Delivery of Foreign Materials into Adherent Cells by Gold Nanoparticle-Mediated Photoporation
Abstract
:1. Introduction
2. Materials and Method
2.1. Homemade Photoporation Platform
2.2. Cell Culture
2.3. Antibody and Polyethylene Glycol Modification of Gold Nanoparticles
2.4. Confirmation of the Attachment of Gold Nanoparticles on the Cell Membrane
2.5. Cell Photoporation Experiments
2.6. Measurement of Delivery Efficiency
3. Results
3.1. Conjugation and the Characterization of Antibody-Modified Gold Nanoparticles
3.2. Confirmation of the Attachment of Gold Nanoparticles on the Cell Membrane
3.3. Photoporation Mediated by Naked Gold Nanoparticles
3.4. Improvement of the Delivery Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mao, S.; Zhang, Q.; Li, H.; Huang, Q.; Khan, M.; Uchiyama, K.; Lin, J. Measurement of Cell–Matrix Adhesion at Single-Cell Resolution for Revealing the Functions of Biomaterials for Adherent Cell Culture. Anal. Chem. 2018, 90, 9637–9643. [Google Scholar] [CrossRef] [PubMed]
- Jaccard, N.; Macown, R.J.; Super, A.; Griffin, L.D.; Veraitch, F.S.; Szita, N. Automated and online characterization of adherent cell culture growth in a microfabricated bioreactor. J. Lab. Autom. 2014, 19, 437–443. [Google Scholar] [CrossRef] [Green Version]
- Mellott, A.J.; Forrest, M.L.; Detamore, M.S. Physical non-viral gene delivery methods for tissue engineering. Ann. Biomed. Eng. 2013, 41, 446–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehier-Humbert, S.; Guy, R.H. Physical methods for gene transfer: Improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 2005, 57, 733–753. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Samal, S.K.; Demeester, J.; Skirtach, A.G.; De Smedt, S.C.; Braeckmans, K. Laser-assisted photoporation: Fundamentals, technological advances and applications. Adv. Phys. X 2016, 1, 596–620. [Google Scholar] [CrossRef] [Green Version]
- Ibraheem, D.; Elaissari, A.; Fessi, H. Gene therapy and DNA delivery systems. Int. J. Pharmaceut. 2014, 459, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, J.; Zhou, Q.; Zhang, L.; Wang, S.; Zhang, Z.; Yao, C. Advanced physical techniques for gene delivery based on membrane perforation. Drug Deliv. 2018, 25, 1516–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, T.K.; Eberwine, J.H. Mammalian cell transfection: The present and the future. Anal. Bioanal. Chem. 2010, 397, 3173–3178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, T.F.; Remaut, K.; Demeester, J.; De Smedt, S.C.; Braeckmans, K. Intracellular delivery of nanomaterials: How to catch endosomal escape in the act. Nano Today 2014, 9, 344–364. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.E.; Ehrhardt, A.; Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nature reviews. Genetics 2003, 4, 346–358. [Google Scholar]
- Yamauchi, F.; Kato, K.; Iwata, H. Spatially and temporally controlled gene transfer by electroporation into adherent cells on plasmid DNA-loaded electrodes. Nucleic Acids Res. 2004, 32, e187. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Sanchez, T.; Sanchez-Ortiz, B.; Vila, I.; Guitart, M.; Rosell, J.; Gomez-Foix, A.M.; Bragos, R. Design and implementation of a microelectrode assembly for use on noncontact in situ electroporation of adherent cells. J. Membr. Biol. 2012, 245, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Sanchez, T.; Guitart, M.; Rosell-Ferrer, J.; Gomez-Foix, A.M.; Bragos, R. A new spiral microelectrode assembly for electroporation and impedance measurements of adherent cell monolayers. Biomed. Microdev. 2014, 16, 575–590. [Google Scholar] [CrossRef] [PubMed]
- St-Louis, L.B.; Boulais, E.; Lebrun, J.J.; Meunier, M. Visible and near infrared resonance plasmonic enhanced nanosecond laser optoporation of cancer cells. Biomed. Opt. Express 2013, 4, 490–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneckenburger, H.; Hendinger, A.; Sailer, R.; Strauss, W.S.; Schmitt, M. Laser-assisted optoporation of single cells. J. Biomed. Opt. 2002, 7, 410–416. [Google Scholar] [CrossRef]
- Qin, Z.; Bischof, J.C. Thermophysical and biological responses of gold nanoparticle laser heating. Chem. Soc. Rev. 2012, 41, 1191–1217. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fu, L.; Zhang, Y.; Wang, J.; Zhang, Z. Quantitative Evaluation and Optimization of Photothermal Bubble Generation around Overheated Nanoparticles Excited by Pulsed Lasers. J. Phys. Chem. C 2018, 122, 24421–24435. [Google Scholar] [CrossRef]
- Wang, S.; Fu, L.; Xin, J.; Wang, S.; Yao, C.; Zhang, Z.; Wang, J. Photoacoustic response induced by nanoparticle-mediated photothermal bubbles beyond the thermal expansion for potential theranostics. J. Biomed. Opt. 2018, 23, 125002. [Google Scholar] [CrossRef] [PubMed]
- Xiong, R.; Raemdonck, K.; Peynshaert, K.; Lentacker, I.; De Cock, I.; Demeester, J.; De Smedt, S.C.; Skirtach, A.G.; Braeckmans, K. Comparison of gold nanoparticle mediated photoporation: Vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano 2014, 8, 6288–6296. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, A.; Kelly, S.C.; Dwivedi, N.; Thadhani, N.; Prausnitz, M.R. Efficient intracellular delivery of molecules with high cell viability using nanosecond-pulsed laser-activated carbon nanoparticles. ACS Nano 2014, 8, 2889–2899. [Google Scholar] [CrossRef] [PubMed]
- Santra, T.S.; Kar, S.; Chen, T.C.; Chen, C.W.; Borana, J.; Lee, M.C.; Tseng, F.G. Near-infrared nanosecond-pulsed laser-activated highly efficient intracellular delivery mediated by nano-corrugated mushroom-shaped gold-coated polystyrene nanoparticles. Nanoscale 2020, 12, 12057–12067. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Rudnitzki, F.; Huttmann, G.; Zhang, Z.; Rahmanzadeh, R. Important factors for cell-membrane permeabilization by gold nanoparticles activated by nanosecond-laser irradiation. Int. J. Nanomed. 2017, 12, 5659–5672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, Q.A.; Chang, D.C. High-efficiency gene transfection by in situ electroporation of cultured cells. Biochim. Biophys. Acta 1991, 1088, 104–110. [Google Scholar] [CrossRef]
- Rees, D.A.; Lloyd, C.W.; Thom, D. Control of grip and stick in cell adhesion through lateral relationships of membrane glycoproteins. Nature 1977, 267, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, N.; Huber, M.; Madrid, M.; Nuzzo, V.; Vulis, D.I.; Shen, W.; Nelson, J.; McClelland, A.A.; Heisterkamp, A.; Mazur, E. Intracellular Delivery Using Nanosecond-Laser Excitation of Large-Area Plasmonic Substrates. ACS Nano 2017, 11, 3671–3680. [Google Scholar] [CrossRef] [PubMed]
- Madrid, M.; Saklayen, N.; Shen, W.; Huber, M.; Vogel, N.; Mazur, E. Laser-Activated Self-Assembled Thermoplasmonic Nanocavity Substrates for Intracellular Delivery. ACS Appl. Bio Mater. 2018, 1, 1793–1799. [Google Scholar] [CrossRef]
- Wu, Y.C.; Wu, T.H.; Clemens, D.L.; Lee, B.Y.; Wen, X.; Horwitz, M.A.; Teitell, M.A.; Chiou, P.Y. Massively parallel delivery of large cargo into mammalian cells with light pulses. Nat. Methods 2015, 12, 439–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boustie, M.; Berthe, L.; Resseguier, T.D.; Arrigoni, M. Laser Shock Waves: Fundamentals and Applications. In Proceedings of the 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications, Montreal, QC, Canada, 16–18 July 2008. [Google Scholar]
- Jokerst, J.V.; Lobovkina, T.; Zare, R.N.; Gambhir, S.S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6, 715–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, C.; Rahmanzadeh, R.; Endl, E.; Zhang, Z.; Gerdes, J.; Hu Ttmann, G. Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles. J. Biomed. Opt. 2005, 10, 064012. [Google Scholar] [CrossRef]
- Yao, C.; Rudnitzki, F.; He, Y.; Zhang, Z.; Hüttmann, G.; Rahmanzadeh, R. Cancer cell-specific protein delivery by optoporation with laser-irradiated gold nanorods. J. Biophotonics 2020, 13, e202000017. [Google Scholar] [CrossRef]
- Lukianova-Hleb, E.Y.; Kim, Y.; Belatsarkouski, I.; Gillenwater, A.M.; O’Neill, B.E.; Lapotko, D.O. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nat. Nanotechnol. 2016, 11, 525–532. [Google Scholar] [CrossRef] [PubMed]
Peak Position (nm) | Zeta Potential (mv) | Diameter (nm) | |
---|---|---|---|
AuNPs | 536 | −33.1 ± 2.0 | 60.6 ± 0.5 |
AuNPs@PEG | 542 | −9.2 ± 1.3 | 112.3 ± 1.1 |
AuNPs@PEG@Antibody | 541 | −23.7 ± 0.2 | 217.5 ± 4.7 |
Control (%) | 1.28 J/cm2 (%) | 2.56 J/cm2 (%) | 3.84 J/cm2 (%) | 6.4 J/cm2 (%) | |
---|---|---|---|---|---|
Perforated Cells | 2.36 ± 1.43 | 6.36 ± 1.57 | 11.6 ± 2.51 | 22.9 ± 5.14 | 39.4 ± 5.55 |
Dead Cells | 0.45 ± 0.18 | 1.08 ± 0.73 | 1.07 ± 0.4 | 6.57 ± 2.12 | 37.83 ± 9.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Wang, J.; Chen, L.; Zhang, Z.; Yao, C. Delivery of Foreign Materials into Adherent Cells by Gold Nanoparticle-Mediated Photoporation. Membranes 2021, 11, 550. https://doi.org/10.3390/membranes11080550
Du X, Wang J, Chen L, Zhang Z, Yao C. Delivery of Foreign Materials into Adherent Cells by Gold Nanoparticle-Mediated Photoporation. Membranes. 2021; 11(8):550. https://doi.org/10.3390/membranes11080550
Chicago/Turabian StyleDu, Xiaofan, Jing Wang, Lan Chen, Zhenxi Zhang, and Cuiping Yao. 2021. "Delivery of Foreign Materials into Adherent Cells by Gold Nanoparticle-Mediated Photoporation" Membranes 11, no. 8: 550. https://doi.org/10.3390/membranes11080550
APA StyleDu, X., Wang, J., Chen, L., Zhang, Z., & Yao, C. (2021). Delivery of Foreign Materials into Adherent Cells by Gold Nanoparticle-Mediated Photoporation. Membranes, 11(8), 550. https://doi.org/10.3390/membranes11080550