Characterization and Kinetic Studies of Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Inclusion Membrane for the Malachite Green Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of PIMs
2.3. H-Cell Device Set Up
2.4. Performance Studies for the MG Extraction
2.5. Transport Kinetics
2.6. Characterization of PIMs
2.6.1. Scanning Electron Microscopy (SEM)
2.6.2. Atomic Force Microscopy (AFM)
2.6.3. Contact Angle (CA)
2.6.4. Water Uptake
2.6.5. Fourier Transform Infrared Spectroscopy (FTIR)
2.6.6. Ion Exchange Capacity (IEC)
2.7. Kinetic Studies
3. Results and Discussion
3.1. Parameters of the Extraction of MG
3.1.1. Effect of Carrier Percentage
3.1.2. Effect of Initial Dye Concentration
3.2. FTIR Analysis
3.3. Surface Morphology of PIMs (SEM Analysis)
3.4. AFM Analysis
3.5. Contact Angle, Thickness and Water Uptake
3.6. Ion Exchange Capacity (IEC)
4. Kinetics Studies
4.1. Percentage of Carrier
4.2. Initial Dye Concentration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, S.; Malik, A. Environmental and health effects of textile industry wastewater. In Environmental Deterioration and Human Health; Springer: Dordrecht, The Netherlands, 2014; pp. 55–71. [Google Scholar]
- Siddique, K.; Rizwan, M.; Shahid, M.J.; Ali, S.; Ahmad, R.; Rizvi, H. Textile wastewater treatment options: A critical review. In Enhancing Cleanup of Environmental Pollutants; Springer: Berlin, Germany; pp. 183–207.
- Othman, N.; Zing-Yi, O.; Harruddin, N.; Norimie, R.; Jusoh, N.; Zailani, S.N. Carrier assisted emulsion liquid membrane process for recovery of basic dye from wastewater using continuous extractor. J. Teknol. 2014, 67. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.C.; Biswas, S.K.; Sheam, M.; Hasan, R.; Saha, A.K.; Roy, A.K.; Haque, E.; Rahman, M.; Tang, S.-S. Bioremediation of malachite green dye by two bacterial strains isolated from textile effluents. Curr. Res. Microb. Sci. 2020, 1, 37–43. [Google Scholar] [CrossRef]
- Wong, Y.C.; Senan, M.S.R.; Atiqah, N.A. Removal of methylene blue and malachite green dye using different form of coconut fibre as absorbent. J. Basic Appl. Sci. 2013, 9, 172. [Google Scholar] [CrossRef]
- El-Bouraie, M. Removal of the malachite green (MG) dye from textile industrial wastewater using the polyurethane foam functionalized with salicylate. J. Dispers. Sci. Technol. 2015, 36, 1228–1236. [Google Scholar] [CrossRef]
- Pang, Y.L.; Abdullah, A.Z. Current status of textile industry wastewater management and research progress in Malaysia: A review. Clean–Soil Air Water 2013, 41, 751–764. [Google Scholar] [CrossRef]
- Kavitha, N.; Palanivelu, K. Recovery of copper (II) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid as carrier from e-waste. J. Membr. Sci. 2012, 415, 663–669. [Google Scholar] [CrossRef]
- Rynkowska, E.; Fatyeyeva, K.; Kujawski, W. Application of polymer-based membranes containing ionic liquids in membrane separation processes: A critical review. Rev. Chem. Eng. 2018, 34, 341–363. [Google Scholar] [CrossRef]
- Cho, Y.; Cattrall, R.W.; Kolev, S.D. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water. J. Hazard. Mater. 2018, 341, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Cattrall, R.W.; Li, J.; Almeida, M.I.G.; Stevens, G.W.; Kolev, S.D. A poly (vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)-based polymer inclusion membrane (PIM) containing LIX84I for the extraction and transport of Cu (II) from its ammonium sulfate/ammonia solutions. J. Membr. Sci. 2017, 542, 272–279. [Google Scholar] [CrossRef]
- Rajewski, J. Transport of chromium (III) from mixtures of chromium ions by CTA-and PVC-based inclusion membranes. Water Sci. Technol. 2018, 78, 1792–1801. [Google Scholar] [CrossRef]
- Stephan, A.M.; Nahm, K.S.; Kulandainathan, M.A.; Ravi, G.; Wilson, J.J.E.P.J. Poly (vinylidene fluoride-hexafluoropropylene)(PVdF-HFP) based composite electrolytes for lithium batteries. Eur. Polym. J. 2008, 42, 1728–1734. [Google Scholar] [CrossRef]
- Minhas, M.A.; Rauf, A.; Rauf, S.; Minhas, F.T.; Memon, N.; Jabbar, A.; Bhanger, M.I.; Malik, M.I. Selective and efficient extraction of cationic dyes from industrial effluents through polymer inclusion membrane. Sep. Purif. Technol. 2021, 272, 118883. [Google Scholar] [CrossRef]
- Zawierucha, I.; Nowik-Zajac, A.; Kozlowski, C. Application of Cr (VI) transport across the polymer inclusion membrane with calixresorcin[4]arene derivative as ion carrier. Sep. Sci. Technol. 2020, 55, 2204–2210. [Google Scholar] [CrossRef]
- Pyszka, I.; Radzyminska-Lenarcik, E. New polymer inclusion membrane in the separation of nonferrous metal ion from aqueous solutions. Membranes 2020, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Nowik-Zajac, A.; Zawierucha, I.; Kozlowski, C. Selective transport of Ag (I) through a polymer inclusion membrane containing a calix[4]pyrrole derivative from nitrate aqueous solutions. Int. J. Mol. Sci. 2020, 21, 5348. [Google Scholar] [CrossRef] [PubMed]
- Radzyminska-Lenarcik, E.; Pyszka, I.; Ulewicz, M. Separation of Zn (II), Cr (III), and Ni (II) ions using the polymer inclusion membranes containing acetylacetone derivative as the carrier. Membranes 2020, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Mwakalesi, A.J.; Potter, I.D. Removal of picloram herbicide from an aqueous environment using polymer inclusion membranes. J. Environ. Chem. Eng. 2020, 8, 103936. [Google Scholar] [CrossRef]
- Shirzad, M.; Karimi, M. Statistical Analysis and Optimal Design of Polymer Inclusion Membrane for Water Treatment by Co (II) Removal. Desalination Water Treat. 2020, 182. [Google Scholar] [CrossRef]
- Ncib, S.; Barhoumi, A.; Bouguerra, W.; Larchet, C.; Dammak, L.; Hamrouni, B.; Elaloui, E. Copper (II) removal from synthetic wastewater solutions using supported liquid membrane and polymer inclusion membrane. J. Environ. Eng. 2020, 146, 04019113. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Ulewicz, M. Polymer inclusion membranes (PIMs) doped with alkylimidazole and their application in the separation of non-ferrous metal ions. Polymers 2019, 11, 1780. [Google Scholar] [CrossRef] [Green Version]
- Elias, G.; Díez, S.; Fontàs, C. System for mercury preconcentration in natural waters based on a polymer inclusion membrane incorporating an ionic liquid. J. Hazard. Mater. 2019, 371, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Sedkaoui, Y.; Abdellaoui, N.; Arous, O.; Lounici, H.; Nasrallah, N.; Szymczyk, A. Elaboration and characterization of multilayer polymeric membranes: Effect of the chemical nature of polymers. J. Polym. Eng. 2021, 41, 127–136. [Google Scholar] [CrossRef]
- Sellami, F.; Kebiche-Senhadji, O.; Marais, S.; Couvrat, N.; Fatyeyeva, K. Polymer inclusion membranes based on CTA/PBAT blend containing Aliquat 336 as extractant for removal of Cr (VI): Efficiency, stability and selectivity. React. Funct. Polym. 2019, 139, 120–132. [Google Scholar] [CrossRef]
- Bożejewicz, D.; Witt, K.; Kaczorowska, M.A. The comparison of the removal of copper (II) and zinc (II) ions from aqueous solution using 2,6-diaminopyridine in a polymer inclusion membrane and in a classic solvent extraction. Desalin. Water Treat. 2021, 214, 194–202. [Google Scholar] [CrossRef]
- Amin, N.H.M.; Mehamod, F.S.; Suah, F.B.M. A novel approach in simultaneous extraction of basic dyes by using a batch reactor consisting a polymer inclusion membrane. Alex. Eng. J. 2019, 58, 929–935. [Google Scholar] [CrossRef]
- Qiu, X.; Hu, H.; Hu, F.; Tang, J.; Yang, C.; Zhou, Y.; Lin, X.; Hu, J. Simultaneous recovery of copper (II) from two different feed solutions based on a three-compartment module with selective polymer inclusion membranes. Hydrometallurgy 2019, 188, 64–72. [Google Scholar] [CrossRef]
- Meng, X.; Song, Y.; Lv, Y.; Xin, X.; Ren, T.; Wang, X. Study on stable mass transfer and enrichment of phenol by 1-octanol/kerosene/polyvinyl chloride polymer inclusion membrane. Environ. Pollut. 2019, 253, 1100–1106. [Google Scholar] [CrossRef] [PubMed]
- Sellami, F.; Kebiche-Senhadji, O.; Marais, S.; Colasse, L.; Fatyeyeva, K. Enhanced removal of Cr (VI) by polymer inclusion membrane based on poly (vinylidene fluoride) and Aliquat 336. Sep. Purif. Technol. 2020, 248, 117038. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Z.; Wang, Y.; Liu, M.; Li, S.; Tang, L.; Wang, S.; Yang, X.; Ji, S. Improved transport of gold (I) from aurocyanide solution using a green ionic liquid-based polymer inclusion membrane with in-situ electrodeposition. Chem. Eng. Res. Des. 2020, 153, 136–145. [Google Scholar] [CrossRef]
- Ravi, S.; Shoparwe, N.F.; Abdul-Halim, N.S.; Makhtar, M.M.Z.; Shukor, H. Fabrication and characterisation of polyvinylidene fluoride co-hexafluoropropylene polymer inclusion membranes for reactive orange 16 dye removal. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 765, p. 012103. [Google Scholar]
- Wang, B.; Li, Z.; Lang, Q.; Tan, M.; Ratanatamskul, C.; Lee, M.; Liu, Y.; Zhang, Y. A comprehensive investigation on the components in ionic liquid-based polymer inclusion membrane for Cr (VI) transport during electrodialysis. J. Membr. Sci. 2020, 604, 118016. [Google Scholar] [CrossRef]
- Bahrami, S.; Yaftian, M.R.; Najvak, P.; Dolatyari, L.; Shayani-Jam, H.; Kolev, S.D. PVDF-HFP based polymer inclusion membranes containing Cyphos® IL 101 and Aliquat® 336 for the removal of Cr (VI) from sulfate solutions. Sep. Purif. Technol. 2020, 250, 117251. [Google Scholar] [CrossRef]
- Mohamad, M.; Mohammad, R.; May, T.S.; Wei, L.J. Removal of malachite green by sugarcane bagasse biochar using response surface methodology. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019. [Google Scholar]
- Ling, Y.Y.; Suah, F.B.M. Extraction of malachite green from wastewater by using polymer inclusion membrane. J. Environ. Chem. Eng. 2017, 5, 785–794. [Google Scholar] [CrossRef]
- Ngang, H.P.; Ahmad, A.L.; Low, S.C.; Ooi, B.S. Preparation of PVDF/SiO2 composite membrane for salty oil emulsion separation: Physicochemical properties changes and its impact on fouling propensity. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017. [Google Scholar]
- Witt, K.; Radzyminska-Lenarcik, E.; Kosciuszko, A.; Gierszewska, M.; Ziuziakowski, K. The influence of the morphology and mechanical properties of polymer inclusion membranes (PIMs) on zinc ion separation from aqueous solutions. Polymers 2018, 10, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, A.L.; Shoparwe, N.F.; Hanifa, N.H.E. Equilibrium and kinetic study of bovine serum albumin (BSA) adsorption onto fabricated polyethersulfone (PES)/hydroxyapatite (HAP) adsorptive mixed matrix membrane (MMM). J. Phys. Sci. 2019, 30, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Klaysom, C.; Moon, S.H.; Ladewig, B.P.; Lu, G.M.; Wang, L. Preparation of porous ion-exchange membranes (IEMs) and their characterizations. J. Membr. Sci. 2011, 371, 37–44. [Google Scholar] [CrossRef]
- Guo, W.; Chen, S.; Feng, Y.; Yang, C. Investigations of triphenyl phosphate and bis-(2-ethylhexyl) phosphate self-assembled films on iron surface using electrochemical methods, Fourier transform infrared spectroscopy, and molecular simulations. J. Phys. Chem. C 2007, 111, 3109–3115. [Google Scholar] [CrossRef]
- Jakriya, S.P.; Syed, A.M.; Pillai, S.K.; Rahim, D.B. High-performance poly (vinylidene fluoride-co-hexafluoropropylene) based electrospun polyelectrolyte mat for lithium-ion battery. Mater. Express 2018, 8, 77–84. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, R.K. Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J. Mater. Chem. C 2015, 3, 7305–7318. [Google Scholar]
- Zamri, S.N.A.M.; Masri, M.N. Fourier transform infrared spectroscopy of porous zinc with different concentration of potassium hydroxidein agar binder. Int. J. Curr. Sci. Eng. Technol. 2018, 1, 361–366. [Google Scholar] [CrossRef]
- Zuo, X.; Yu, S.; Xu, X.; Bao, R.; Xu, J.; Qu, W. Preparation of organic–inorganic hybrid cation-exchange membranes via blending method and their electrochemical characterization. J. Membr. Sci. 2009, 328, 23–30. [Google Scholar] [CrossRef]
- Febrianto, J.; Kosasih, A.N.; Sunarso, J.; Ju, Y.H.; Indraswati, N.; Ismadji, S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. J. Hazard. Mater. 2009, 162, 616–645. [Google Scholar] [CrossRef] [PubMed]
- Don, M.M.; Shoparwe, N.F. Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochem. Eng. J. 2010, 49, 95–103. [Google Scholar] [CrossRef]
- Zafar, S.; Khalid, N.; Daud, M.; Mirza, M.L. Kinetic studies of the adsorption of thorium ions onto rice husk from aqueous media: Linear and nonlinear approach. Nucleus 2015, 52, 14–19. [Google Scholar]
- Pérez-Silva, I.; Galán-Vidal, C.A.; Ramírez-Silva, M.T.; Rodríguez, J.A.; Álvarez-Romero, G.A.; Páez-Hernández, M. Phenol removal process development from synthetic wastewater solutions using a polymer inclusion membrane. Ind. Eng. Chem. Res. 2013, 52, 4919–4923. [Google Scholar] [CrossRef]
- Meng, X.; Wang, C.; Zhou, P.; Xin, X.; Wang, L. Transport and selectivity of indium through polymer inclusion membrane in hydrochloric acid medium. Front. Environ. Sci. Eng. 2017, 11, 9. [Google Scholar] [CrossRef]
- Salima, A.; Ounissa, K.S.; Fadila, H.; Mohamed, B. Equilibrium and kinetic modeling of acid dye removal from aqueous solution by polymer inclusion membrane (PIMs). Desalination Water Treat. 2016, 57, 3708–3719. [Google Scholar] [CrossRef]
- Rajewski, J.; Łobodzin, P. Abexperimental analysis of the transport mechanism of chromium (III) ions in the polymer inclusion membrane system stract. Probl. Eksploat. Maintenence Probl. 2016, 2016, 105–117. [Google Scholar]
- Macías, M.; de San Miguel, E.R. Optimization of Ni (II) Facilitated Transport from Aqueous Solutions Using a Polymer Inclusion Membrane. Water Air Soil Pollut. 2021, 232, 1–16. [Google Scholar] [CrossRef]
- Salima, A.; Ounissa, K.S.; Lynda, M.; Mohamed, B. Cationic dye (MB) removal using polymer inclusion membrane (PIMs). Procedia Eng. 2012, 33, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Li, N.; Lu, Q.; Wang, X.; Zhu, Y. Study on Preparation and Separation and Adsorption Performance of Knitted Tube Composite β-Cyclodextrin/Chitosan Porous Membrane. Polymers 2019, 11, 1737. [Google Scholar] [CrossRef] [Green Version]
- Cai, C.; Yang, F.; Zhao, H.; Liao, Q.; Bai, R.; Guo, W.; Chen, P.; Zhang, Y.; Zhang, H. Promising transport and high-selective separation of Li (I) from Na (I) and K (I) by a functional polymer inclusion membrane (PIM) system. J. Membr. Sci. 2019, 579, 1–10. [Google Scholar] [CrossRef]
- Mahendrakar, S.; Anna, M. Electrical and FTIR Studies of Plasticized Polymer-Salt Electrolyte membrane and Application to Lithium ion Batteries. Int. J. Appl. Chem. 2017, 13, 197–210. [Google Scholar]
- Gherasim, C.V.; Cristea, M.; Grigoras, C.V.; Bourceanu, G. New polymer inclusion membrane. Preparation and characterization. Dig. J. Nanomater. Biostruct. 2011, 6, 1499–1508. [Google Scholar]
- Mahendrakar, S.; Anna, M.; Kumar, J.S.; Reddy, M.J. Structural, morphological and electrical studies of plasticized polymer-salt electrolyte membrane and application to lithium ion batteries. Int. J. Appl. Chem. 2017, 13, 477–490. [Google Scholar]
- Gherasim, C.V.; Bourceanu, G.; Olariu, R.I.; Arsene, C. A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions. J. Hazard. Mater. 2011, 197, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Witt, K.; Radzyminska-Lenarcik, E.; Urbaniak, W. Selective transport of zinc ions through novel polymer inclusion membranes (PIMS) containing β-diketone derivatives as carrier reagents. Sep. Sci. Technol. 2016, 51, 2620–2627. [Google Scholar] [CrossRef]
- Cardoso, V.F.; Machado, A.R.; Pinto, V.C.; Sousa, P.J.; Botelho, G.; Minas, G.; Lanceros-Méndez, S. From superhydrophobic-to superhydrophilic-patterned poly (vinylidene fluoride-co-chlorotrifluoroethylene) architectures as a novel platform for biotechnological applications. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1802–1810. [Google Scholar] [CrossRef]
- Simpson, J.T.; Hunter, S.R.; Aytug, T. Superhydrophobic materials and coatings: A review. Rep. Prog. Phys. 2015, 78, 086501. [Google Scholar] [CrossRef]
- Alamery, H.R.D.; Hatim, M.I.; Ahmad, M.S. A study of the effects of adding PEG on the properties and morphology of asymmetric membranes comprising PVDF-HFP co-polymer fabricated by phase inversion method. ARPN J. Eng. Appl. Sci. 2016, 11, 7130–7140. [Google Scholar]
- Song, Y.J.; Kim, J.H.; Kim, Y.S.; Kim, S.D.; Cho, Y.H.; Park, H.S.; Nam, S.E.; Park, Y.I.; Son, E.H.; Kim, J.F. Controlling the morphology of polyvinylidene-co-hexafluoropropylene (PVDF-co-HFP) membranes via phase inversion method. Membr. J. 2018, 28, 187–195. [Google Scholar] [CrossRef]
- Arkles, H. Hydrophobicity, Hydropilicity and Silane, in Paint & Coatings Industry; Gelest Inc.: Morrisville, PA, USA, 2006. [Google Scholar]
- Wong, C.Y.; Wong, W.Y.; Ramya, K.; Khalid, M.; Loh, K.S.; Daud, W.R.W.; Lim, K.L.; Walvekar, R.; Kadhum, A.A.H. Additives in proton exchange membranes for low-and high-temperature fuel cell applications: A review. Int. J. Hydrogen Energy 2019, 44, 20. [Google Scholar] [CrossRef]
- López, C.C.; Lefebvre, X.; Brusselle-Dupend, N.; Klopffer, M.H.; Cangémi, L.; Castagnet, S.; Grandidier, J.C. Effect of porosity and hydrostatic pressure on water absorption in a semicrystalline fluoropolymer. J. Mater. Sci. 2016, 51, 3750–3761. [Google Scholar] [CrossRef] [Green Version]
- Pereira, V.R.; Isloor, A.M.; Bhat, U.K.; Ismail, A.F.; Obaid, A.; Fun, H.K. Preparation and performance studies of polysulfone-sulfated nano-titania (S-TiO2) nanofiltration membranes for dye removal. RSC Adv. 2015, 5, 53874–53885. [Google Scholar] [CrossRef]
- Yakout, S.M. Effect of porosity and surface chemistry on the adsorption-desorption of uranium (VI) from aqueous solution and groundwater. J. Radioanal. Nucl. Chem. 2016, 308, 555–565. [Google Scholar] [CrossRef]
- Hebbar, R.S.; Isloor, A.M.; Prabhu, B.; Asiri, A.M.; Ismail, A.F. Removal of metal ions and humic acids through polyetherimide membrane with grafted bentonite clay. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Xie, K.; Dong, Z.; Wang, Y.; Qi, W.; Zhai, M.; Zhao, L. Facile preparation of EVOH-based amphoteric ion exchange membrane using radiation grafting technique: A preliminary investigation on its application for vanadium redox flow battery. Polymers 2019, 11, 843. [Google Scholar] [CrossRef] [Green Version]
- Caimi, S.; Klaue, A.; Wu, H.; Morbidelli, M. Effect of SiO2 Nanoparticles on the Performance of PVdF-HFP/Ionic Liquid Separator for Lithium-Ion Batteries. Nanomaterials 2018, 8, 926. [Google Scholar] [CrossRef] [Green Version]
- Hwang, Y.J.; Jeong, S.K.; Nahm, K.S.; Stephan, A.M. Electrochemical studies on poly (vinylidene fluoride–hexafluoropropylene) membranes prepared by phase inversion method. Eur. Polym. J. 2007, 43, 65–71. [Google Scholar] [CrossRef]
- Baskakova, Y.V.; Ol’ga, V.Y.; Efimov, O.N. Polymer gel electrolytes for lithium batteries. Russ. Chem. Rev. 2012, 81, 367. [Google Scholar] [CrossRef]
- Kim, I.; Kim, B.S.; Nam, S.; Lee, H.-J.; Chung, H.K.; Cho, S.M.; Luu, T.H.T.; Hyun, S.; Kang, C. Cross-linked poly (vinylidene fluoride-co-hexafluoropropene)(PVDF-co-HFP) gel polymer electrolyte for flexible Li-ion battery integrated with organic light emitting diode (OLED). Materials 2018, 11, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, V. Adsorption kinetics and isotherms for the removal of rhodamine B dye and Pb+ 2 ions from aqueous solutions by a hybrid ion-exchanger. Arab. J. Chem. 2016, 12, 316–329. [Google Scholar]
- Gherasim, C.V.; Bourceanu, G. Removal of chromium (VI) from aqueous solutions using a polyvinyl-chloride inclusion membrane: Experimental study and modelling. Chem. Eng. J. 2013, 220, 24–34. [Google Scholar] [CrossRef]
- Mahanty, B.N.; Mohapatra, P.K.; Raut, D.R.; Das, D.K.; Behere, P.G.; Afzal, M.; Verboom, W. Polymer inclusion membrane containing a tripodal diglycolamide (T-DGA): Characterization and sorption isotherm studies. J. Environ. Chem. Eng. 2016, 4, 1826–1838. [Google Scholar] [CrossRef]
- Motsoane, N.M. Development and Application of Passive Samplers Based on Polymer Inclusion Membranes for Evaluating the Fate of Trace Metals Polluted by Acid Mine Drainage. Ph.D. Thesis, University of Witwatersrand, Johannesburg, South Africa, 2019. [Google Scholar]
- Gherasim, C.V.; Bourceanu, G.; Timpu, D. Experimental and modeling studies of lead (II) sorption onto a polyvinyl-chloride inclusion membrane. Chem. Eng. J. 2011, 172, 817–827. [Google Scholar] [CrossRef]
- Mahanty, B.N.; Mohapatra, P.K.; Raut, D.R.; Das, D.K.; Behere, P.G.; Afzal, M. Polymer inclusion membranes containing N, N, N′,N′-tetra (2-ethylhexyl) diglycolamide: Uptake isotherm and actinide ion transport studies. Ind. Eng. Chem. Res. 2015, 54, 3237–3246. [Google Scholar] [CrossRef]
Polymer Inclusion Membrane (PIM) | Extraction/Removal/Recovery | Extraction/Recovery/ Efficiency | Reference | |||
---|---|---|---|---|---|---|
Base Polymer | Plasticizer | Solvent | Carrier/ Extractant | |||
CTA | 2-NPOE | DCM | Ester derivative of calix[4]arene (EDC) | MB | >90% | [14] |
CTA | 2-NPOE | DCM | Calixresorcin[4]arene derivative | Cr(IV) | 98.4% | [15] |
CTA | o-NPPE | DCM | Ethylenodiamino-bis-acetylacetone (EDAB-acac) | Zn(II) | 90–98% | [16] |
CTA | o-NPPE | DCM | Calix[4]pyrrole KP | Ag(I) | >92% | [17] |
CTA | o-NPPE | DCM | Ethylenodiamino-bis-acetylacetone | Zn(II) | 90% | [18] |
Cr(III) | 65% | |||||
Ni(II) | 6% | |||||
CTA | NPOE | DCM | Aliquat 336 | Picloram | 97% | [19] |
CTA | DOA | DCM | Dinonylnaphthalene sulfonic acid (DNNSA) | Co(II) | 73.99% | [20] |
CTA | - | CHCl3 | Di-(2-hethylhexyl) phosphoric acid (D2EHPA) | Cu(II) | 74% | [21] |
CTA | o-NPPE | DCM | 1-octyl-2,4-dimethylimidazole | Zn(II) | 95.5% | [22] |
CTA | NPOE | CHCl3 | Trioctylmethylammonium Thiosalicylate (TOMATS) | Hg | 84 ± 7% | [23] |
CTA + PMMA PVC + PMMA | NPOE | CHCl3 | - | Pb(II) | 12.15% 25.31% | [24] |
CTA/PBAT | - | CHCl3 | Aliquat 336 | Cr(VI) | >99% | [25] |
PVC | B2EHP | THF | 2,6-Diaminopyridine | Cu(II) | 72.81% | [26] |
Zn(II) | 93.65% | |||||
PVC | DOP | THF | B2EHP | MG MB | 97% | [27] |
PVC | NPOE | THF | 2-hydroxy-5- nonyl-benzaldoxime (M5640) | Cu(II) | 100% | [28] |
PVC | - | THF | 1-octanol (OCT) | Phenol | 82.8 wt% | [29] |
PVDF | 2-NPOE | DMF | Aliquat 336 | Cr(IV) | 96.9% | [30] |
PVDF | NPOE | DMA | Aliquat 366 | Au(I) | 96.4% | [31] |
PVDF-co-HFP | - | THF | Aliquat 336 | Reactive Orange 16 | 99.62% | [32] |
PVDF-co-HFP | 2-NPOE | THF | Cyphos IL101 | Cr(IV) | 95.9% | [33] |
PVDF-co-HFP | - | THF | Trihexyltetradecylphosphonium chloride, Cyphos® IL 101 | Cr(IV) | ~95% | [34] |
Membrane | PVDF-co-HFP (wt%) | B2EHP (wt%) | DOP (wt%) | THF (wt%) |
---|---|---|---|---|
M1 | 18 | 0 | 0 | 82 |
M2 | 18 | 6 | 1 | 75 |
M3 | 18 | 9 | 1 | 72 |
M4 | 18 | 15 | 1 | 66 |
M5 | 18 | 18 | 1 | 63 |
M6 | 18 | 21 | 1 | 60 |
Membrane | P (cm/min) | J (mg cm/min) |
---|---|---|
M1 | 0.0068 | 0.0643 |
M2 | 0.0255 | 0.2540 |
M3 | 0.0306 | 0.3046 |
M4 | 0.0407 | 0.4082 |
M5 | 0.0492 | 0.4936 |
M6 | 0.1188 | 1.1913 |
Initial Dye Concentration (mg/L) | P (cm/min) | J (mg cm/min) |
---|---|---|
2 | 0.5772 | 1.2283 |
4 | 0.3157 | 1.0929 |
6 | 0.2139 | 1.2721 |
8 | 0.1715 | 1.3741 |
10 | 0.1358 | 1.3615 |
12 | 0.0951 | 1.0791 |
Materials | Wavenumbers (cm−1) | Type of Molecular Vibrations |
---|---|---|
B2EHP | 2958.08–2860.00 | sp3 C- H |
1684.05 | O-H stretching | |
1380.10 | sp3 C-H bending | |
1008.08 | P-O-C | |
727.52 | C-H2 rocking | |
DOP | 2957.76–2859.54 | sp3 C-H stretching |
1723.52 | C=O | |
1599.91–1460.44 | C-C stretch in ring | |
1266.60 | C-O stretching | |
1119.17 | C-O stretching | |
770.34–740.95 | sp2 C-H bend in aromatic | |
M1 (18 wt% PVDF-co-HFP, 72 wt% THF) | 3025.80–2923.07 | C-H2 symmetric and anti-symmetric stretching vibration |
1454.88–1064.79 | C-F stretching | |
974.67 | C-F stretching | |
871.09 | C-C stretching | |
795.70 | C-F3 stretching vibration | |
760.85 | C-H2 rocking vibration | |
612.49 | C-F2 bending and C-C-C vibration | |
M6 (PVDF-co-HFP 18 wt%: B2EHP 21 wt%:DOP 1 wt%:THF 60 wt%) | 2958.92–2860.40 | sp3 C-H |
1728.32 | C=O | |
1462.78 | C-C stretching in ring | |
1424.20–1382.67 | sp3 C-H bending | |
1208.87–1149.83 | C-F stretching | |
1019.71 | P-O-C | |
872.58 | C-C stretching | |
795.59 | C-F3 stretching vibration | |
761.71 | C-H2 rocking vibration | |
727.45 | C-H2 rocking | |
612.8 | C-F2 bending and C-C-C vibration |
Membrane | Contact Angle (°) | Water Uptake (%) |
---|---|---|
M1 | 153.48 ± 2.56 | 2.02 ± 0.2 |
M2 | 124.94 ± 1.57 | 13.43 ± 0.2 |
M3 | 110.18 ± 0.07 | 18.43 ± 0.4 |
M4 | 99.40 ± 2.23 | 20.99 ± 0.4 |
M5 | 95.86 ± 1.11 | 40.80 ± 0.3 |
M6 | 95.54 ± 3.03 | 58.02 ± 0.4 |
Membrane | Ce | k 1 | C0 | R2 | Variance |
---|---|---|---|---|---|
M1 | 9.0060 | 0.0092 | 9.4468 | 0.9220 | 0.0009 |
M2 | 1.3056 | 0.0212 | 9.8472 | 0.9249 | 0.0556 |
M3 | 1.2576 | 0.0219 | 9.9393 | 0.9296 | 0.0045 |
M4 | 0.5984 | 0.0222 | 9.9793 | 0.9328 | 0.0952 |
M5 | 0.5081 | 0.0256 | 10.0391 | 0.9287 | 0.0182 |
M6 | 0.4125 | 0.0419 | 9.9916 | 0.9365 | 0.0463 |
Membrane | Ce | k2 | C0 | R2 | Variance |
---|---|---|---|---|---|
M1 | 8.8711 | 0.0004 | 9.4595 | 0.9713 | 0.0007 |
M2 | 1.3216 | 0.0015 | 9.9722 | 0.9996 | 0.0039 |
M3 | 1.2082 | 0.0018 | 10.0220 | 0.9997 | 0.0157 |
M4 | 1.1316 | 0.0024 | 10.0601 | 0.9987 | 0.1481 |
M5 | 1.0430 | 0.0029 | 10.0843 | 0.9997 | 0.0854 |
M6 | 0.4235 | 0.0070 | 10.0289 | 0.9996 | 0.0053 |
Concentration | Ce | k 1 | C0 | R2 | Variance |
---|---|---|---|---|---|
2 | 0.0465 | 0.0439 | 2.1177 | 0.9327 | 0.0046 |
4 | 0.0727 | 0.0433 | 3.4432 | 0.9245 | 0.0092 |
6 | 0.1797 | 0.0419 | 5.9157 | 0.9313 | 0.0418 |
8 | 0.2475 | 0.0404 | 7.9416 | 0.9213 | 0.0756 |
10 | 0.4125 | 0.0344 | 9.9916 | 0.9265 | 0.0463 |
12 | 0.5468 | 0.0331 | 11.3278 | 0.9354 | 0.0784 |
Concentration | Ce | k2 | C0 | R2 | Variance |
---|---|---|---|---|---|
2 | 0.1293 | 0.0340 | 2.1276 | 0.9995 | 0.0003 |
4 | 0.2375 | 0.0186 | 3.4612 | 0.9998 | 0.0003 |
6 | 0.2972 | 0.0126 | 5.9448 | 0.9989 | 0.0051 |
8 | 0.3093 | 0.0101 | 8.0106 | 0.9985 | 0.0133 |
10 | 0.4235 | 0.0080 | 10.0289 | 0.9996 | 0.0053 |
12 | 0.5361 | 0.0056 | 11.3504 | 0.9999 | 0.0006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soo, J.A.L.; Makhtar, M.M.Z.; Shoparwe, N.F.; Otitoju, T.A.; Mohamad, M.; Tan, L.S.; Li, S. Characterization and Kinetic Studies of Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Inclusion Membrane for the Malachite Green Extraction. Membranes 2021, 11, 676. https://doi.org/10.3390/membranes11090676
Soo JAL, Makhtar MMZ, Shoparwe NF, Otitoju TA, Mohamad M, Tan LS, Li S. Characterization and Kinetic Studies of Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Inclusion Membrane for the Malachite Green Extraction. Membranes. 2021; 11(9):676. https://doi.org/10.3390/membranes11090676
Chicago/Turabian StyleSoo, Jillin Ai Lam, Muaz Mohd Zaini Makhtar, Noor Fazliani Shoparwe, Tunmise Ayode Otitoju, Mardawani Mohamad, Lian See Tan, and Sanxi Li. 2021. "Characterization and Kinetic Studies of Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Inclusion Membrane for the Malachite Green Extraction" Membranes 11, no. 9: 676. https://doi.org/10.3390/membranes11090676
APA StyleSoo, J. A. L., Makhtar, M. M. Z., Shoparwe, N. F., Otitoju, T. A., Mohamad, M., Tan, L. S., & Li, S. (2021). Characterization and Kinetic Studies of Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Inclusion Membrane for the Malachite Green Extraction. Membranes, 11(9), 676. https://doi.org/10.3390/membranes11090676