Antibiofilm Effects of Heated Scallop Shell Powder on Campylobacter jejuni Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Bacteria
2.2. Preparation of Biofilm Sample
2.3. HSSP Treatment
2.3.1. Preparation of HSSP
2.3.2. Floating Cells of C. jejuni
2.3.3. Biofilms of C. jejuni
2.4. Statistical Analysis
3. Results and Discussion
3.1. HSSP Treatment of Floating Cells of C. Jejuni
3.2. Formation of C. jejuni Biofilms
3.3. HSSP Treatment of C. jejuni Biofilm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CaO | Calcium oxide |
CaCO3 | Calcium carbonate |
CFU | Colony-forming unit |
C. jejuni | Campylobacter jejuni |
CCDA | Cefoperazone deoxycholate agar |
E. coli | Escherichia coli |
HSSP | Heated scallop-shell powder |
NaOH | Sodium hydroxide |
SEM | Scanning electron microscope |
S. Typhimurium | Salmonella Typhimurium |
S. aureus | Staphylococcus aureus |
References
- Mouftah, S.F.; Cobo-Díaz, J.F.; Álvarez-Ordóñez, A.; Mousa, A.; Calland, J.K.; Pascoe, B.; Sheppard, S.K.; Elhadidy, M. Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42 °C among hyper-aerotolerant generalist Campylobacter jejuni. Food Microbiol. 2021, 95, 103706. [Google Scholar] [CrossRef]
- Elgamoudi, B.A.; Korolik, V. Campylobacter biofilms: Potential of natural compounds to disrupt Campylobacter jejuni transmission. Int. J. Mol. Sci. 2021, 22, 12159. [Google Scholar] [CrossRef]
- Scheik, L.K.; Volcan Maia, D.S.; Würfel, S.D.F.R.; Ramires, T.; Kleinubing, N.R.; Haubert, L.; Lopes, G.V.; Silva, W.P. Biofilm-forming ability of poultry Campylobacter jejuni strains in the presence and absence of Pseudomonas aeruginosa. Can. J. Microbiol. 2021, 67, 301–309. [Google Scholar] [CrossRef]
- Corcionivoschi, N.; Gundogdu, O. Foodborne pathogen Campylobacter. Microorganisms 2021, 9, 1241. [Google Scholar] [CrossRef]
- Yamakawa, T.; Tomita, K.; Sawai, J. Characteristics of biofilms formed by co-culture of Listeria monocytogenes with Pseudomonas aeruginosa at low temperatures and their sensitivity to antibacterial substances. Biocontrol Sci. 2018, 23, 107–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghimire, K.N.; Kai, H.; Inoue, K.; Ohto, K.; Kawakita, H.; Harada, H.; Morita, M. Heavy metal removal from contaminated scallop waste for feed and fertilizer application. Bioresour.Technol. 2008, 99, 2436–2441. [Google Scholar] [CrossRef] [PubMed]
- Tamaru, M.; Yabutani, T.; Motonaka, J. Multielement determination of trace metals in scallop samples. Bunseki Kagaku 2004, 55, 1435–1440. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Sawai, J.; Shiga, H.; Kojima, H. Kinetic analysis of the bactericidal action of heated scallop-shell powder. Int. J. Food Microbiol. 2001, 71, 211–218. [Google Scholar] [CrossRef]
- Bae, D.H.; Yeon, J.H.; Park, S.Y.; Lee, D.H.; Ha, S.D. Bactericidal effects of CaO (scallop-shell powder) on foodborne pathogenic bacteria. Arch. Pharm. Res. 2006, 29, 298–301. [Google Scholar] [CrossRef]
- Ro, E.Y.; Ko, Y.M.; Yoon, K.S. Survival of pathogenic enterohemorrhagic Escherichia coli (EHEC) and control with calcium oxide in frozen meat products. Food Microbiol. 2015, 49, 203–210. [Google Scholar] [CrossRef]
- Xing, R.; Qin, Y.; Guan, X.; Liu, S.; Yu, H.; Li, P. Comparison of antifungal activities of scallop shell, oyster shell and their pyrolyzed products. Egypt. J. Aquat. Res. 2013, 39, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Thammakarn, C.; Satoh, K.; Suguro, A.; Hakim, H.; Ruenphet, S.; Takehara, K. Inactivation of avian influenza virus, newcastle disease virus and goose parvovirus using solution of nano-sized scallop shell powder. J. Vet. Med. Sci. 2014, 76, 1277–1280. [Google Scholar] [CrossRef] [Green Version]
- Thammakarn, C.; Tsujimura, M.; Satoh, K.; Hasegawa, T.; Tamura, M.; Kawamura, A.; Ishida, Y.; Suguro, A.; Hakim, H.; Ruenphet, S.; et al. Efficacy of scallop shell powders and slaked lime for inactivating avian influenza virus under harsh conditions. Arch. Virol. 2015, 160, 2577–2581. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.G.; Nimitkeatkai, H.; Choi, J.W.; Cheong, S.R. Calcinated calcium and mild heat treatment on storage quality and microbial populations of fresh-cut iceberg lettuce. Horticult. Environ. Biotechnol. 2011, 52, 408–412. [Google Scholar] [CrossRef]
- Sawai, J.; Satoh, M.; Horikawa, M.; Shiga, H.; Kojima, H. Heated scallop-shell powder slurry treatment of shredded cabbage. J. Food Prot. 2001, 64, 1579–1583. [Google Scholar] [CrossRef] [PubMed]
- Mamun, A.A.; Simul, H.A.; Rahman, A.; Gazi, N.N.; Bari, L. Prevalence of foodborne pathogens and effectiveness of washing or cooking in reducing micro- biological risk of contaminated red amaranth. Agri. Food Anal. Bacteriol. 2012, 2, 222–231. [Google Scholar]
- Bodur, T.; Cagri-Mehmetoglu, A. Removal of Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157: H7 biofilms on stainless steel using scallop shell powder. Food Control 2012, 25, 1–9. [Google Scholar] [CrossRef]
- Cagri-Mehmetoglu, A. Inhibition of Listeria monocytogenes and Salmonella enteritidis on chicken wings using scallop-shell powder. Poult. Sci. 2011, 90, 2600–2605. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Akand, N.R.; Islam, M.T.; Bari, M.L. Effectiveness of scallop powder ice in reducing bacterial load on fresh whole fish and in the melted ice water. LWT-Food Sci. Technol. 2015, 64, 270–274. [Google Scholar] [CrossRef]
- Nomoto, Y.; Sawada, S.; Abe, S.; Wakazawa, J.; Kikuchi, M.; Sawai, J. Sorbitol minimizes calcium carbonate scale generation while maintaining the disinfection effect of heated scallop-shell powder for fresh produce. Biocontrol Sci. 2018, 23, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Tsuruma, A.; Nomoto, Y.; Nishio, M.; Ishikawa, M.; Sawai, J. Efficacy of sorbitol-coated heated scallop-shell powder for the antimicrobial treatment of fresh vegetables. Food Control 2020, 110, 106972. [Google Scholar] [CrossRef]
- Ishihara, M.; Hata, Y.; Hiruma, S.; Takayama, T.; Nakamura, S.; Sato, Y.; Ando, N.; Fukuda, K.; Murakami, K.; Yokoe, H. Safety of concentrated bioshell calcium oxide water application for surface and skin disinfections against pathogenic microbes. Molecules 2020, 25, 4502. [Google Scholar] [CrossRef]
- Takayama, T.; Ishihara, M.; Nakamura, S.; Sato, Y.; Hiruma, S.; Fukuda, K.; Marukami, K.; Yokoe, H. Bioshell calcium oxide (BiSCaO) ointment for the disinfection and healing of Pseudomonas aeruginosa-infected wounds in hairless rats. Int. J. Mol. Sci. 2020, 21, 4176. [Google Scholar] [CrossRef] [PubMed]
- Kubo, M.; Ohshima, Y.; Irie, F.; Kikuchi, M.; Sawai, J. Disinfection treatment of heated scallop-shell powder on biofilm of Escherichia coli ATCC 25922 surrogated for E. coli O157:H7. J. Biomater. Nanobiotechnol. 2013, 4, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Nagasawa, K.; Kikuchi, M.; Sawai, J. Antimicrobial effects of heated sca1lop-shell powder against Salmonella Biofilm. Bokin Bobai 2011, 39, 587–594. (In Japanese) [Google Scholar]
- Sawai, J.; Nagasawa, K.J.; Kikuchi, M. Ability of heated scallop-shell powder to disinfect Staphylococcus aureus biofilm. Food Sci. Technol. Res. 2019, 19, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Shimamura, N.; Irie, F.; Yamakawa, T.; Kikuchi, K.; Sawai, J. Heated scallop-shell powder treatment for deactivation and removal of Listeria sp. biofilm formed at low temperature. Biocontrol Sci. 2015, 20, 153–157. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Atapour, A.; Amani, A.M.; Savar Dashtaki, A.; Babapoor, A.; Arjmand, O. Green synthesis of silver nanoparticles toward bio and medical applications: Review study. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S3), S855–S872. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S.; Yamakawa, K.; Kubo, K.; Takeshita, J.; Takeuchi, M.; Nobuoka, Y.; Wada, R.; Kikuchi, M.; Sawai, J. Antibacterial properties of silicone membranes after a simple two-step immersion process in iodine and silver nitrate solutions. Biocontrol Sci. 2018, 23, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.M.; Hashemi, S.A.; Ghasemi, Y.; Amani, A.M.; Babapoor, A.; Arjmand, O. Applications of graphene oxide in case of nanomedicines and nanocarriers for biomolecules: Review study. Drug Metab. Rev. 2019, 51, 12–41. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.M.; Soroshnia, S.; Hashemi, S.A.; Babapoor, A.; Ghasemi, Y.; Savardashtaki, A.; Amani, A.M. Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug Metab. Rev. 2019, 51, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Samuelson, D.R.; Rasco, B.A.; Konkel, M.E. Antimicrobial effect of diallyl sulphide on Campylobacter jejuni biofilms. J. Antimicrob. Chemother. 2012, 67, 1915–1926. [Google Scholar] [CrossRef]
- Joshua, G.P.; Guthrie-Irons, C.; Karlyshev, A.V.; Wren, B.W. Biofilm formation in Campylobacter jejuni. Microbiology 2006, 152, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, K.; Suzuki, T.; Satoh, T. Bactericidal activity of silicate-containing hydroxyapatite. J. Antibact. Antifung. Agent. 1995, 23, 67–71. [Google Scholar]
- Sawai, J.; Kawada, E.; Kanou, F.; Igarashi, H.; Hashimoto, A.; Kokugan, T.; Shimizu, M. Detection of active oxygen generated from ceramic powders having antibacterial activity. J. Chem. Eng. Jpn. 1996, 29, 627–633. [Google Scholar] [CrossRef] [Green Version]
- Bari, M.L.; Inatsu, Y.; Kawasaki, S.; Nazuka, E.; Isshiki, K. Calcinated calcium killing of Escherichia coli O157: H7, Salmonella, and Listeria monocytogenes on the surface of tomatoes. J. Food Prot. 2002, 65, 1706–1711. [Google Scholar] [CrossRef]
- Mine, H.; Suhara, H.; Yamanaka, S.; Isshiki, K. Application of calcium preparation on meat processing. Nippon. Shokuhin Kagaku Kogaku Kaishi 1995, 42, 268–272. (In Japanese) [Google Scholar] [CrossRef]
- Choi, Y.M.; Whang, J.H.; Kim, J.M.; Suh, H.J. The effect of oyster shell powder on the extension of the shelf-life of Kimchi. Food Control 2006, 17, 695–699. [Google Scholar] [CrossRef]
Treatment Time (s) | Survival (log10 CFU/mL) * | |||
---|---|---|---|---|
HSSP 0.01 mg/mL | HSSP 0.1 mg/mL | HSSP 0.2 mg/mL | HSSP 1.0 mg/mL | |
pH 10.7 | pH 11.5 | pH 11.8 | pH 12.4 | |
0 | 5.0 ± 0.7 a | 5.1 ± 0.7 a | 5.4 ± 0.5 a | 6.4 ± 0.4 a |
30 | 4.6 ± 0.9 a | 3.3 ± 1.3 ab | 3.1 ± 0.3 b | ND b |
60 | 4.5 ± 1.0 a | 3.5 ± 1.1 ab | 2.4 ± 0.4 b | ND b |
90 | 4.5 ± 1.0 a | 3.3 ± 1.1ab | ND c | ND b |
120 | 4.5 ± 0.9 a | 2.8 ± 1.4 b | ND c | ND b |
Treatment Time (min) | Survival (log10 CFU/mL) * | ||||
---|---|---|---|---|---|
HSSP 0 mg/mL | HSSP 0.1 mg/mL | HSSP 1.0 mg/mL | HSSP 10 mg/mL | HSSP 100 mg/mL | |
Sterilized Water | pH 11.5 | pH 12.4 | pH 12.8 | pH 12.8 | |
0 | 6.5 ± 0.0 a | 6.2 ± 0.2 a | 6.2 ± 0.0 a | 6.2 ± 0.0 a | 6.2 ± 0.0 a |
1 | − | − | − | 3.0 ± 1.5 b | ND b |
2 | − | − | − | ND c | ND b |
3 | − | − | − | ND c | ND b |
4 | − | − | − | ND c | ND b |
5 | 6.4 ± 0.1 a | 6.1 ± 0.0 a | 4.9 ± 0.8 ab | − | − |
10 | − | 5.4 ± 0.2 a | 3.4 ± 0.8 b | − | − |
20 | − | 5.0 ± 0.1b | 1.8 ± 0.8 c | − | − |
30 | 6.4 ± 0.0 a | 3.6 ± 0.9 c | ND d | − | − |
Treatment Time (min) | Survival (log10 CFU/mL) * | |
---|---|---|
pH 12.4 | pH 12.8 | |
0 | 6.2 ± 0.0 a | 6.5 ± 0.3 a |
4 | − | 5.1 ± 0.1 b |
5 | 4.5 ± 0.2 b | 4.6 ± 0.1 c |
10 | 3.9 ± 0.1 c | ND d |
20 | 3.0 ± 0.6 c | ND d |
30 | 3.4 ± 0.0 c | ND d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsukuda, H.; Akimoto, T.; Fukikoshi, N.; Wada, R.; Sawai, J. Antibiofilm Effects of Heated Scallop Shell Powder on Campylobacter jejuni Biofilms. Membranes 2022, 12, 43. https://doi.org/10.3390/membranes12010043
Tsukuda H, Akimoto T, Fukikoshi N, Wada R, Sawai J. Antibiofilm Effects of Heated Scallop Shell Powder on Campylobacter jejuni Biofilms. Membranes. 2022; 12(1):43. https://doi.org/10.3390/membranes12010043
Chicago/Turabian StyleTsukuda, Haruka, Taiki Akimoto, Nona Fukikoshi, Resei Wada, and Jun Sawai. 2022. "Antibiofilm Effects of Heated Scallop Shell Powder on Campylobacter jejuni Biofilms" Membranes 12, no. 1: 43. https://doi.org/10.3390/membranes12010043
APA StyleTsukuda, H., Akimoto, T., Fukikoshi, N., Wada, R., & Sawai, J. (2022). Antibiofilm Effects of Heated Scallop Shell Powder on Campylobacter jejuni Biofilms. Membranes, 12(1), 43. https://doi.org/10.3390/membranes12010043