–Aminobenzimidazole
3.3.1. The Influence of Hydrogen Flow in the Reduction Process of 5–Nitrobenzimidazol to 5–Aminobenzimidazol
3.3.2. The Conversion of 5–Nitrobenzimidazol to 5–Aminobenzimidazol Depending on Time and Nature of the Osmium–Polymer (Os–P) Membrane
3.3.3. The Evolution of the Efficiency of 5–Aminobenzimidazol Separation over Time and Depending on the Nature of the Osmium–Polymer (Os–P) Membrane
3.3.4. Proposal of a Mechanism for the Transformation of 5–Nitrobenzimidazole to 5–Aminobenzimidazole in the Osmium–Polymer (Os–P) Membrane Reaction System
- The conversion of 5–nitrobenzimidazole to 5–aminobenzimidazole in the reaction system with osmium–polymer membrane (Os–P) depends on the nature of the polymer;
- The conversion of 5–nitrobenzimidazol to 5–aminobenzimidazol in the reaction system with osmium–polymer membrane (Os–P) is slightly dependent on the hydrogen flow in the system;
- The efficiency of 5–aminobenzimidazol separation depends on the operating time, being correlated with the conversion of 5–nitrobenzimidazol to 5–aminobenzimidazol, in the reaction system with osmium–polymer membrane (Os–P);
- The working pH is imposed to 6 in the source phase (SP) and to 1 in the receiving phase (RP).
4. Conclusions
- The conversion of 5–nitrobenzimidazol to 5–aminobenzimidazol in the reaction system with osmium–polymer (Os–P) membrane depends on the nature of the polymer;
- The conversion of 5–nitrobenzimidazol to 5–aminobenzimidazol in the reaction system with osmium–polymer (Os–P) membrane is slightly independent of the hydrogen flow in the system;
- The efficiency of 5–aminobenzimidazol separation depends on the operating time, being correlated with the conversion of 5–nitrobenzimidazol to 5–aminobenzimidazol, in the reaction system with osmium–polymer membrane (Os–P).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
(CA), | Cellulose acetate |
(PSf), | Polysulfone |
(PPM), | Polypropylene hollow fiber membranes |
(t–Bu–OH), | tert–Butyl alcohol |
(Os–P), | Composite osmium–polymer membrane |
(Os–CA), | Osmium–cellulose acetate membrane |
(Os–PSf), | Osmium–polysulfone membranes |
(Os–PP), | Osmium–polypropylene membrane |
(SEM), | Scanning electron microscopy |
(HR–SEM), | High-resolution SEM |
(EDAX), | Energy-dispersive spectroscopy analysis |
(FTIR), | Fourier Transform Infra-Red spectroscopy |
(TGA), | Thermogravimetric analysis |
(DSC), | Differential scanning calorimetry |
(EE), | Separation efficiency |
(η) | Conversion efficiency |
References
- Stannett, V.T.; Koros, W.J.; Paul, D.R.; Lonsdale, H.K.; Baker, R.W. Recent advances in membrane science and technology. Chemistry 1979, 32, 69–121. [Google Scholar] [CrossRef]
- Kammermeyer, K. Technical Gas Permeation Processes. Chem. Ing. Tech. 1976, 48, 672–675. [Google Scholar] [CrossRef]
- Kesting, R. Synthetic polymeric membranes. J. Colloid Interface Sci. 1988, 125, 362. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology, 2nd ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996. [Google Scholar] [CrossRef]
- Baker, W. Membrane Technology and Applications, 3rd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2012; pp. 148–149. ISBN 9780470743720. [Google Scholar]
- Guizard, C.; Rios, G. Chapter 12 Transport and fouling phenomena in liquid phase separation with inorganic and hybrid membranes. Membr. Sci. Technol. 1996, 4, 569–618. [Google Scholar] [CrossRef]
- Merkel, T.C.; Freeman, B.D.; Spontak, R.J.; He, Z.; Pinnau, I.; Meakin, P.; Hill, A.J. Ultrapermeable, Reverse-selective nanocomposite membranes. Science 2002, 296, 519–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazhenov, S.D.; Bildyukevich, A.V.; Volkov, A.V. Gas-liquid hollow fiber membrane contactors for different applications. Fibers 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Iulianelli, A.; Drioli, E. Membrane engineering: Latest advancements in gas separation and pre-treatment processes, petrochemical industry and refinery, and future perspectives in emerging applications. Fuel Process. Technol. 2020, 206, 106464. [Google Scholar] [CrossRef]
- Mulder, M. The Use of Membrane Processes in Environmental Problems. An Introduction. In Membrane Processes in Separation and Purification; Crespo, J.G., Böddeker, K.W., Eds.; NATO ASI Series (Series E: Applied Sciences); Springer: Dordrecht, The Netherlands, 1994; Volume 272. [Google Scholar] [CrossRef]
- Drioli, E.; Stankiewicz, A.I.; Macedonio, F. Membrane engineering in process intensification—An overview. J. Membr. Sci. 2011, 380, 1–8. [Google Scholar] [CrossRef]
- Bernardoa, P.; Drioli, E. Membrane Gas Separation Progresses for Process Intensification Strategy in the Petrochemical Industry. Pet. Chem. 2010, 50, 271–282. [Google Scholar] [CrossRef]
- Hradil, J.; Krystl, V.; Hrabanek, P.; Bernauer, B.; Kocirık, M. Heterogeneous membranes based on polymeric adsorbents for separation of small molecules. React. Funct. Polym. 2004, 61, 303–313. [Google Scholar] [CrossRef]
- Stepniak, P.; Lainer, B.; Chmurski, K.; Jurczak, J. pH-Controlled recognition of amino acids by urea derivatives of β-cyclodextrin. RSC Adv. 2017, 7, 15742–15746. [Google Scholar] [CrossRef] [Green Version]
- Kyne, G.M.; Light, M.E.; Hursthouse, M.B.; De Mendoza, J.; Kilburn, J.D. Enantioselective amino acid recognition using acyclicthiourea receptors. J. Chem. Soc. Perkin Trans. 2001, 1, 1258–1263. [Google Scholar] [CrossRef]
- Strathmann, H.; Giorno, L.; Drioli, E. Introduction to Membrane Science and Technology; Institute on Membrane Technology, CNR-ITMat University of Calabria: Rende, Italy, 2011; pp. 27–58. [Google Scholar]
- Jones, M.N. Surfactants in membrane solubilization. Int. J. Pharm. 1999, 177, 137–159. [Google Scholar] [CrossRef]
- Garavand, F.; Madadlou, A. Recovery of phenolic compounds from effluents by a microemulsion liquid membrane (MLM) extractor. Colloids Surf. A 2014, 443, 303–310. [Google Scholar] [CrossRef]
- Atlaskin, A.A.; Kryuchkov, S.S.; Yanbikov, N.R.; Smorodin, K.A.; Petukhov, A.N.; Trubyanov, M.M.; Vorotyntsev, V.M.; Vorotyntsev, I.V. Comprehensive experimental study of acid gases removal process by membrane-assisted gas absorption using imidazolium ionic liquids solutions absorbent. Sep. Pur. Technol. 2020, 239, 116578. [Google Scholar] [CrossRef]
- Tishchenko, G.; Luetzow, K.; Schauer, J.; Albrecht, W.; Bleha, M. Purification of polymer nanoparticles by diafiltration with polysulfone/hydrophilic polymer blend membranes. Sep. Pur. Technol. 2001, 22–23, 403–415. [Google Scholar] [CrossRef]
- Xiong, L.; Manthiram, A. Nanostructured Pt–M/C (M = Fe and Co) catalysts prepared by a microemulsion method for oxygen reduction in proton exchange membrane fuel cells. Electrochim. Acta 2005, 50, 2323–2329. [Google Scholar] [CrossRef]
- Balta, S.; Sotto, A.; Luis, P.; Benea, L.; Van der Bruggen, B.; Kim, J. A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J. Membr. Sci. 2012, 389, 155–161. [Google Scholar] [CrossRef]
- Upadhyaya, L.; Semsarilar, M.; Quemener, D.; Fernández-Pacheco, R.; Martinez, G.; Coelhoso, I.M.; Nunes, S.P.; Crespo, J.G.; Mallada, R.; Portugal, C.A.M. Block Copolymer-Based Magnetic Mixed Matrix Membranes—Effect of Magnetic Field on Protein Permeation and Membrane Fouling. Membranes 2021, 11, 105. [Google Scholar] [CrossRef]
- Dimulescu, I.A.; Nechifor, A.C.; Bǎrdacǎ, C.; Oprea, O.; Paşcu, D.; Totu, E.E.; Albu, P.C.; Nechifor, G.; Bungău, S.G. Accessible Silver-Iron Oxide Nanoparticles as a Nanomaterial for Supported Liquid Membranes. Nanomaterials 2021, 11, 1204. [Google Scholar] [CrossRef]
- Huisman, I.H.; Prádanos, P.; Hernández, A. The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration. J. Membr. Sci. 2000, 179, 79–90. [Google Scholar] [CrossRef]
- Ghimpusan, M.; Nechifor, G.; Nechifor, A.C.; Dima, S.O.; Passeri, P. Case studies on the physical-chemical parameters’ variation during three different purification approaches destined to treat wastewaters from food industry. J. Environ. Manag. 2017, 203, 811–816. [Google Scholar] [CrossRef]
- Zaman, J.; Chakma, A. Inorganic membrane reactors. J. Membr. Sci. 1994, 92, 1–28. [Google Scholar] [CrossRef]
- Molinari, R.; Mungari, M.; Drioli, E.; Di Paola, A.; Loddo, V.; Palmisano, L.; Schiavello, M. Study on a photocatalytic membrane reactor for water purification. Catal. Today 2000, 55, 71–78. [Google Scholar] [CrossRef]
- Uemiya, S.; Sato, N.; Ando, H.; Matsuda, T.; Kikuchi, E. Steam reforming of methane in a hydrogen-permeable membrane reactor. Appl. Catal. 1990, 67, 223–230. [Google Scholar] [CrossRef]
- Giorno, L.; Drioli, E. Biocatalytic membrane reactors: Applications and perspectives. Trends Biotechnol. 2000, 18, 339–349. [Google Scholar] [CrossRef]
- Molinari, R.; Pirillo, F.; Falco, M.; Loddo, V.; Palmisano, L. Photocatalytic degradation of dyes by using a membrane reactor. Chem. Eng. Process. 2004, 43, 1103–1114. [Google Scholar] [CrossRef] [Green Version]
- Dubé, M.A.; Tremblay, A.Y.; Liu, J. Biodiesel production using a membrane reactor. Bioresour. Technol. 2007, 98, 639–647. [Google Scholar] [CrossRef]
- Balachandran, U.; Dusek, J.T.; Maiya, P.S.; Ma, B.; Mieville, R.L.; Kleefisch, M.S.; Udovich, C.A. Ceramic membrane reactor for converting methane to syngas. Catal. Today 1997, 36, 265–272. [Google Scholar] [CrossRef]
- Weyten, H.; Luyten, J.; Keizer, K.; Willems, L.; Leysen, R. Membrane performance: The key issues for dehydrogenation reactions in a catalytic membrane reactor. Catal. Today 2000, 56, 3–11. [Google Scholar] [CrossRef]
- Wang, Y.-K.; Sheng, G.-P.; Li, W.-W.; Huang, Y.-X.; Yu, Y.-Y.; Zeng, R.J.; Yu, H.-Q. Development of a Novel Bioelectrochemical Membrane Reactor for Wastewater Treatment. Environ. Sci. Technol. 2011, 45, 9256–9261. [Google Scholar] [CrossRef]
- Yin, J.; Zhan, F.; Jiao, T.; Deng, H.; Zou, G.; Bai, Z.; Zhang, Q.; Peng, Q. Highly efficient catalytic performances of nitro compounds via hierarchical PdNPs-loaded MXene/polymer nanocomposites synthesized through electrospinning strategy for wastewater treatment. Chin. Chem. Lett. 2020, 31, 992–995. [Google Scholar] [CrossRef]
- Harish, S.; Mathiyarasu, J.; Phani, K.L.N.; Yegnaraman, V. Synthesis of conducting polymer supported Pd nanoparticles in aqueous medium and catalytic activity towards 4-nitrophenol reduction. Catal. Lett. 2009, 128, 197.e202. [Google Scholar] [CrossRef]
- Khalil, A.M.; Georgiadou, V.; Guerrouache, M.; Mahouche-Chergui, S.; Dendrinou-Samara, C.; Chehimi, M.M.; Carbonnier, B. Gold- decorated polymeric monoliths: In-situ vs ex-situ immobilization strategies and flow through catalytic applications towards nitrophenols reduction. Polymer 2015, 77, 218–226. [Google Scholar] [CrossRef]
- Kuroda, K.; Ishida, T.; Haruta, M. Reduction of 4-nitrophenol to 4-aminophenolover Au nanoparticles deposited on PMMA. J. Mol. Catal. A Chem. 2009, 298, 7–11. [Google Scholar] [CrossRef]
- Koga, H.; Kitaoka, T. One-step synthesis of gold nanocatalysts on a micro-structured paper matrix for the reduction of 4-nitrophenol. Chem. Eng. J. 2011, 168, 420–425. [Google Scholar] [CrossRef]
- Dong, Z.; Le, X.; Dong, C.; Zhang, W.; Li, X.; Ma, J. Ni@Pd core-shell nanoparticles modified fibrous silica nanospheres as highly efficient and recoverable catalyst for reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol. Appl. Catal. B Environ. 2015, 162, 372–380. [Google Scholar] [CrossRef]
- Macanás, J.; Ouyang, L.; Bruening, M.L.; Muñoz, M.; Remigy, J.-C.; Lahitte, J.-F. Development of polymeric hollow fiber membranes containing catalytic metal nanoparticles. Catal. Today 2010, 156, 181–186. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Dong, Z.; Na, C. Hierarchical carbon nanotube membrane-supported gold nanoparticles for rapid catalytic reduction of p-nitrophenol. ACS Sustain. Chem. Eng. 2013, 1, 746–752. [Google Scholar] [CrossRef]
- Wu, W.; Liu, G.; Liang, S.; Chen, Y.; Shen, L.; Zheng, H.; Yuan, R.; Hou, Y.; Wu, L. Efficient visible-light-induced photocatalytic reduction of 4-nitroaniline to p-phenylenediamine over nanocrystalline PbBi2Nb2O9. J. Catal. 2012, 290, 13–17. [Google Scholar] [CrossRef]
- Le, X.; Dong, Z.; Li, X.; Zhang, W.; Le, M.; Ma, J. Fibrous nano-silica supported palladium nanoparticles: An efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions. Catal. Commun. 2015, 59, 21–25. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, E. Simple and direct synthesis of oxygenous carbon supported palladium nanoparticles with high catalytic activity. Nanoscale 2013, 5, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- de Pedro, Z.M.; Diaz, E.; Mohedano, A.F.; Casas, J.A.; Rodriguez, J. Compared activity and stability of Pd/Al2O3 and Pd/AC catalysts in 4-chlorophenol hydrodechlorination in different pH media. J. Appl. Catal. B Environ. 2011, 103, 128–135. [Google Scholar] [CrossRef]
- Wang, C.; Yin, J.; Han, S.; Jiao, T.; Bai, Z.; Zhou, J.; Zhang, L.; Peng, Q. Preparation of Palladium Nanoparticles Decorated Polyethyleneimine/Polycaprolactone Composite Fibers Constructed by Electrospinning with Highly Efficient and Recyclable Catalytic Performances. Catalysts 2019, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Borja-Arco, E.; Castellanos, R.H.; Uribe-Godínez, J.; Altamirano-Gutiérrez, A.; Jiménez-Sandoval, O. Osmium–ruthenium carbonyl clusters as methanol tolerant electrocatalysts for oxygen reduction. J. Power Sources 2009, 188, 387–396. [Google Scholar] [CrossRef]
- Bolitho, E.M.; Coverdale, J.P.C.; Bridgewater, H.E.; Clarkson, G.J.; Quinn, P.D.; Sanchez-Cano, C.; Sadler, P.J. Tracking Reactions of Asymmetric Organo-Osmium Transfer Hydrogenation Catalysts in Cancer Cells. Angew. Chem. Int. Ed. 2021, 60, 6462–6472. [Google Scholar] [CrossRef]
- Ghimpusan, M.; Nechifor, G.; Din, I.S.; Nechifor, A.C.; Passeri, P. Application of Hollow Fiber Membrane Bioreactor Instead of Granular Activated Carbon Filtration for Treatment of Wastewater from Car Dismantler Activity. Mat. Plast. 2016, 53, 578–584. [Google Scholar]
- Din, I.S.; Cimbru, A.M.; Rikabi, A.A.K.K.; Tanczos, S.K.; Ticu, S.; Nechifor, G. Iono-molecular Separation with Composite Membranes VI. Nitro-phenol separation through sulfonated polyether ether ketone on capillary polypropylene membranes. Rev. Chim. 2018, 69, 1603–1607. [Google Scholar] [CrossRef]
- Batrinescu, G.; Scutariu, R.E.; Nechifor, G.; Ionescu, I.A.; Iancu, V.I. Comparative analysis of the processes of collagen concentration by ultrafiltration using different types of membranes. J. Appl. Polym. Sci. 2021, 138, 50055. [Google Scholar] [CrossRef]
- Scutariu, R.E.; Batrinescu, G.; Nechifor, G.; Popescu, M.; Tenea, A.G. Separation of the collagen protein by ultrafiltration: Effects of concentration on the membrane’s characteristics. Polym. Eng. Sci. 2020, 60, 2487–2495. [Google Scholar] [CrossRef]
- Miricioiu, M.G.; Iacob, C.; Nechifor, G.; Niculescu, V.C. High selective mixed membranes based on mesoporous MCM-41 and MCM-41-NH2 particles in a polysulfone matrix. Front. Chem. 2019, 7, 332. [Google Scholar] [CrossRef] [Green Version]
- Bărdacă Urducea, C.; Nechifor, A.C.; Dimulescu, I.A.; Oprea, O.; Nechifor, G.; Totu, E.E.; Isildak, I.; Albu, P.C.; Bungău, S.G. Control of Nanostructured Polysulfone Membrane Preparation by Phase Inversion Method. Nanomaterials 2020, 10, 2349. [Google Scholar] [CrossRef] [PubMed]
- Grosu, A.R.; Nafliu, I.M.; Din, I.S.; Cimbru, A.M.; Nechifor, G. Neutralization with simultaneous separation of aluminum and copper ions from condensed water through capillary polypropylene and cellulose. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2020, 82, 25–34. [Google Scholar]
- Szczepański, P.; Diaconu, I. Transport of p-nitrophenol through an agitated bulk liquid membrane. Sep. Sci. Technol. 2012, 47, 1725–1732. [Google Scholar] [CrossRef]
- Diaconu, I.; Nechifor, G.; Nechifor, A.C.; Ruse, E.; Totu, E.E. Membranary techniques used at the separation of some phenolic compounds from aqueous media. Chem. Mater. Sci. 2009, 71, 39–46. [Google Scholar]
- Koter, S.; Szczepański, P.; Mateescu, M.; Nechifor, G.; Badalau, L.; Koter, I. Modeling of the cadmium transport through a bulk liquid membrane. Sep. Purif. Technol. 2013, 107, 135–143. [Google Scholar] [CrossRef]
- Diaconu, I.; Gîrdea, R.; Cristea, C.; Nechifor, G.; Ruse, E.; Totu, E.E. Removal and recovery of some phenolic pollutants using liquid membranes. Rom. Biotechnol. Lett. 2010, 15, 5702–5708. [Google Scholar]
- Lo, Y.M.; Cao, D.; Argin-Soysal, S.; Wang, J.; Hahm, T.-S. Recovery of protein from poultry processing wastewater using membrane ultrafiltration. Bioresour. Technol. 2005, 96, 687–698. [Google Scholar] [CrossRef]
- Ren, J.; Li, Z.; Wong, F.-S. New method for the prediction of pore size distribution and MWCO of ultrafiltration membranes. J. Membr. Sci. 2006, 279, 558–569. [Google Scholar] [CrossRef]
- Lowry, O.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 267–275. [Google Scholar] [CrossRef]
- Chelucci, G.; Baldino, S.; Baratta, W. Recent Advances in Osmium-Catalyzed Hydrogenation and Dehydrogenation Reactions. Acc. Chem. Res. 2015, 48, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Baratta, W.; Ballico, M.; Chelucci, G.; Siega, K.; Rigo, P. Osmium(II) CNN Pincer Complexes as Efficient Catalysts for Both Asymmetric Transfer and H2 Hydrogenation of Ketones. Angew. Chem. Int. Ed. 2008, 120, 4434–4437. [Google Scholar] [CrossRef]
- George, A.; Selvan, D.; Mandal, S. Catalytic Reduction of Toxic Nitroarenes in Aqueous Medium Using Worm-Like Rhodium Nanoparticles. Chem. Sel. 2017, 2, 9718–9721. [Google Scholar] [CrossRef]
Membrane | Structure | Surface Area (cm2) | Porosity (%) | Pore Dimension or Cut-Off (MWCO) |
---|---|---|---|---|
Cellulose acetate (CA) | asymmetrical | 100 | 78 + 3 | 68,000 (BSA) * |
Polysulfone (PSf) | asymmetrical | 100 | 65 + 4 | 34,500 (P) ** |
Hollow fiber poly-propylene membrane (PP) | symmetrical | 10,000 | 40 + 2 | 0.002–0.2 µm |
Osmium–Polymer Membranes | Cellulose Acetate (Os–CA) | Polysulfone (Os–PSf) | Polypropylene (Os–PP) | ||||||
---|---|---|---|---|---|---|---|---|---|
Surface Composition | Weight (%) | Atomic (%) | Error (%) | Weight (%) | Atomic (%) | Error (%) | Weight (%) | Atomic (%) | Error (%) |
C K | 34.47 | 58.44 | 12.24 | 29.57 | 66.81 | 14.9 | 49.36 | 90.32 | 9.44 |
O K | 29.67 | 37.73 | 15.49 | 8.03 | 13.60 | 22.93 | 2.89 | 4.05 | 29.4 |
Os L | 35.86 | 3.83 | 8.59 | 47.17 | 6.68 | 6.35 | 47.75 | 5.63 | 11.12 |
S K | – | – | – | 15.23 | 12.91 | 8.11 | – | – | – |
Pressure (atm) | Polymer Membrane Flux (J) (L/m2h) | |||||
---|---|---|---|---|---|---|
Cellulose Acetate (CA) | Polysulfone (PSf) | Hollow Fiber Polypropylene Membrane (PP) | ||||
Support | Composite | Support | Composite | Support | Composite | |
1.5 | 23.3 | 21.5 | 18.9 | 17.7 | 11.4 | 9.7 |
2.0 | 31.7 | 28.4 | 23.7 | 20.1 | 13.8 | 10.9 |
2.5 | 38.9 | 35.5 | 27.8 | 24.5 | 15.1 | 13.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nechifor, A.C.; Goran, A.; Grosu, V.-A.; Pîrțac, A.; Albu, P.C.; Oprea, O.; Grosu, A.R.; Pașcu, D.; Păncescu, F.M.; Nechifor, G.; et al. Reactional Processes on Osmium–Polymeric Membranes for 5–Nitrobenzimidazole Reduction. Membranes 2021, 11, 633. https://doi.org/10.3390/membranes11080633
Nechifor AC, Goran A, Grosu V-A, Pîrțac A, Albu PC, Oprea O, Grosu AR, Pașcu D, Păncescu FM, Nechifor G, et al. Reactional Processes on Osmium–Polymeric Membranes for 5–Nitrobenzimidazole Reduction. Membranes. 2021; 11(8):633. https://doi.org/10.3390/membranes11080633
Chicago/Turabian StyleNechifor, Aurelia Cristina, Alexandru Goran, Vlad-Alexandru Grosu, Andreia Pîrțac, Paul Constantin Albu, Ovidiu Oprea, Alexandra Raluca Grosu, Dumitru Pașcu, Florentina Mihaela Păncescu, Gheorghe Nechifor, and et al. 2021. "Reactional Processes on Osmium–Polymeric Membranes for 5–Nitrobenzimidazole Reduction" Membranes 11, no. 8: 633. https://doi.org/10.3390/membranes11080633
APA StyleNechifor, A. C., Goran, A., Grosu, V. -A., Pîrțac, A., Albu, P. C., Oprea, O., Grosu, A. R., Pașcu, D., Păncescu, F. M., Nechifor, G., Tanczos, S. -K., & Bungău, S. G. (2021). Reactional Processes on Osmium–Polymeric Membranes for 5–Nitrobenzimidazole Reduction. Membranes, 11(8), 633. https://doi.org/10.3390/membranes11080633