Application of Waste Glycerol as a Draw Solution for Forward Osmosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Solutions of Waste Glycerol
2.2. Analysis of Impurity Levels
2.3. Osmotic Pressure Determination
2.4. Diffusion Experiments
- 40% glycerol, 3% NaCl;
- 40% glycerol, 5% NaCl;
- 40% glycerol, 3% NaCl, 5% methanol;
- 40% glycerol, 3% NaCl, 10% methanol;
- 60% glycerol, 5% methanol;
- 70% glycerol, 3% NaCl, 8% methanol;
- 80% glycerol, 3% NaCl;
- 80% glycerol, 5% NaCl;
- 80% glycerol, 3% NaCl, 5% methanol;
- 80% glycerol, 3% NaCl, 10% methanol.
3. Results
3.1. Osmotic Pressure of Glycerol Solutions upon Composition
3.2. Selection of Membranes for FO of Glycerol Solutions
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sulewski, M.; Urbaniak, W. Zagospodarowanie ubocznych produktów syntezy biodiesla. Czysta Energ. 2011, 6, 27–28. [Google Scholar]
- Santibáñez, C.; Varnero, M.T.; Bustamante, M. Residual glycerol from biodiesel manufacturing, waste or potential source of bioenergy: A review. Chil. J. Agric. Res. 2011, 71, 469–475. [Google Scholar] [CrossRef]
- Haas, M.J.; McAloon, A.J.; Yee, W.C.; Foglia, T.A. A process model to estimate biodiesel production costs. Bioresour. Technol. 2006, 97, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, W.; Bednarski, W. Ekologiczne aspekty produkcji oraz stosowania biodiesla. Nauk. Inżynierskie Technol. 2013, 3, 18–34. [Google Scholar]
- Chozhavendhan, S.; Devi, G.K.; Bharathiraja, B.; Kumar, R.P.; Elavazhagan, S. 9-Assessment of crude glycerol utilization for sustainable development of biorefineries. In Refining Biomass Residues for Sustainable Energy and Bioproducts; Academic Press: Cambridge, MA, USA, 2020; pp. 195–212. [Google Scholar]
- Kimura, S. Analysis of reverse osmosis membrane behaviors in a long-term verification test. Desalination 1995, 100, 77–84. [Google Scholar] [CrossRef]
- McGovern, R.K.; Lienhard, J.H. On the potential of forward osmosis to energetically outperform reverse osmosis desalination. J. Membr. Sci. 2014, 469, 245–250. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Zhang, S.; Cui, Y.; Ong, R.C.; Chung, T.-S.; Helmer, B.J.; de Wit, J.S. Highly permeable forward osmosis (FO) membranes for High osmotic pressure but viscous draw solutes. J. Membr. Sci. 2015, 496, 132–141. [Google Scholar] [CrossRef]
- Zhao, S.; Zou, L.; Tang, C.Y.; Mulcahy, D. Recent developments in forward osmosis: Opportunities and challenges. J. Membr. Sci. 2012, 396, 1–21. [Google Scholar] [CrossRef]
- Linares, R.V.; Li, Z.; Sarp, S.; Bucs, S.S.; Amy, G.; Vrouwenvelder, J.S. Forward osmosis niches in seawater desalination and wastewater reuse. Water Res. 2014, 66, 122–139. [Google Scholar] [CrossRef]
- Lutchmiah, K.; Verliefde, A.R.D.; Roest, K.; Rietveld, L.C.; Cornelissen, E.R. Forward osmosis for application in wastewater treatment: Are view. Water Res. 2014, 58, 179–197. [Google Scholar] [CrossRef]
- Ge, Q.; Ling, M.; Chung, T.S. Draw solutions for forward osmosis processes: Developments, challenges, and prospects for the future. J. Membr. Sci. 2013, 442, 225–237. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; McGinnis, R.L.; Elimelech, M. Desalination by ammonia–carbon dioxide forward osmosis: Influence of draw and feed solution concentrations on process performance. J. Membr. Sci. 2006, 278, 114–123. [Google Scholar] [CrossRef]
- Ren, J.; McCutcheon, J.R. A new commercial thin film composite membrane for forward osmosis. Desalination 2014, 343, 187–193. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, K.Y.; Chung, T.S.; Chen, H.; Jean, Y.C.; Amy, G. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultrathin selective layer. J. Membr. Sci. 2010, 360, 522–535. [Google Scholar] [CrossRef]
- Wang, K.Y.; Ong, R.C.; Chung, T.S. Double-skinned forward osmosis membranes for reducing internal concentration polarization within the porous sublayer. Ind. Eng. Chem. Res. 2010, 49, 4824–4831. [Google Scholar] [CrossRef]
- Gray, G.T.; McCutcheon, J.R.; Elimelech, M. Internal concentration polarization in forward osmosis: Role of membrane orientation. Desalination 2006, 197, 1–8. [Google Scholar] [CrossRef]
- Loeb, S.; Titelman, L.; Korngold, E.; Freiman, J. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane. J. Membr. Sci. 1997, 129, 243–249. [Google Scholar] [CrossRef]
- Motsa, M.M.; Mamba, B.B.; Verliefde, A.R.D. Combined colloidal and organic fouling of FO membranes: The influence of foulant-foulant interactions and ionic strength. J. Membr. Sci. 2015, 493, 539–548. [Google Scholar] [CrossRef]
- She, Q.; Wang, R.; Fane, A.G.; Tang, C.Y. Membrane fouling in osmotically driven membrane processes: A review. J. Membr. Sci. 2016, 499, 201–233. [Google Scholar] [CrossRef]
- Field, R.W.; Wu, J.J. Mass transfer limitations in forward osmosis: Are some potential applications overhyped? Desalination 2013, 318, 118–124. [Google Scholar] [CrossRef]
- Sobczuk, T.M.; González, M.J.I.; Grima, E.M.; Chisti, Y. Forward osmosis with waste glycerol for concentrating microalgae slurries. Algal Res. 2015, 8, 168–173. [Google Scholar] [CrossRef]
- Lim, S.W.; Mah, S.K.; Lee, Z.H.; Chai, S.P. A study of water permeation using glycerol as the draw solution with thin film composite membranes in forward osmosis and pressure retarded osmosis configurations. In AIP Conference Proceedings; AIP: Melville, NY, USA, 2018. [Google Scholar]
- Kalafatakis, S.; Braekevelt, S.; Carlsen, V.; Lange, L.; Skiadas, I.V.; Gavala, H.N. On a novel strategy for water recovery and recirculation in biorefineries through application of forward osmosis membranes. Chem. Eng. J. 2017, 311, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Kalafatakis, S.; Braekevelt, S.; Lymperatou, A.; Zarebska, A.; Hélix-Nielsen, C.; Lange, L.; Skiadas, I.V.; Gavala, H.N. Application of forward osmosis technology in crude glycerol fermentation biorefinery-potential and challenges. Bioprocess Biosyst. Eng. 2018, 41, 1089–1101. [Google Scholar] [CrossRef]
- Mirau, P.A.; Jelinski, L.W.; Bovey, F.A. Encyclopedia of Physical Science and Technology, 3rd ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003; pp. 857–901. [Google Scholar]
- Manickam, S.S.; Ramon, G.Z.; McCutcheon, J.R. Modeling the effect of film-pore coupled transport on composite forward osmosis membrane performance. J. Memb. Sci. 2017, 523, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Blandin, G.; Myat, D.T.; Verliefde, A.R.D.; Le-Clech, P. Pressure assisted osmosis using nanofiltration membranes (PAO-NF): Towards higher efficiency osmotic processes. J. Memb. Sci. 2017, 533, 250–260. [Google Scholar] [CrossRef]
- Setiawan, L.; Wang, R.; Li, K.; Fane, A.G. Fabrication of novel poly(amide-imide) forward osmosis hollow fiber membranes with a positively charged nanofiltration- like selective layer. J. Memb. Sci. 2011, 369, 196–205. [Google Scholar] [CrossRef]
- Wang, K.Y.; Yang, Q.; Chung, T.S.; Rajagopalan, R. Enhanced forward osmosis from chemically modified polybenzimidazole (PBI) nanofiltration hollow fiber membranes with a thin wall. Chem. Eng. Sci. 2009, 64, 1577–1584. [Google Scholar] [CrossRef]
- Singh, N.; Dhiman, S.; Basu, S.; Balakrishnan, M.; Petrinic, I.; Helix-Nielsen, C. Dewatering of sewage for nutrients and water recovery by forward osmosis (FO) using divalent draw solution. J. Water Process Eng. 2019, 31, 100853. [Google Scholar] [CrossRef]
- Qiu, C.; Setiawan, L.; Wang, R.; Tang, C.Y.; Fane, A.G. High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate. Desalination 2012, 287, 266–270. [Google Scholar] [CrossRef]
- Saren, Q.; Qiu, C.Q.; Tang, C.Y. Synthesis and characterization of novel forward osmosis membranes based on layer-by-Layer assembly. Environ. Sci. Technol. 2011, 45, 5201–5208. [Google Scholar] [CrossRef]
- Duttaa, S.; Daveb, P.; Nath, K. Performance of low pressure nanofiltration membrane in forward osmosis using magnesium chloride as draw solute. J. Water Process Eng. 2020, 33, 101092. [Google Scholar] [CrossRef]
- Darwish, M.; Abdulrahim, H.; Ashraf, H.; Nasser, M.A.; Sharif, A. The forward osmosis and desalination. Desalination Water Treat. 2016, 57, 4269–4295. [Google Scholar] [CrossRef]
Type of Membrane | Membrane Purpose **** | Pore Size/MWCO | Rejection | Polymer | pH Range | Applied Pressure | Flux |
---|---|---|---|---|---|---|---|
SW30 * (Dow Filmtec) | RO | ~100 Da | 99.6% NaCl | Polyamide TFC | 2–11 | 55 bar | 30.6–40.8 l/m2h; |
TW30 ** (Dow Filmtec) | RO | ~100 Da | 99.5% NaCl | Polyamide TFC | 2–11 | 15 bar | 51.0–54.4 l/m2h; |
NF270 *** (Dow Filmtec) | NF | ~200–400 Da | 99.2% MgSO4 | Polyamide TFC | 2–11 | 9 bar | 51.3–52l/m2h; |
Aquaporin inside forward osmosis membrane (Aquaporin) | FO | No data | NaCl reverse flux <2.5 g/m2/hr (H2O vs. 1 M NaCl; FO mode) | Protein-embeddedpolyamide AquaporinTFC | 2–11 | >7 (H2O vs. 1 M NaCl; FO mode) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernacka, E.; Jaroszek, H.; Turek, M.; Dydo, P.; Czechowicz, D.; Mitko, K. Application of Waste Glycerol as a Draw Solution for Forward Osmosis. Membranes 2022, 12, 44. https://doi.org/10.3390/membranes12010044
Bernacka E, Jaroszek H, Turek M, Dydo P, Czechowicz D, Mitko K. Application of Waste Glycerol as a Draw Solution for Forward Osmosis. Membranes. 2022; 12(1):44. https://doi.org/10.3390/membranes12010044
Chicago/Turabian StyleBernacka, Ewa, Hanna Jaroszek, Marian Turek, Piotr Dydo, Dymitr Czechowicz, and Krzysztof Mitko. 2022. "Application of Waste Glycerol as a Draw Solution for Forward Osmosis" Membranes 12, no. 1: 44. https://doi.org/10.3390/membranes12010044
APA StyleBernacka, E., Jaroszek, H., Turek, M., Dydo, P., Czechowicz, D., & Mitko, K. (2022). Application of Waste Glycerol as a Draw Solution for Forward Osmosis. Membranes, 12(1), 44. https://doi.org/10.3390/membranes12010044