Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Standards
2.2. Cabernet Sauvignon Red Wine
2.3. Reverse Osmosis Process
2.4. Determination of Processing Parameters
2.5. Determination of Phenolic Compounds
2.6. Determination of Antioxidant Activity
2.7. Determination of Individual Phenolic Compounds
2.8. Determination of Colour Parameters
2.9. Statistical Analysis
3. Results
3.1. Reverse Osmosis Process
3.2. Retention of Phenolic Compounds
3.3. Retention of Individual Phenolic Compounds
3.4. Antioxidant Activity
3.5. Colour Parameters Determination
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
RO | Reverse osmosis |
Da | Daltons (equalised with g/mol) |
DPPH | 2,2-diphenyl-1-picrylhydrazil |
ABTS | 2,2-azinobis(3-ethylbenzothiazoline sulfonic acid) |
FRAP | Ferric-reducing/antioxidant power assay |
CUPRAC | Cupric-reducing antioxidant capacity |
TPC | Total polyphenols content |
TFC | Total flavonoids content |
MAC | Monomeric anthocyanins content |
PC | Polymeric colour |
GAE | Gallic acid equivalent |
CE | Catechin equivalent |
TE | Trolox equivalent |
r | Correlation coefficient |
HPLC | High-performance liquid chromatography |
DAD | Diode array detector |
L* | CIELab parameter – lightness |
a* | CIELab parameter – redness/greenness |
b* | CIELab parameter – yellowness/blueness |
C* | CIELab parameter – colour saturation |
°h | CIELab parameter – hue angle |
ΔE* | CIELab parameter – colour difference |
ANOVA | Analysis of variance |
LSD | Fisher’s least significant difference test |
PCA | Principal component analysis |
PC1 | Principal component 1 |
PC2 | Principal component 2 |
J | Permeate flux (L/m2h) |
JA | Average permeate flux (L/m2h) |
Vf | Initial wine volume (L) |
Vr | Retentate volume (L) |
Vp | Permeate volume (L) |
A | Membrane surface (m2) |
t | Process duration (h) |
FI | Fouling index (%) |
JW0 | Clean water flux before wine concentration (L/m2h) |
JW1 | Clean water flux after wine concentration (L/m2h) |
FRT | Final retentate temperature (°C) |
CW | Conventional wine |
CR | Reverse osmosis retentate of conventional wine |
EW | Ecological wine |
ER | Reverse osmosis retentate of ecological wine |
VRF | Volume reduction factor |
DQ1 | Quercetin derivative 1 |
DQ2 | Quercetin derivative 2 |
DM3-g | Malvidin 3-glucoside derivative |
SDI | Silt density index |
MFI | Modified fouling index |
DLVO | Derjaguin–Landau–Verwey–Overbeek |
References
- Laureati, M.; Pagliarini, E. Sustainability and Organic Wine Production. In Wine Safety, Consumer Preference, and Human Health; Moreno-Arribas, M.V., Bartolomé Suáldea, B., Eds.; Springer: Milan, Italy, 2016; pp. 183–199. ISBN 978-3-319-24512-6. [Google Scholar]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop. 2017, 20, 1–42. [Google Scholar] [CrossRef] [Green Version]
- López-Vélez, M.; Martínez-Martínez, F.; del Valle-Ribes, C. The Study of Phenolic Compounds as Natural Antioxidants in Wine. Crit. Rev. Food Sci. Nutr. 2003, 43, 233–244. [Google Scholar] [CrossRef]
- Giovinazzo, G.; Carluccio, M.A.; Grieco, F. Wine Polyphenols and Health. In Bioactive Molecules in Food. Reference Series in Phytochemistry; Mérillon, J., Ramawat, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 1135–1155. ISBN 9783319780306. [Google Scholar]
- Fang, F.; Li, J.-M.; Zhang, P.; Tang, K.; Wang, W.; Pan, Q.-H.; Huang, W.-D. Effects of Grape Variety, Harvest Date, Fermentation Vessel and Wine Ageing on Flavonoid Concentration in Red Wines. Food Res. Int. 2008, 41, 53–60. [Google Scholar] [CrossRef]
- Ivić, I.; Kopjar, M.; Jakobek, L.; Jukić, V.; Korbar, S.; Marić, B.; Mesić, J.; Pichler, A. Influence of Processing Parameters on Phenolic Compounds and Color of Cabernet Sauvignon Red Wine Concentrates Obtained by Reverse Osmosis and Nanofiltration. Processes 2021, 9, 89. [Google Scholar] [CrossRef]
- Ivić, I.; Kopjar, M.; Jukić, V.; Bošnjak, M.; Maglica, M.; Mesić, J.; Pichler, A. Aroma Profile and Chemical Composition of Reverse Osmosis and Nanofiltration Concentrates of Red Wine Cabernet Sauvignon. Molecules 2021, 26, 874. [Google Scholar] [CrossRef]
- Gil, M.; Estévez, S.; Kontoudakis, N.; Fort, F.; Canals, J.M.; Zamora, F. Influence of partial dealcoholization by reverse osmosis on red wine composition and sensory characteristics. Eur. Food Res. Technol. 2013, 237, 481–488. [Google Scholar] [CrossRef]
- Pham, D.-T.; Stockdale, V.J.; Wollan, D.; Jeffery, D.W.; Wilkinson, K.L. Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction. Molecules 2019, 24, 1404. [Google Scholar] [CrossRef] [Green Version]
- Longo, R.; Blackman, J.W.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Changes in Volatile Composition and Sensory Attributes of Wines During Alcohol Content Reduction. J. Sci. Food Agric. 2016, 97, 8–16. [Google Scholar] [CrossRef]
- Arboleda Mejia, J.A.; Ricci, A.; Figueiredo, A.S.; Versari, A.; Cassano, A.; Parpinello, G.P.; de Pinho, M.N. Recovery of Phenolic Compounds from Red Grape Pomace Extract through Nanofiltration Membranes. Foods 2020, 9, 1649. [Google Scholar] [CrossRef] [PubMed]
- Russell, D. Membrane Filters and Reverse Osmosis. In Practical Waste Water Treatment; John Wiley & Sons Inc.: Lilburn, Georgia, 2019; pp. 325–345. [Google Scholar]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Massot, A.; Mietton-Peuchot, M.; Peuchot, C.; Milisic, V. Nanofiltration and Reverse Osmosis in Winemaking. Desalination 2008, 231, 283–289. [Google Scholar] [CrossRef]
- El Rayess, Y.; Mietton-Peuchot, M. Membrane Technologies in Wine Industry: An Overview. Crit. Rev. Food Sci. Nutr. 2016, 56, 2005–2020. [Google Scholar] [CrossRef]
- Jiang, S.; Li, Y.; Ladewig, B.P. A Review of Reverse Osmosis Membrane Fouling and Control Strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef] [PubMed]
- Di Giacomo, G.; Taglieri, L. Production of Red Wine Polyphenols as Ingredient for the Food and Pharmaceutical Industry. Int. J. Food Sci. Nutr. Eng. 2012, 2, 12–15. [Google Scholar] [CrossRef] [Green Version]
- Lamont, K.; Blackhurst, D.; Albertyn, Z.; Marais, D.; Lecour, S. Lowering the Alcohol Content of Red Wine does not Alter its Cardioprotective Properties. S. Afr. Med. J. 2012, 102, 565–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zafrilla, P.; Morillas, J.; Mulero, J.; Cayuela, J.M.; Martínez-Cachá, A.; Pardo, F.; López Nicolás, J.M. Changes during Storage in Conventional and Ecological Wine: Phenolic Content and Antioxidant Activity. J. Agric. Food Chem. 2003, 51, 4694–4700. [Google Scholar] [CrossRef]
- Azabagaoglu, M.O.; Akyol, A.; Ozay, A. The Demand for Organic Wines and Organic Wine Marketing. J. Environ. Prot. Ecol. 2007, 8, 171–178. [Google Scholar]
- Băra, E.; Barbu, S.V. Converting from Conventional to Organic Viticulture in Minis-Maderat Vineyard. Res. J. Agric. Sci. 2010, 42, 408–411. [Google Scholar]
- Vilela, A. Non-Saccharomyces Yeasts and Organic Wines Fermentation: Implications on Human Health. Fermentation 2020, 6, 54. [Google Scholar] [CrossRef]
- Ough, C.S.; Amerine, M.A. Methods Analysis of Musts and Wines; John Wiley & Sons Inc.: New York, NY, USA, 1988. [Google Scholar]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and Measurement of Anthocyanins by UV—Visible Spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Schwartz, S.J., Eds.; John Wiley & Sons Inc.: New York, NY, USA, 2001; pp. 5–69. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric Reducing/Antioxidant Power assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration. Methods Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Özyürek, M.; Güçlü, K.; Tütem, E.; Bakan, K.S.; Erçaǧ, E.; Esin Çelik, S.; Baki, S.; Yildiz, L.; Karaman, Ş.; Apak, R. A Comprehensive Review of CUPRAC Methodology. Anal. Methods 2011, 3, 2439–2453. [Google Scholar] [CrossRef]
- Ivić, I.; Kopjar, M.; Pichler, D.; Buljeta, I.; Pichler, A. Concentration with Nanofiltration of Red Wine Cabernet Sauvignon Produced from Conventionally and Ecologically Grown Grapes: Effect on Phenolic Compounds and Antioxidant Activity. Membranes 2021, 11, 322. [Google Scholar] [CrossRef]
- Vukoja, J.; Pichler, A.; Kopjar, M. Stability of Anthocyanins, Phenolics and Color of Tart Cherry Jams. Foods 2019, 8, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jullok, N.; Chie Hang, B. Separation of Acetic Acid and Water Using Reverse Osmosis Membranes. J. Appl. Membr. Sci. Technol. 2020, 24, 11–26. [Google Scholar] [CrossRef]
- Pozderovic, A.; Popovic, K.; Pichler, A.; Jakobek, L. Influence of Processing Parameters on Permeate Flow and Retention of Aroma and Phenolic Compounds in Chokeberry Juice Concentrated by Reverse Osmosis. CyTA-J. Food 2016, 14, 382–390. [Google Scholar] [CrossRef]
- Siddiqui, M.U.; Arif, A.F.M.; Bashmal, S. Permeability-Selectivity Analysis of Microfiltration and Ultrafiltration Membranes: Effect of Pore Size and Shape Distribution and Membrane Stretching. Membranes 2016, 6, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurak, P.D.; Cabral, L.M.C.; Rocha-Leão, M.H.M.; Matta, V.M.; Freitas, S.P. Quality Evaluation of Grape Juice Concentrated by Reverse Osmosis. J. Food Eng. 2010, 96, 421–426. [Google Scholar] [CrossRef]
- Lakner, G.; Lakner, J.; Racz, G.; Kłos, M. Temperature dependence modelling of reverse osmosis. Desalin. Water Treat. 2020, 192, 431–436. [Google Scholar] [CrossRef]
- Dimitriou, E.; Boutikos, P.; Mohamed, E.S.; Koziel, S.; Papadakis, G. Theoretical performance prediction of a reverse osmosis desalination membrane element under variable operating conditions. Desalination 2017, 419, 70–78. [Google Scholar] [CrossRef]
- García Latorre, F.J.; Pérez Báez, S.O.; Gómez Gotor, A. Energy performance of a reverse osmosis desalination plant operating with variable pressure and flow. Desalination 2015, 366, 146–153. [Google Scholar] [CrossRef]
- Chakraborty, S.; Bag, B.C.; DasGupta, S.; Basu, J.K.; De, S. Prediction of Permeate Flux and Permeate Concentration in Nanofiltration of Dye Solution. Sep. Purif. Technol. 2004, 35, 141–152. [Google Scholar] [CrossRef]
- Koo, C.H.; Mohammad, A.W.; Suja’, F.; Meor Talib, M.Z. Use and Development of Fouling Index in Predicting Membrane Fouling. Sep. Purif. Rev. 2013, 42, 296–339. [Google Scholar] [CrossRef]
- Pandey, S.R.; Jegatheesan, V.; Baskaran, K.; Shu, L. Fouling in reverse osmosis (RO) membrane in water recovery from secondary effluent: A review. Rev. Environ. Sci. Bio/Technol. 2012, 11, 125–145. [Google Scholar] [CrossRef]
- Ling, B.; Xie, P.; Ladner, D.; Battiato, I. Dynamic modeling of fouling in reverse osmosis membranes. Membranes 2021, 11, 349. [Google Scholar] [CrossRef]
- Conidi, C.; Macedonio, F.; Argurio, P.; Cassano, A.; Drioli, E. Performance of reverse osmosis membranes in the treatment of flue-gas desulfurization (FGD) wastewaters. Environments 2018, 5, 71. [Google Scholar] [CrossRef] [Green Version]
- Sim, L.N.; Chong, T.H.; Taheri, A.H.; Sim, S.T.V.; Lai, L.; Krantz, W.B.; Fane, A.G. A review of fouling indices and monitoring techniques for reverse osmosis. Desalination 2018, 434, 169–188. [Google Scholar] [CrossRef]
- Alsawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. A Comprehensive Review on Membrane Fouling: Mathematical. Water 2021, 13, 1327. [Google Scholar] [CrossRef]
- Salgado, C.; Palacio, L.; Carmona, F.J.; Hernández, A.; Prádanos, P. Influence of Low and High Molecular Weight Compounds on the Permeate Flux Decline in Nanofiltration of Red Grape Must. Desalination 2013, 315, 124–134. [Google Scholar] [CrossRef]
- Banvolgyi, S.; Savaş Bahçeci, K.; Vatai, G.; Bekassy, S.; Bekassy-Molnar, E. Partial Dealcoholization of Red Wine by Nanofiltration and its Effect on Anthocyanin and Resveratrol Levels. Food Sci. Technol. Int. 2016, 22, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Catarino, M.; Mendes, A.; Madeira, L.M.; Ferreira, A. Alcohol Removal From Beer by Reverse Osmosis. Sep. Sci. Technol. 2007, 42, 3011–3027. [Google Scholar] [CrossRef]
- Sun, X.; Dang, G.; Ding, X.; Shen, C.; Liu, G.; Zuo, C.; Chen, X.; Xing, W.; Jin, W. Production of alcohol-free wine and grape spirit by pervaporation membrane technology. Food Bioprod. Process. 2020, 123, 262–273. [Google Scholar] [CrossRef]
- Conidi, C.; Castro-Muñoz, R.; Cassano, A. Membrane-Based Operations in the Fruit Juice Processing Industry: A Review. Beverages 2020, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Diban, N.; Athes, V.; Bes, M.; Souchon, I. Ethanol and Aroma Compounds Transfer Study for Partial Dealcoholization of Wine Using Membrane Contactor. J. Memb. Sci. 2008, 311, 136–146. [Google Scholar] [CrossRef]
- Burin, V.M.; Arcari, S.G.; Costa, L.L.F.; Bordignon-Luiz, M.T. Determination of Some Phenolic Compounds in Red Wine by RP-HPLC: Method Development and Validation. J. Chromatogr. Sci. 2011, 49, 647–651. [Google Scholar] [CrossRef] [PubMed]
- Šeruga, M.; Novak, I.; Jakobek, L. Determination of Polyphenols Content and Antioxidant Activity of some Red Wines by Differential Pulse Voltammetry, HPLC and Spectrophotometric Methods. Food Chem. 2011, 124, 1208–1216. [Google Scholar] [CrossRef]
- He, F.; Liang, N.-N.; Mu, L.; Pan, Q.-H.; Wang, J.; Reeves, M.J.; Duan, C.-Q. Anthocyanins and Their Variation in Red Wines, I. Monomeric Anthocyanins and Their Color Expression. Molecules 2012, 17, 1571–1601. [Google Scholar] [CrossRef] [Green Version]
- Cai, M.; Hou, W.; Li, Z.; Lv, Y.; Sun, P. Understanding Nanofiltration Fouling of Phenolic Compounds in Model Juice Solution with Two Membranes. Food Bioprocess Technol. 2017, 10, 2123–2131. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Sotto, A.; Arsuaga, J.M.; Van der Bruggen, B. Influence of Membrane, Solute and Solution Properties on the Retention of Phenolic Compounds in Aqueous Solution by Nanofiltration Membranes. Sep. Purif. Technol. 2009, 66, 194–201. [Google Scholar] [CrossRef]
- Andrade, L.H.; Aguiar, A.O.; Pires, W.L.; Miranda, G.A.; Teixeira, L.P.T.; Almeida, G.C.C.; Amaral, M.C.S. Nanofiltration and Reverse Osmosis Applied to Gold mining Effluent Treatment and Reuse. Braz. J. Chem. Eng. 2017, 34, 93–107. [Google Scholar] [CrossRef] [Green Version]
- DSe Souza, D.I.; Giacobbo, A.; da Silva Fernandes, E.; Rodrigues, M.A.S.; de Pinho, M.N.; Bernardes, A.M. Experimental Design as a Tool for Optimizing and Predicting the Nanofiltration Performance by Treating Antibiotic-Containing Wastewater. Membranes 2020, 10, 156. [Google Scholar] [CrossRef]
- Mnif, A.; Tabassi, D.; Sik Ali, M.B.; Hamrouni, B. Phenol Removal from Water by AG Reverse Osmosis Membrane. Environ. Prog. Sustain. Energy 2015, 34, 1–8. [Google Scholar] [CrossRef]
- Pick, C. Electrical Double Layer Interactions with Surface Charge Heterogeneities. Ph.D. Thesis, Johns Hopkins Universtity, Baltimore, MD, USA, 23 October 2015. [Google Scholar]
- Hoek, E.M.V.; Bhattacharjee, S.; Elimelech, M. Effect of Membrane Surface Roughness on Colloid−Membrane DLVO Interactions. Langmuir 2003, 19, 4836–4847. [Google Scholar] [CrossRef]
- Pei, J.; Wang, W.; Wang, Y.; Wang, H.; Bucs, S.S.; Vrouwenvelder, J.S.; Li, Z. Fate of polyphenols in forward osmosis. J. Memb. Sci. 2021, 621, 1–32. [Google Scholar] [CrossRef]
- Büyüktuncel, E.; Porgalı, E.; Çolak, C. Comparison of Total Phenolic Content and Total Antioxidant Activity in Local Red Wines Determined by Spectrophotometric Methods. Food Nutr. Sci. 2014, 5, 1660–1667. [Google Scholar] [CrossRef] [Green Version]
- Danisman, G.; Arslan, E.; Toklucu, A.K. Kinetic Analysis of Anthocyanin Degradation and Polymeric Colour Formation in Grape Juice During Heating. Czech J. Food Sci. 2015, 33, 103–108. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Magariño, S.; González-Sanjosé, M.L. Application of Absorbance Values Used in Wineries for Estimating CIELAB Parameters in Red Wines. Food Chem. 2003, 81, 301–306. [Google Scholar] [CrossRef]
Sample | JA (L/m2h) | FRT (°C) |
---|---|---|
1R | 3.4 | 36.0 |
2R | 5.7 | 38.0 |
3R | 9.3 | 39.0 |
4R | 11.6 | 42.0 |
5R | 5.4 | 49.0 |
6R | 8.8 | 53.0 |
7R | 12.7 | 55.0 |
8R | 14.8 | 57.0 |
Pressure (MPa) | Fouling Index (%) |
---|---|
2.5 | 54.68 |
3.5 | 54.95 |
4.5 | 56.05 |
5.5 | 56.61 |
Sample | TPC (g GAE/L) | TFC (g CE/L) | MAC (mg CGE/L) | PC (%) |
---|---|---|---|---|
CW | 3.19 ± 0.06 e | 1.55 ± 0.04 d | 151.41 ± 0.49 e | 61.50 ± 0.22 a |
1CR | 2.36 ± 0.04 a | 1.11 ± 0.01 a | 79.39 ± 0.97 b | 62.14 ± 0.32 b |
2CR | 2.57 ± 0.05 bc | 1.17 ± 0.03 b | 79.70 ± 0.85 b | 62.11 ± 0.42 b |
3CR | 2.66 ± 0.09 c | 1.27 ± 0.04 c | 86.99 ± 0.65 c | 62.22 ± 0.33 b |
4CR | 2.88 ± 0.08 d | 1.26 ± 0.04 c | 90.19 ± 0.72 d | 62.12 ± 0.45 b |
5CR | 2.34 ± 0.03 a | 1.13 ± 0.03 ab | 72.35 ± 0.84 a | 64.20 ± 0.21 c |
6CR | 2.48 ± 0.04 b | 1.22 ± 0.03 bc | 72.09 ± 0.43 a | 64.01 ± 0.27 c |
7CR | 2.55 ± 0.03 bc | 1.32 ± 0.04 c | 79.50 ± 0.84 b | 64.28 ± 0.30 c |
8CR | 2.83 ± 0.04 d | 1.30 ± 0.04 c | 80.14 ± 0.11 b | 64.87 ± 0.24 c |
Sample | TPC (g GAE/L) | TFC (g CE/L) | MAC (mg CGE/L) | PC (%) |
---|---|---|---|---|
EW | 3.34 ± 0.06 e | 1.64 ± 0.02 c | 103.83 ± 0.72 f | 68.62 ± 0.97 a |
1ER | 2.81 ± 0.05 b | 1.39 ± 0.01 b | 65.55 ± 0.67 b | 68.75 ± 0.21 a |
2ER | 2.90 ± 0.05 bc | 1.43 ± 0.03 b | 67.88 ± 0.70 c | 68.49 ± 0.35 a |
3ER | 2.96 ± 0.07 c | 1.60 ± 0.05 c | 76.09 ± 0.83 d | 68.10 ± 0.59 a |
4ER | 3.13 ± 0.06 d | 1.53 ± 0.08 bc | 79.53 ± 0.88 e | 68.87 ± 0.12 a |
5ER | 2.47 ± 0.10 a | 1.22 ± 0.02 a | 63.91 ± 0.70 a | 70.52 ± 0.41 b |
6ER | 2.54 ± 0.04 a | 1.28 ± 0.04 a | 66.56 ± 0.69 bc | 70.45 ± 0.50 b |
7ER | 3.01 ± 0.04 c | 1.44 ± 0.04 b | 66.35 ± 0.73 bc | 70.18 ± 0.33 b |
8ER | 3.05 ± 0.08 cd | 1.39 ± 0.06 b | 77.30 ± 0.84 d | 70.44 ± 0.27 b |
Sample | Gallic Acid | Caffeic Acid | Caftaric Acid | (+)-Catechin | (−)-Epicatechin | Rutin | Quercetin | DQ1 | DQ2 | Malvidin 3-Glucoside | DM3-g |
---|---|---|---|---|---|---|---|---|---|---|---|
CW | 42.22 ± 0.65 g | 2.71 ± 0.01 f | 11.18 ± 0.11 e | 88.71 ± 0.60 g | 34.63 ± 0.16 d | 0.95 ± 0.02 b | 1.18 ± 0.01 f | 2.02 ± 0.04 g | 1.11 ± 0.01 e | 38.57 ± 0.01 g | 8.27 ± 0.01 e |
1CR | 37.37 ± 0.18 d | 2.24 ± 0.01 b | 9.47 ± 0.02 c | 73.06 ± 0.80 d | 28.88 ± 0.14 b | 0.90 ± 0.09 b | 0.83 ± 0.01 d | 1.26 ± 0.02 c | 0.88 ± 0.01 b | 35.28 ± 0.05 b | 7.35 ± 0.08 ab |
2CR | 38.96 ± 0.08 e | 2.39 ± 0.01 d | 9.94 ± 0.01 d | 76.70 ± 0.61 e | 30.53 ± 0.09 c | 1.07 ± 0.02 c | 1.19 ± 0.01 f | 1.25 ± 0.01 c | 0.92 ± 0.01 c | 36.23 ± 0.07 d | 7.41 ± 0.03 b |
3CR | 37.55 ± 0.25 d | 2.34 ± 0.01 c | 9.92 ± 0.12 d | 70.14 ± 0.25 c | 30.33 ± 0.36 c | 1.17 ± 0.01 d | 0.92 ± 0.04 e | 1.48 ± 0.02 e | 0.96 ± 0.03 c | 36.35 ± 0.05 d | 7.36 ± 0.06 ab |
4CR | 41.34 ± 0.05 f | 2.53 ± 0.01 e | 9.98 ± 0.03 d | 82.95 ± 0.69 f | 30.60 ± 0.10 c | 1.20 ± 0.01 e | 1.18 ± 0.01 f | 1.57 ± 0.01 f | 1.02 ± 0.01 d | 36.65 ± 0.11 ef | 7.64 ± 0.03 d |
5CR | 28.99 ± 0.11 a | 1.73 ± 0.01 a | 7.08 ± 0.03 a | 53.50 ± 0.28 a | 27.36 ± 0.23 a | 0.85 ± 0.01 a | 0.49 ± 0.01 a | 1.00 ± 0.01 a | 0.68 ± 0.01 a | 34.99 ± 0.03 a | 7.26 ± 0.04 a |
6CR | 34.45 ± 0.11 b | 2.35 ± 0.04 cd | 8.87 ± 0.01 b | 66.25 ± 0.05 b | 32.51 ± 0.04 b | 1.05 ± 0.01 c | 0.60 ± 0.03 c | 1.32 ± 0.01 d | 0.85 ± 0.01 b | 36.00 ± 0.02 c | 7.40 ± 0.07 bc |
7CR | 37.16 ± 0.19 d | 2.28 ± 0.05 bc | 9.52 ± 0.11 c | 74.20 ± 0.49 d | 30.23 ± 0.15 c | 0.99 ± 0.02 b | 0.66 ± 0.02 c | 1.16 ± 0.02 b | 0.85 ± 0.03 b | 36.66 ± 0.01 e | 7.60 ± 0.09 cd |
8CR | 36.33 ± 0.09 c | 2.25 ± 0.02 b | 10.07 ± 0.19 d | 74.38 ± 0.43 d | 30.62 ± 0.15 c | 1.03 ± 0.06 b | 0.54 ± 0.02 b | 1.21 ± 0.03 c | 0.86 ± 0.01 b | 36.84 ± 0.08 f | 7.50 ± 0.03 c |
Sample | Gallic Acid | Caffeic Acid | Caftaric Acid | (+)-Catechin | (−)-Epicatechin | Rutin | Quercetin | DQ1 | DQ2 | Malvidin 3-Glucoside | DM3-g |
---|---|---|---|---|---|---|---|---|---|---|---|
EW | 43.95 ± 0.60 f | 2.10 ± 0.01 e | 4.05 ± 0.01 f | 42.18 ± 0.34 g | 69.80 ± 1.61 e | 1.59 ± 0.01 e | 3.57 ± 0.04 e | 1.43 ± 0.01 e | 1.20 ± 0.01 d | 16.12 ± 0.10 g | 3.07 ± 0.01 d |
1ER | 39.60 ± 0.10 c | 1.78 ± 0.01 b | 3.59 ± 0.01 d | 38.61 ± 0.14 d | 49.40 ± 0.07 b | 1.30 ± 0.01 c | 1.63 ± 0.03 b | 0.80 ± 0.01 a | 0.98 ± 0.03 b | 14.42 ± 0.09 c | 2.43 ± 0.01 b |
2ER | 40.65 ± 0.02 d | 1.83 ± 0.03 bc | 3.75 ± 0.05 e | 39.89 ± 0.03 e | 50.37 ± 0.49 c | 1.33 ± 0.04 cd | 2.07 ± 0.01 c | 1.06 ± 0.06 d | 1.06 ± 0.01 c | 14.21 ± 0.03 b | 2.41 ± 0.03 c |
3ER | 41.86 ± 0.31 e | 1.90 ± 0.01 d | 3.74 ± 0.02 e | 39.94 ± 0.15 e | 52.49 ± 0.08 d | 1.38 ± 0.04 d | 2.42 ± 0.01 d | 1.02 ± 0.01 d | 1.04 ± 0.05 c | 15.53 ± 0.09 g | 3.08 ± 0.03 d |
4ER | 41.45 ± 0.23 e | 1.93 ± 0.03 d | 3.79 ± 0.01 e | 41.29 ± 0.12 f | 52.44 ± 0.10 d | 1.34 ± 0.01 d | 2.43 ± 0.01 d | 1.01 ± 0.03 d | 1.02 ± 0.04 c | 15.26 ± 0.01 f | 3.12 ± 0.04 d |
5ER | 34.29 ± 0.57 a | 1.56 ± 0.03 a | 3.06 ± 0.03 a | 33.07 ± 0.95 a | 46.15 ± 0.06 a | 1.14 ± 0.02 a | - | 0.83 ± 0.01 a | 0.84 ± 0.01 a | 13.08 ± 0.12 a | 2.21 ± 0.02 a |
6ER | 37.28 ± 0.67 b | 1.87 ± 0.01 c | 3.28 ± 0.02 b | 36.31 ± 0.10 c | 50.70 ± 0.40 c | 1.35 ± 0.04 cd | - | 0.93 ± 0.01 b | 0.98 ± 0.01 b | 14.62 ± 0.09 d | 2.46 ± 0.01 c |
7ER | 37.11 ± 0.29 b | 1.80 ± 0.07 bc | 3.45 ± 0.05 c | 35.03 ± 0.08 b | 50.93 ± 0.51 c | 1.32 ± 0.01 c | - | 0.98 ± 0.01 c | 0.99 ± 0.01 b | 14.60 ± 0.03 d | 2.48 ± 0.01 c |
8ER | 37.35 ± 0.52 b | 1.77 ± 0.03 b | 3.48 ± 0.02 c | 35.99 ± 0.57 c | 50.87 ± 0.43 c | 1.26 ± 0.01 b | 0.39 ± 0.01 a | 0.97 ± 0.01 c | 0.93 ± 0.05 b | 14.79 ± 0.01 e | 3.10 ± 0.06 d |
Sample | DPPH (µmol TE/100 mL) | ABTS (µmol TE/100 mL) | FRAP (µmol TE/100 mL) | CUPRAC (µmol TE/100 mL) |
---|---|---|---|---|
CW | 14.92 ± 0.97 f | 35.18 ± 0.15 h | 3.04 ± 0.15 e | 174.77 ± 1.07 f |
1CR | 5.23 ± 0.42 b | 20.47 ± 0.19 c | 2.37 ± 0.03 b | 159.56 ± 1.94 c |
2CR | 7.49 ± 0.41 c | 25.14 ± 0.18 e | 2.48 ± 0.03 c | 164.34 ± 1.04 d |
3CR | 10.10 ± 0.13 d | 25.80 ± 0.48 e | 2.60 ± 0.03 d | 166.27 ± 2.16 d |
4CR | 12.40 ± 0.38 e | 31.20 ± 0.06 g | 2.65 ± 0.02 d | 171.20 ± 1.49 e |
5CR | 4.26 ± 0.46 a | 16.46 ± 0.24 a | 2.11 ± 0.08 a | 112.65 ± 2.01 a |
6CR | 5.47 ± 0.42 b | 18.93 ± 0.17 b | 2.23 ± 0.04 a | 134.94 ± 2.68 b |
7CR | 7.14 ± 0.27 c | 21.37 ± 0.16 d | 2.52 ± 0.05 cd | 137.65 ± 2.91 b |
8CR | 7.37 ± 0.27 c | 27.01 ± 0.32 f | 2.56 ± 0.05 cd | 164.88 ± 2.32 d |
Sample | DPPH (µmol TE/100 mL) | ABTS (µmol TE/100 mL) | FRAP (µmol TE/100 mL) | CUPRAC (µmol TE/100 mL) |
---|---|---|---|---|
EW | 14.77 ± 0.72 g | 33.46 ± 0.59 f | 3.10 ± 0.13 e | 170.85 ± 1.53 g |
1ER | 6.12 ± 0.66 cd | 27.76 ± 0.11 b | 2.38 ± 0.07 b | 128.08 ± 1.47 d |
2ER | 7.16 ± 0.65 d | 28.54 ± 0.12 c | 2.49 ± 0.08 c | 139.88 ± 0.18 e |
3ER | 10.85 ± 0.37 e | 32.09 ± 0.28 e | 2.61 ± 0.07 cd | 138.75 ± 1.28 e |
4ER | 13.16 ± 0.35 f | 32.18 ± 0.41 e | 2.66 ± 0.08 d | 161.47 ± 1.85 f |
5ER | 3.32 ± 0.41 a | 22.30 ± 0.11 a | 2.16 ± 0.06 a | 107.47 ± 2.10 a |
6ER | 4.58 ± 0.40 b | 27.25 ± 0.22 b | 2.24 ± 0.02 a | 115.07 ± 0.40 b |
7ER | 5.73 ± 0.33 c | 27.80 ± 0.12 b | 2.55 ± 0.04 cd | 123.05 ± 1.67 c |
8ER | 5.05 ± 0.36 bc | 30.15 ± 0.19 d | 2.60 ± 0.02 cd | 140.10 ± 2.22 e |
Conventional Wine | Ecological Wine | |||||
---|---|---|---|---|---|---|
TPC | TFC | MAC | TPC | TFC | MAC | |
DPPH | 0.924 | 0.806 | 0.842 | 0.790 | 0.913 | 0.825 |
ABTS | 0.959 | 0.764 | 0.799 | 0.874 | 0.923 | 0.776 |
FRAP | 0.927 | 0.869 | 0.871 | 0.953 | 0.893 | 0.941 |
CUPRAC | 0.710 | 0.454 | 0.542 | 0.905 | 0.859 | 0.859 |
Sample | L* | a* | b* | °h | C* | ΔE* |
---|---|---|---|---|---|---|
CW | 19.70 ± 0.01 a | 1.98 ± 0.03 b | 1.14 ± 0.03 a | 35.80 ± 0.64 c | 1.94 ± 0.02 a | - |
1CR | 19.91 ± 0.01 b | 1.99 ± 0.05 b | 1.17 ± 0.02 a | 30.75± 0.61 b | 2.32 ± 0.04 b | 0.22 ± 0.01 a |
2CR | 19.92 ± 0.02 b | 2.03 ± 0.02 b | 1.13 ± 0.02 a | 30.47± 0.35 b | 2.33 ± 0.05 b | 0.23 ± 0.01 a |
3CR | 19.91 ± 0.01 b | 1.99 ± 0.03 b | 1.14 ± 0.01 a | 30.75± 0.29 b | 2.38 ± 0.03 b | 0.21 ± 0.02 a |
4CR | 19.91 ± 0.01 b | 2.06 ± 0.05 b | 1.15 ± 0.02 a | 30.71± 0.25 b | 2.39 ± 0.04 b | 0.22 ± 0.01 a |
5CR | 20.04 ± 0.01 c | 1.86 ± 0.01 a | 1.16 ± 0.03 a | 29.52± 0.18 a | 2.52 ± 0.02 c | 0.36 ± 0.01 b |
6CR | 20.07 ± 0.01 c | 1.86 ± 0.01 a | 1.13 ± 0.02 a | 29.33± 0.26 a | 2.48 ± 0.02 c | 0.39 ± 0.03 b |
7CR | 20.00 ± 0.01 c | 1.86 ± 0.01 a | 1.17 ± 0.03 a | 30.24± 0.12 b | 2.57 ± 0.05 c | 0.32 ± 0.04 b |
8CR | 20.01 ± 0.01 c | 1.87 ± 0.02 a | 1.12 ± 0.04 a | 30.51± 0.31 b | 2.63 ± 0.05 c | 0.33 ± 0.03 b |
Sample | L* | a* | b* | °h | C* | ΔE* |
---|---|---|---|---|---|---|
EW | 19.70 ± 0.01 a | 2.15 ± 0.02 b | 1.07 ± 0.01 a | 33.54 ± 0.32 d | 1.58 ± 0.03 a | - |
1ER | 20.25 ± 0.05 b | 2.13 ± 0.02 b | 1.08 ± 0.03 a | 30.16 ± 0.28 c | 2.74 ± 0.02 e | 0.55 ± 0.01 a |
2ER | 20.30 ± 0.01 b | 2.16 ± 0.01 b | 1.04 ± 0.03 a | 30.51 ± 0.52 c | 2.50 ± 0.01 b | 0.60 ± 0.01 b |
3ER | 20.35 ± 0.03 b | 2.16 ± 0.01 b | 1.04 ± 0.01 a | 28.79 ± 0.28 a | 2.57 ± 0.01 c | 0.65 ± 0.04 c |
4ER | 20.31 ± 0.01 b | 2.12 ± 0.03 b | 1.05 ± 0.01 a | 30.63 ± 0.21 c | 3.24 ± 0.02 f | 0.62 ± 0.02 bc |
5ER | 20.51 ± 0.02 c | 2.04 ± 0.02 a | 1.06 ± 0.01 a | 29.16 ± 0.19 a | 2.80 ± 0.03 e | 0.82 ± 0.01 d |
6ER | 20.49 ± 0.01 c | 2.06 ± 0.01 a | 1.04 ± 0.03 a | 29.75 ± 0.01 b | 2.64 ± 0.02 d | 0.80 ± 0.02 d |
7ER | 20.49 ± 0.02 c | 2.02 ± 0.03 a | 1.02 ± 0.01 a | 29.15 ± 0.48 a | 2.50 ± 0.02 b | 0.80 ± 0.02 d |
8ER | 20.49 ± 0.02 c | 2.04 ± 0.01 a | 1.05 ± 0.02 a | 28.91 ± 0.93 a | 2.83 ± 0.04 e | 0.79 ± 0.03 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivić, I.; Kopjar, M.; Buljeta, I.; Pichler, D.; Mesić, J.; Pichler, A. Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine. Membranes 2022, 12, 76. https://doi.org/10.3390/membranes12010076
Ivić I, Kopjar M, Buljeta I, Pichler D, Mesić J, Pichler A. Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine. Membranes. 2022; 12(1):76. https://doi.org/10.3390/membranes12010076
Chicago/Turabian StyleIvić, Ivana, Mirela Kopjar, Ivana Buljeta, Dubravko Pichler, Josip Mesić, and Anita Pichler. 2022. "Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine" Membranes 12, no. 1: 76. https://doi.org/10.3390/membranes12010076
APA StyleIvić, I., Kopjar, M., Buljeta, I., Pichler, D., Mesić, J., & Pichler, A. (2022). Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine. Membranes, 12(1), 76. https://doi.org/10.3390/membranes12010076