Separation of Boron from Geothermal Waters with Membrane System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. ICP–OES Analysis
3. Results and Discussion
3.1. Effect of Boron Concentration
3.2. Effect of Donor Phase Concentration and Solvent Type
3.3. Effect of Acceptor Phase Solvent Type and Concentration
3.4. Transport Mechanism
3.5. Application of Membrane System in Geothermal Waters and Selectivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, S.; Xu, M.; Yu, T.; Han, D.; Peng, J.; Li, J.; Zhai, M. Radiation synthesis and performance of novel cellulose-based microsphere adsorbents for efficient removal of boron (III). Carbohydr. Polym. 2017, 174, 273–281. [Google Scholar] [CrossRef]
- Nagasawa, H.; Iizuka, A.; Yamasaki, A.; Yanagisawa, Y. Utilization of Bipolar Membrane Electrodialysis for the Removal of Boron from Aqueous Solution. Ind. Eng. Chem. Res. 2011, 50, 6325–6330. [Google Scholar] [CrossRef]
- Kunin, R.; Preuss, A.F. Characterization of a Boron-Specific Ion Exchange Resin. IEc Prod. Res. Dev. 1964, 3, 304–306. [Google Scholar] [CrossRef]
- Bangari, R.S.; Yadav, V.K.; Singh, J.K.; Sinha, N. Fe3O4-Functionalized Boron Nitride Nanosheets as Novel Adsorbents for Removal of Arsenic(III) from Contaminated Water. ACS Omega 2020, 5, 10301–10314. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska, B.; Bodzek, M.; Kmiecik, E. Boron removal from geothermal water using DOW chemical high separation BWRO membrane. Desalination Water Treat. 2016, 57, 27477–27484. [Google Scholar] [CrossRef]
- Ge, S.; Champagne, P.; Wang, H.; Jessop, P.G.; Cunningham, M.F. Microalgae Recovery from Water for Biofuel Production Using CO2-Switchable Crystalline Nanocellulose. Environ. Sci. Technol. 2016, 50, 7896–7903. [Google Scholar] [CrossRef]
- Van Eynde, E.; Mendez, J.C.; Hiemstra, T.; Comans, R.N.J. Boron Adsorption to Ferrihydrite with Implications for Surface Speciation in Soils: Experiments and Modeling. ACS Earth Space Chem. 2020, 4, 1269–1280. [Google Scholar] [CrossRef]
- Meng, J.; Yuan, J.; Kang, Y.; Zhang, Y.; Du, Q. Surface glycosylation of polysulfone membrane towards a novel complexing membrane for boron removal. J. Colloid Interface Sci. 2012, 368, 197–207. [Google Scholar] [CrossRef]
- Zhan, C.; Li, Y.; Sharma, P.R.; He, H.; Sharma, S.K.; Wang, R.; Hsiao, B.S. A study of TiO(2) nanocrystal growth and environmental remediation capability of TiO(2)/CNC nanocomposites. RSC Adv. 2019, 9, 40565–40576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.R.; Chattopadhyay, A.; Zhan, C.; Sharma, S.K.; Geng, L.; Hsiao, B.S. Lead removal from water using carboxycellulose nanofibers prepared by nitro-oxidation method. Cellulose 2018, 25, 1961–1973. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Mornane, P.; Potter, I.D.; Perera, J.M.; Cattrall, R.W.; Kolev, S.D. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Membr. Sci. 2006, 281, 7–41. [Google Scholar] [CrossRef]
- Almeida, M.I.G.S.; Cattrall, R.W.; Kolev, S.D. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Membr. Sci. 2012, 415-416, 9–23. [Google Scholar] [CrossRef]
- Pabby, A.E.; Rizvi SRequena, A. Handbook of Membrane Separations; Rizvi, S., Requena, A., Eds.; CRC Press: Boca Raton, FL, USA, 2009; p. 1184. [Google Scholar]
- Radzyminska-lenarcik, E.; Pyszka, I.; Ulewicz, M. Separation of zn(II), cr(III), and ni(II) ions using the polymer inclusion membranes containing acetylacetone derivative as the carrier. Membranes 2020, 10, 88. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.R.; Sharma, S.K.; Lindström, T.; Hsiao, B.S. Water Purification: Nanocellulose-Enabled Membranes for Water Purification: Perspectives (Adv. Sustainable Syst. 5/2020). Adv. Sustain. Syst. 2020, 4, 2070009. [Google Scholar] [CrossRef]
- Kaya, A.; Alpoguz, H.K.; Yilmaz, A. Application of Cr(VI) transport through the polymer inclusion membrane with a new synthesized calix[4]arene derivative. Ind. Eng. Chem. Res. 2013, 52, 5428–5436. [Google Scholar] [CrossRef]
- Onac, C.; Kaya, A.; Atar, N.; Sener, I.; Alpoguz, H.K. Superiority of Modified Polymeric Membrane with Nanomaterial on Temperature and Mechanical Stability and Application in Industrial Waste Water. ECS J. Solid State Sci. Technol. 2020, 9, 061019. [Google Scholar] [CrossRef]
- Onac, C.; Kaya, A.; Ataman, D.; Gunduz, N.A.; Alpoguz, H.K. The removal of Cr(VI) through polymeric supported liquid membrane by using calix[4]arene as a carrier. Chin. J. Chem. Eng. 2019, 27, 85–91. [Google Scholar] [CrossRef]
- Ulewicz, M.; Radzyminska-Lenarcik, E. Application of hydrophobic alkylimidazoles in the separation of non-ferrous metal ions across plasticised membranes—A review. Membranes 2020, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Radzyminska-Lenarcik, E.; Ulewicz, M. Polymer inclusion membranes (PIMs) doped with alkylimidazole and their application in the separation of non-ferrous metal ions. Polymers 2019, 11, 780. [Google Scholar] [CrossRef] [Green Version]
- Radzyminska-Lenarcik, E.; Ulewicz, M. The application of polymer inclusion membranes based on CTA with 1-alkylimidazole for the separation of zinc(II) and manganese(II) ions from aqueous solutions. Polymers 2019, 11, 242. [Google Scholar] [CrossRef] [Green Version]
- Kaya, A.; Onac, C.; Alpoguz, H.K.; Yilmaz, A.; Atar, N. Removal of Cr(VI) through calixarene based polymer inclusion membrane from chrome plating bath water. Chem. Eng. J. 2016, 283, 141–149. [Google Scholar] [CrossRef]
- Radzyminska-Lenarcik, E.; Ulewicz, R.; Ulewicz, M. Zinc recovery from model and waste solutions using polymer inclusion membranes (PIMs) with 1-octyl-4-methylimidazole. Desalination Water Treat. 2018, 102, 211–219. [Google Scholar] [CrossRef]
- Wang, B.; Guo, X.; Bai, P. Removal technology of boron dissolved in aqueous solutions—A review. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 338–344. [Google Scholar] [CrossRef]
- Wolska, J.; Bryjak, M. Methods for boron removal from aqueous solutions—A review. Desalination 2013, 310, 18–24. [Google Scholar] [CrossRef]
- Kluczka, J.; Korolewicz, T.; Zołotajkin, M.; Adamek, J. Boron removal from water and wastewater using new polystyrene-based resin grafted with glycidol. Water Resour. Ind. 2015, 11, 46–57. [Google Scholar] [CrossRef] [Green Version]
- Floquet, C.F.A.; Sieben, V.J.; MacKay, B.A.; Mostowfi, F. Determination of boron concentration in oilfield water with a microfluidic ion exchange resin instrument. Talanta 2016, 154, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Topal, T. Synthesis and characterization of zinc(II) complexes with new pyridine-based ligands: Crystal structure, Hirshfeld surface analysis, and molecular docking study of lung cancer cell. J. Coord. Chem. 2020, 73, 3203–3222. [Google Scholar] [CrossRef]
- Topal, T.; Karapınar, E. Synthesis and characterization of new homo and heteronuclear schiff base copper(II) complexes. J. Turk. Chem. Soc. Sect. A Chem. 2018, 5, 785–802. [Google Scholar] [CrossRef]
- Kaya, A. An Approach in EME: Development of Thermal and Electrical Conductivities of Membrane and Disable the Chemical Carrier in Transport Process. ECS J. Solid State Sci. Technol. 2020, 9, 061017. [Google Scholar] [CrossRef]
- Onac, C. Investigation of Electrical Conductivity Properties and Electro Transport of a Novel Multi Walled Carbon Nanotube Electro Membrane under Constant Current. Electroanalysis 2020, 32, 1315–1322. [Google Scholar] [CrossRef]
- Onac, C.; Korkmaz Alpoguz, H.; Lutfi Yola, M.; Kaya, A. Transport of melamine by a new generation of nano-material membranes containing carbon nanotubes and determination with surface plasmon resonance. Innov. Food Sci. Emerg. Technol. 2018, 45, 467–470. [Google Scholar] [CrossRef]
- Onac, C.; Kaya, A.; Yola, M.L.; Korkmaz Alpoguz, H. Determination of tobramycin by square wave voltammetry from milk sample through the modified polymer inclusion membrane with reduced graphene oxide. Ecs J. Solid State Sci. Technol. 2017, 6, M152–M155. [Google Scholar] [CrossRef]
- Onac, C.; Alpoguz, H.K.; Akceylan, E.; Yilmaz, M. Facilitated transport of Cr(VI) through polymer inclusion membrane system containing calix[4]arene derivative as carrier agent. J. Macromol. Sci. Part A Pure Appl. Chem. 2013, 50, 1013–1021. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Mahasti, N.N.N.; Huang, Y.-H. Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review. J. Hazard. Mater. 2021, 407, 124401. [Google Scholar] [CrossRef]
- Koseoglu, H.; Kabay, N.; Yüksel, M.; Sarp, S.; Arar, Ö.; Kitis, M. Boron removal from seawater using high rejection SWRO membranes — Impact of pH, feed concentration, pressure, and cross-flow velocity. Desalination 2008, 227, 253–263. [Google Scholar] [CrossRef]
- Han, L.; Liu, Y.; Chew, J.W. Boron transfer during desalination by electrodialysis. J. Membr. Sci. 2018, 547, 64–72. [Google Scholar] [CrossRef]
- Ban, S.-H.; Im, S.-J.; Cho, J.; Jang, A. Comparative performance of FO-RO hybrid and two-pass SWRO desalination processes: Boron removal. Desalination 2019, 471, 114114. [Google Scholar] [CrossRef]
- Boubakri, A.; Bouguecha, S.A.-T.; Dhaouadi, I.; Hafiane, A. Effect of operating parameters on boron removal from seawater using membrane distillation process. Desalination 2015, 373, 86–93. [Google Scholar] [CrossRef]
- Alharati, A.; Valour, J.-P.; Urbaniak, S.; Swesi, Y.; Fiaty, K.; Charcosset, C. Boron removal from seawater using a hybrid sorption/microfiltration process without continuous addition of resin. Chem. Eng. Process. Process Intensif. 2018, 131, 227–233. [Google Scholar] [CrossRef]
Sample Introduction Compartment/Parameter | Type/Value |
---|---|
Torch | Perkin Elmer, Quartz Avio 500 |
Spray chamber | Perkin Elmer, Baffled Quartz Cyclonic Spray Chamber Avio 200 |
Nebulizer | Perkin Elmer, PFA-400 Micro Flow |
Generator | 1300 Watt |
Plasma flow | 16 L/min (Helium) |
Plasma View | Axial |
Auxiliary flow | 0.2 mL/min |
Nebulizer flow | 0.65 mL/min |
Sample flow rate | 1.5 mL/min |
Equilibration time | 20 sec |
Wavelength | 249 nm |
Interferences | - |
Replicates | 3 |
Boron Concentration (ppm) | k × 106 (s−1) | P × 108 (m/s) | J × 108 (mol/m2.s) | D0 × 1012 (m2/s) | RF (%) |
---|---|---|---|---|---|
0.7540 | 0.7540 | 3.7367 | 6.9198 | 4.7551 | 37.72 |
1.1079 | 1.1079 | 5.4907 | 10.1679 | 5.5368 | 47.60 |
1.4785 | 1.4785 | 7.3273 | 13.5691 | 5.8174 | 60.46 |
1.0340 | 1.0340 | 5.1244 | 9.4896 | 5.4904 | 44.80 |
0.7540 | 0.7540 | 3.7367 | 6.9198 | 4.7551 | 37.72 |
Donor Phase Solvent Type | k × 106 (s−1) | P × 108 (m/s) | J × 108 (mol/m2.s) | D0 × 1012 (m2/s) | RF (%) |
---|---|---|---|---|---|
0.1 M NaCl | 0.5904 | 2.9260 | 5.4185 | 4.6048 | 30.50 |
0.1 M HCl | 1.4785 | 7.3273 | 13.5691 | 5.8174 | 60.46 |
0.1 M Na2SO4 | 0.5581 | 2,7659 | 5.1220 | 4.5717 | 29.04 |
DDW | 0.5228 | 2.5909 | 4.7981 | 4.4180 | 28.15 |
Acceptor Phase Solvent Type | k × 106 (s−1) | P × 108 (m/s) | J × 108 (mol/m2.s) | D0 × 1012 (m2/s) | RF (%) |
---|---|---|---|---|---|
0.1 M Na2SO4 | 0.3583 | 1.7757 | 3.2883 | 4.4392 | 19.20 |
0.1 M NaCl | 0.4369 | 2.1652 | 4.0096 | 4.7369 | 21.94 |
0.1 M NaOH | 1.4785 | 7.3273 | 13.5691 | 5.8174 | 60.46 |
DDW | 0.3247 | 1.6092 | 2.9799 | 4.2557 | 18.15 |
NaOH Concentration at Acceptor Phase | k × 106 (s−1) | P × 108 (m/s) | J × 108 (mol/m2.s) | D0 × 1012 (m2/s) | RF (%) |
---|---|---|---|---|---|
0.01 M | 0.8322 | 4.1243 | 7.6375 | 5.2371 | 37.80 |
0.05 M | 1.0067 | 4.9892 | 9.2392 | 5.2517 | 45.60 |
0.1 M | 1.4785 | 7.3273 | 13.5691 | 5.8174 | 60.46 |
Cations | Initial Concentration (mg/L) |
---|---|
B | 42.86 |
Na+ | 1294.254 |
K+ | 1463.926 |
Li+ | 17.56 |
Rb+ | 0.94 |
Cs+ | 1.83 |
Ca+2 | 37.51 |
Mg+2 | 0.08 |
Al+3 | <0.001 |
Fe+2, Fe+3 | 0.07 |
Mn+2 | 0.01 |
Transport Type | Source of Boron | Initial Boron Concentration (mg/L) | Removal Efficiency (%) | Reference |
---|---|---|---|---|
Reverse osmosis | Seawater | 5.1 | >98 | [36] |
Electrodialysis | Saline solution | 50 | - | [37] |
Forward osmosis | Model seawater | - | 80 | [38] |
Membrane distillation (polyvinylidene fluoride membrane) | Seawater | 5.37 | 90.50 | [39] |
Microfiltration process | Seawater | 5.083 | - | [40] |
in this study | Geothermal water | 42.86 | 59.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seval, K.; Onac, C.; Kaya, A.; Akdogan, A. Separation of Boron from Geothermal Waters with Membrane System. Membranes 2021, 11, 291. https://doi.org/10.3390/membranes11040291
Seval K, Onac C, Kaya A, Akdogan A. Separation of Boron from Geothermal Waters with Membrane System. Membranes. 2021; 11(4):291. https://doi.org/10.3390/membranes11040291
Chicago/Turabian StyleSeval, Kadir, Canan Onac, Ahmet Kaya, and Abdullah Akdogan. 2021. "Separation of Boron from Geothermal Waters with Membrane System" Membranes 11, no. 4: 291. https://doi.org/10.3390/membranes11040291
APA StyleSeval, K., Onac, C., Kaya, A., & Akdogan, A. (2021). Separation of Boron from Geothermal Waters with Membrane System. Membranes, 11(4), 291. https://doi.org/10.3390/membranes11040291