HiLo Based Line Scanning Temporal Focusing Microscopy for High-Speed, Deep Tissue Imaging
Abstract
:1. Introduction
2. Method
2.1. Optical Setup
2.2. The Principle of HiLo-LSTFM
3. Results
3.1. Volumetric Imaging of Neurons in Thy1-YFP Mouse Brains In Vivo
3.2. Volumetric Imaging of Microglial Cells in CX3CR1-GFP Mouse Brains In Vivo
3.3. Dynamical Imaging of Microglial Cells in CX3CR1-GFP Mouse Brains In Vivo
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LSTFM | Line scanning temporal focusing microscopy |
SLM | Spatial light modulators |
LSTPM | Line scanning two-photon microscopy |
AO | Adaptive optics |
SIM-OS | Structured illumination based optical-sectioning microscopy |
HiLo | “Hi” and “Lo” for the high and low spatial frequency components, respectively |
References
- Minsky, M. Microscopy apparatus. U.S. Patent 3013467, 19 December 1991. [Google Scholar]
- Wilson, T. Confocal Microscopy; Academic Press: San Diego, SD, USA, 1990. [Google Scholar]
- Pawley, J.B. Handbook of Biological Confocal Microscopy; Plenum Press: New York, NY, USA, 1990. [Google Scholar]
- Denk, W.; Strickler, J.; Webb, W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76. [Google Scholar] [CrossRef] [Green Version]
- Zipfel, W.; Williams, R.; Webb, W. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol. 2003, 21, 1368–1376. [Google Scholar] [CrossRef]
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Rubart, M. Two-photon microscopy of cells and tissue. Circ. Res. 2004, 95, 1154–1166. [Google Scholar] [CrossRef] [Green Version]
- Bewersdorf, J.; Pick, R.; Hell, S.W. Multifocal multiphoton microscopy. Opt. Lett. 1998, 23, 655–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Broek, B.; Ashcroft, B.; Oosterkamp, T.H.; van Noort, J. Parallel nanometric 3D tracking of intracellular gold nanorods using multifocal two-photon microscopy. Nano Lett. 2013, 13, 980–986. [Google Scholar] [CrossRef]
- Ingaramo, M.; York, A.G.; Wawrzusin, P.; Milberg, O.; Hong, A.; Weigert, R.; Shroff, H.; Patterson, G.H. Two-photon excitation improves multifocal structured illumination microscopy in thick scattering tissue. Proc. Natl. Acad. Sci. USA 2014, 111, 5254–5259. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Zhang, Y.L.; Liu, K.; Xie, H.; Wang, H.Q.; Kong, L.J.; Dai, Q.H. Adaptive optimization for axial multi-foci generation in multiphoton microscopy. Opt. Express 2019, 27, 35948–35961. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Y.N.; Lu, R.W.; Wang, B.Q.; Zhang, Q.X.; Yao, X.C. Rapid super-resolution line-scanning microscopy through virtually structured detection. Opt. Lett. 2015, 40, 1683–1686. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.H.; van Howe, J.; Durst, M.; Zipfel, W.; Xu, C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt. Express 2005, 13, 2153–2159. [Google Scholar] [CrossRef]
- Durst, M.E.; Zhu, G.H.; Xu, C. Simultaneous spatial and temporal focusing for axial scanning. Opt. Express 2006, 14, 12243–12254. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Zhang, D.P.; Walker, S.; Gu, C.L.; Ke, Y.; Yung, W.H.; Chen, S. Fast 3-D temporal focusing microscopy using an electrically tunable lens. Opt. Express 2015, 23, 24362–24368. [Google Scholar] [CrossRef]
- Oron, D.; Silberberg, Y. Temporal focusing microscopy. Cold Spring Harbor Protocols 2015, pdb-top085928. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.W.; Hou, J.; Suo, J.L.; Qiao, C.; Kong, L.J.; Dai, Q.H. Contrast and resolution enhanced optical sectioning in scattering tissue using line-scanning two-photon structured illumination microscopy. Opt. Express 2017, 25, 32010–32020. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Zhou, T.K.; Hu, X.M.; Li, X.Y.; Xie, H.; Fang, L.; Kong, L.J.; Dai, Q.H. Overcoming tissue scattering in wide-field two-photon imaging by extended detection and computational reconstruction. Opt. Express 2019, 27, 20117–20132. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Li, X.Y.; Xie, H.; Kong, L.J.; Dai, Q.H. Hybrid spatio-spectral coherent adaptive compensation for line-scanning temporal focusing microscopy. J. Phys. D Appl. Phys. 2018, 52, 024001. [Google Scholar] [CrossRef]
- Booth, M.J. Adaptive optics in microscopy. Phil. Trans. R. Soc. 2007, 365, 2829–2843. [Google Scholar] [CrossRef] [PubMed]
- Débarre, D.; Botcherby, E.J.; Watanabe, T.; Srinivas, S.; Booth, M.J.; Wilson, T. Image-based adaptive optics for two-photon microscopy. Opt. Lett. 2009, 34, 2495–2497. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Kong, L.J.; Xie, H.; Han, X.G.; Dai, Q.H. Enhancing axial resolution and background rejection in line-scanning temporal focusing microscopy by focal modulation. Opt. Express 2018, 26, 21518–21526. [Google Scholar] [CrossRef]
- Zheng, C.; Park, J.K.; Yildirim, M.; Boivin, J.R.; Xue, Y.; Sur, M.; So, P.T.C.; Wadduwage, D.N. De-scattering with Excitation Patterning enables rapid wide-field imaging through scattering media. Sci. Adv. 2021, 7, eaay5496. [Google Scholar] [CrossRef] [PubMed]
- Neil, M.A.A.; Juškaitis, R.; Wilson, T. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett. 1997, 22, 1905–1907. [Google Scholar] [CrossRef] [PubMed]
- Chai, C.C.; Chen, C.; Liu, X.J.; Lei, Z.L. Deep learning based one-shot optically-sectioned structured illumination microscopy for surface measurement. Opt. Express 2021, 29, 4010–4021. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.; Chu, K.K.; Lim, D.; Bozinovic, N.; Ford, T.N. Claire Hourtoule, Aaron C. Bartoo, Satish K. Singh, and Jerome Mertz, Optically sectioned fluorescence endomicroscopy with hybrid-illumination imaging through a flexiblefiber bundle. J. Biomed. Opt. 2009, 14, 030502. [Google Scholar] [CrossRef] [Green Version]
- Daryl, L.; Ford, T.N.; Chu, K.K.; Metz, J. Optically sectioned in vivo imaging with speckle illumination HiLo microscopy. J. Biomed. Opt. 2011, 16, 016014. [Google Scholar]
- Bozinovic, N.; Ventalon, C.; Ford, T.; Mertz, J. Fluorescence endomicroscopy with structured illumination. Opt. Express 2008, 16, 8016–8025. [Google Scholar] [CrossRef]
- Zhang, H.J.; Vyas, K.; Yang, G.Z. Line scanning, fiber bundle fluorescence HiLo endomicroscopy with confocal slit detection. J. Biomed. Opt. 2019, 24, 1. [Google Scholar] [CrossRef]
- Qiao, W.; Jin, R.; Luo, T.P.; Li, Y.F.; Fan, G.Q.; Luo, Q.M.; Yuan, J. Single-scan HiLo with line-illumination strategy for optical section imaging of thick tissues. Biomed. Opt. Express 2021, 12, 2373–2383. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.Y.; Li, A.; Jin, R.; Zhang, D.J.; Li, X.N.; Jia, X.Y.; Ding, Z.H.; Gong, H.; Yuan, J.; Luo, Q.M. High-definition imaging using line-illumination modulation microscopy. Nature Methods 2021, 18, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.Y.; Jiang, C.Y.; Zhang, D.J.; Chen, S.Q.; Jin, R.; Gong, H.; Yuan, J. High-throughput optical sectioning via line-scanning imaging with digital structured modulation. Opt. Lett. 2021, 46, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Khudiakov, G.I. Sampling theorem in signal theory and its originators. J. Commun. Technol. Electron. 2008, 53, 1096. [Google Scholar] [CrossRef]
- Chen, T.W.; Wardill, T.J.; Sun, Y.; Pulver, S.R.; Renninger, S.L.; Baohan, A.; Schreiter, E.R.; Kerr, R.A.; Orger, M.B.; Jayaraman, V.; et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013, 499, 295–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, R.; Zhang, Y.; Zhou, T.; Kong, L. HiLo Based Line Scanning Temporal Focusing Microscopy for High-Speed, Deep Tissue Imaging. Membranes 2021, 11, 634. https://doi.org/10.3390/membranes11080634
Shi R, Zhang Y, Zhou T, Kong L. HiLo Based Line Scanning Temporal Focusing Microscopy for High-Speed, Deep Tissue Imaging. Membranes. 2021; 11(8):634. https://doi.org/10.3390/membranes11080634
Chicago/Turabian StyleShi, Ruheng, Yuanlong Zhang, Tiankuang Zhou, and Lingjie Kong. 2021. "HiLo Based Line Scanning Temporal Focusing Microscopy for High-Speed, Deep Tissue Imaging" Membranes 11, no. 8: 634. https://doi.org/10.3390/membranes11080634
APA StyleShi, R., Zhang, Y., Zhou, T., & Kong, L. (2021). HiLo Based Line Scanning Temporal Focusing Microscopy for High-Speed, Deep Tissue Imaging. Membranes, 11(8), 634. https://doi.org/10.3390/membranes11080634