Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. The Wines
2.3. Dealcoholization with Reverse Osmosis (RO)
2.4. Dealcoholization with Vacuum Distillastion (VD)
2.5. Physicochemical Analyses
2.6. Determination of Volatile Compounds
2.7. Odour Activity Values and Aroma Series
2.8. Sensory Analysis
2.9. Statistical Analysis
3. Results
3.1. Effect of Dealcoholization on the Physicochemical Parameters
3.2. Effect of Dealcoholization on Volatile Compounds
3.2.1. Esters
3.2.2. Higher Alcohols
3.2.3. Organic Acids
3.2.4. Terpenics and C13-Norisoprenoids
3.2.5. Carbonyl Compounds
3.3. Odor Activity Values (OAVs)
3.4. Aroma Series
3.5. Effect of Dealcoholization on Sensory Characteristics
3.6. Principal Component Analysis (PCA)
4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wine Intelligence Report Brochure. Lower Alcohol Wines a Market Perspective. Available online: http://www.wineintelligence.com/wp-content/uploads/2016/01/Lower-Alcohol-Wines-A-Multi-Market-Perspective-20161.pdf (accessed on 1 August 2021).
- Mueller, S.; Lockshin, L.; Louviere, J. Alcohol in Moderation: Market Potential for Low Alcohol Wine before and after Excise Tax. In Proceedings of the 6th International Academy of Wine Business Research Conference Academy of Wine Business, Bordeaux, France, 9–10 June 2011. [Google Scholar]
- Ruf, J.-C. The Implementation of the OIV Standards at the International Level and in the Framework of Innovation in the Wine Sector, CEICS-Tarragona; 2011; Volume 33. Available online: http://www.ceics.eu/documents/11217/71729636-4975-446e-8d13-ca8153125773 (accessed on 15 September 2021).
- Heux, S.; Sablayrolles, J.M.; Cachon, R.; Dequin, S. Engineering a Saccharomyces Cerevisiae Wine Yeast That Exhibits Reduced Ethanol Production during Fermentation under Controlled Microoxygenation Conditions. Appl. Environ. Microbiol. 2006, 72, 5822–5828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margallo, M.; Aldaco, R.; Barceló, A.; Diban, N.; Ortiz, I.; Irabien, A. Life Cycle Assessment of Technologies for Partial Dealcoholisation of Wines. Sustain. Prod. Consum. 2015, 2, 29–39. [Google Scholar] [CrossRef]
- Fuller, W.; Roberts, N.A.; Shattock, M.J. Phospholemman Is a Substrate for PKA and PKC in Cardiac Myocytes but Exists in Distinct Populations That Are Not Available to Both Kinases. J. Mol. Cell. Cardiol. 2006, 40, 996–997. [Google Scholar] [CrossRef]
- Report FACT4532MR. In Non-Alcoholic Wine Market Forecast, Trend Analysis & Competition Tracking. Global Market Insights 2019 to 2027; Market Forecast R: London, UK, 2020.
- Lisanti, M.T.; Gambuti, A.; Genovese, A.; Piombino, P.; Moio, L. Partial Dealcoholization of Red Wines by Membrane Contactor Technique: Effect on Sensory Characteristics and Volatile Composition. Food Bioprocess Technol. 2013, 6, 2289–2305. [Google Scholar] [CrossRef]
- Meillon, S.; Urbano, C.; Schlich, P. Contribution of the Temporal Dominance of Sensations (TDS) Method to the Sensory Description of Subtle Differences in Partially Dealcoholized Red Wines. Food Qual. Prefer. 2009, 20, 490–499. [Google Scholar] [CrossRef]
- Pham, D.T.; Ristic, R.; Stockdale, V.J.; Jeffery, D.W.; Tuke, J.; Wilkinson, K. Influence of Partial Dealcoholization on the Composition and Sensory Properties of Cabernet Sauvignon Wines. Food Chem. 2020, 325, 126869. [Google Scholar] [CrossRef]
- Ferrarini, R.; Ciman, G.M.; Camin, F.; Bandini, S.; Gostoli, C. Variation of Oxygen Isotopic Ratio during Wine Dealcoholization by Membrane Contactors: Experiments and Modelling. J. Membr. Sci. 2016, 498, 385–394. [Google Scholar] [CrossRef]
- Liguori, L.; Albanese, D.; Crescitelli, A.; Di Matteo, M.; Russo, P. Impact of Dealcoholization on Quality Properties in White Wine at Various Alcohol Content Levels. J. Food Sci. Technol. 2019, 56, 3707–3720. [Google Scholar] [CrossRef]
- Motta, S.; Guaita, M.; Petrozziello, M.; Ciambotti, A.; Panero, L.; Solomita, M.; Bosso, A. Comparison of the Physicochemical and Volatile Composition of Wine Fractions Obtained by Two Different Dealcoholization Techniques. Food Chem. 2017, 221, 1–10. [Google Scholar] [CrossRef]
- Petrozziello, M.; Panero, L.; Guaita, M.; Prati, R.; Marani, G.; Zinzani, G.; Bosso, A. Effect of the Extent of Ethanol Removal on the Volatile Compounds of a Chardonnay Wine Dealcoholized by Vacuum Distillation. BIO Web Conf. 2019, 12, 02020. [Google Scholar] [CrossRef]
- Sam, F.E.; Ma, T.; Salifu, R.; Wang, J.; Jiang, Y.-M.; Zhang, B.; Han, S.-Y. Techniques for Dealcoholization of Wines: Their Impact on Wine Phenolic Composition, Volatile Composition, and Sensory Characteristics. Foods 2021, 10, 2498. [Google Scholar] [CrossRef]
- Liguori, L.; Russo, P.; Albanese, D.; Di Matteo, M. Evolution of Quality Parameters during Red Wine Dealcoholization by Osmotic Distillation. Food Chem. 2013, 140, 68–75. [Google Scholar] [CrossRef]
- Longo, R.; Blackman, J.W.; Torley, P.J.; Rogiers, S.Y.; Schmidtke, L.M. Changes in Volatile Composition and Sensory Attributes of Wines during Alcohol Content Reduction. J. Sci. Food Agric. 2017, 97, 8–16. [Google Scholar] [CrossRef]
- Meillon, S.; Urbano, C.; Guillot, G.; Schlich, P. Acceptability of Partially Dealcoholized Wines—Measuring the Impact of Sensory and Information Cues on Overall Liking in Real-Life Settings. Food Qual. Prefer. 2010, 21, 763–773. [Google Scholar] [CrossRef]
- Corona, O.; Liguori, L.; Albanese, D.; Di Matteo, M.; Cinquanta, L.; Russo, P. Quality and Volatile Compounds in Red Wine at Different Degrees of Dealcoholization by Membrane Process. Eur. Food Res. Technol. 2019, 245, 2601–2611. [Google Scholar] [CrossRef]
- Liguori, L.; Russo, P.; Albanese, D.; Di Matteo, M. Effect of Process Parameters on Partial Dealcoholization of Wine by Osmotic Distillation. Food Bioprocess Technol. 2013, 6, 2514–2524. [Google Scholar] [CrossRef]
- Aguera, E.; Bes, M.; Roy, A.; Camarasa, C.; Sablayrolles, J.M. Partial Removal of Ethanol during Fermentation to Obtain Reduced-Alcohol Wines. Am. J. Enol. Vitic. 2010, 61, 53–60. [Google Scholar]
- Diban, N.; Athes, V.; Bes, M.; Souchon, I. Ethanol and Aroma Compounds Transfer Study for Partial Dealcoholization of Wine Using Membrane Contactor. J. Membr. Sci. 2008, 311, 136–146. [Google Scholar] [CrossRef]
- Gil, M.; Estévez, S.; Kontoudakis, N.; Fort, F.; Canals, J.M.; Zamora, F. Influence of Partial Dealcoholization by Reverse Osmosis on Red Wine Composition and Sensory Characteristics. Eur. Food Res. Technol. 2013, 237, 481–488. [Google Scholar] [CrossRef]
- Liguori, L.; De Francesco, G.; Russo, P.; Perretti, G.; Albanese, D.; Di Matteo, M. Quality Attributes of Low-Alcohol Top-Fermented Beers Produced by Membrane Contactor. Food Bioprocess Technol. 2016, 9, 191–200. [Google Scholar] [CrossRef]
- Di Giacomo, G.; Romano, P. Advanced Fractionation Process for Wine-Based Products Diversification. J. Food Sci. Technol. 2021, 58, 4685–4692. [Google Scholar] [CrossRef]
- Loyola García, R.; Gutiérrez-Gamboa, G.; Medel-Marabolí, M.; Díaz-Gálvez, I. Lowering Wine Alcohol Content by Reverse Osmosis and Spinning Cone Columns: Effects on Sensory Characteristics of the Beverages. IVES Tech. Rev. Vine Wine 2021, 10, 5–6. [Google Scholar] [CrossRef]
- Massot, A.; Mietton-Peuchot, M.; Peuchot, C.; Milisic, V. Nanofiltration and Reverse Osmosis in Winemaking. Desalination 2008, 231, 283–289. [Google Scholar] [CrossRef]
- Pilipovik, M.V.; Riverol, C. Assessing Dealcoholization Systems Based on Reverse Osmosis. J. Food Eng. 2005, 69, 437–441. [Google Scholar] [CrossRef]
- Castro-Muñoz, R. Pervaporation-Based Membrane Processes for the Production of Non-Alcoholic Beverages. J. Food Sci. Technol. 2019, 56, 2333–2344. [Google Scholar] [CrossRef]
- Sun, X.; Dang, G.; Ding, X.; Shen, C.; Liu, G.; Zuo, C.; Chen, X.; Xing, W.; Jin, W. Production of Alcohol-Free Wine and Grape Spirit by Pervaporation Membrane Technology. Food Bioprod. Process. 2020, 123, 262–273. [Google Scholar] [CrossRef]
- Taran, N.; Stoleicova, S.; Soldatenco, O.; Morari, B. The Influence of Pressure on Chemical and Physical Parametres of White and Red Wines Obtained by Dealcoholization Method. J. Agroaliment. Process. Technol. 2014, 20, 215–219. [Google Scholar]
- Belisario-Sánchez, Y.Y.; Taboada-Rodríguez, A.; Marín-Iniesta, F.; Iguaz-Gainza, A.; López-Gómez, A. Aroma Recovery in Wine Dealcoholization by SCC Distillation. Food Bioprocess Technol. 2012, 5, 2529–2539. [Google Scholar] [CrossRef]
- Mangindaan, D.; Khoiruddin, K.; Wenten, I.G. Beverage Dealcoholization Processes: Past, Present, and Future. Trends Food Sci. Technol. 2018, 71, 36–45. [Google Scholar] [CrossRef]
- Liguori, L.; Russo, P.; Albanese, D.; Di Matteo, M. Production of Low-Alcohol Beverages: Current Status and Perspectives; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Catarino, M.; Mendes, A.; Madeira, L.M.; Ferreira, A. Alcohol Removal from Beer by Reverse Osmosis. Sep. Sci. Technol. 2007, 42, 3011–3027. [Google Scholar] [CrossRef]
- Catarino, M.; Mendes, A. Dealcoholizing Wine by Membrane Separation Processes. Innov. Food Sci. Emerg. Technol. 2011, 12, 330–337. [Google Scholar] [CrossRef]
- Bui, K.; Dick, R.; Moulin, G.; Galzy, P. A Reverse Osmosis for the Production of Low Ethanol Content Wine. Am. J. 1986, 37, 4–7. [Google Scholar]
- López, M.; Alvarez, S.; Riera, F.A.; Alvarez, R. Production of Low Alcohol Content Apple Cider by Reverse Osmosis. Ind. Eng. Chem. Res. 2002, 41, 6600–6606. [Google Scholar] [CrossRef]
- Arriagada-Carrazana, J.P.; Sáez-Navarrete, C.; Bordeu, E. Membrane Filtration Effects on Aromatic and Phenolic Quality of Cabernet Sauvignon Wines. J. Food Eng. 2005, 68, 363–368. [Google Scholar] [CrossRef]
- Pozderović, A.; Moslavac, T.; Pichler, A. Concentration of Aqua Solutions of Organic Components by Reverse Osmosis. I: Influence of Trans-Membrane Pressure and Membrane Type on Concentration of Different Ester and Aldehyde Solutions by Reverse Osmosis. J. Food Eng. 2006, 76, 387–395. [Google Scholar] [CrossRef]
- Ivić, I.; Kopjar, M.; Jukić, V.; Bošnjak, M.; Maglica, M.; Mesić, J.; Pichler, A. Aroma Profile and Chemical Composition of Reverse Osmosis and Nanofiltration Concentrates of Red Wine Cabernet Sauvignon. Molecules 2021, 26, 874. [Google Scholar] [CrossRef]
- Organização Internacional da Vinha e do Vinho (OIV). Compendium of International Methods of Analysis—OIV Chromatic Characteristics Method OIV-MA-AS2-07B: R2009; OIV Publications: Paris, France, 2009; Available online: https://www.oiv.int/public/medias/2475/oiv-ma-as2-07b.pdf (accessed on 26 September 2021).
- OIV. Compendium of International Analysis of Methods—OIV Chromatic Characteristics Method OIV-MA-AS2-11 Determination of Chromatic Characteristics According to CIELab. 2006. Available online: http://www.oiv.int/oiv/files/6—Domaines%20scientifiques/6—4%20Methodes%20d%20analyses/6-4-1/EN/OIV-MA-AS2-11.pdf (accessed on 26 September 2021).
- Ma, T.Z.; Gong, P.F.; Lu, R.R.; Zhang, B.; Morata, A.; Han, S.Y. Effect of Different Clarification Treatments on the Volatile Composition and Aromatic Attributes of “Italian Riesling” Icewine. Molecules 2020, 25, 2567. [Google Scholar] [CrossRef]
- Duan, W.P.; Zhu, B.Q.; Song, R.R.; Zhang, B.; Lan, Y.B.; Zhu, X.; Duan, C.Q.; Han, S.Y. Volatile Composition and Aromatic Attributes of Wine Made with Vitisvinifera l.Cv Cabernet Sauvignon Grapes in the Xinjiang Region of China: Effect of Different Commercial Yeasts. Int. J. Food Prop. 2018, 21, 1423–1441. [Google Scholar] [CrossRef] [Green Version]
- Hellín, P.; Manso, A.; Flores, P.; Fenoll, J. Evolution of Aroma and Phenolic Compounds during Ripening of “superior Seedless” Grapes. J. Agric. Food Chem. 2010, 58, 6334–6340. [Google Scholar] [CrossRef]
- Capone, S.; Tufariello, M.; Siciliano, P. Analytical Characterisation of Negroamaro Red Wines by “Aroma Wheels”. Food Chem. 2013, 141, 2906–2915. [Google Scholar] [CrossRef]
- Wei, J.; Wang, S.; Zhang, Y.; Yuan, Y.; Yue, T. Characterization and Screening of Non-Saccharomyces Yeasts Used to Produce Fragrant Cider. LWT 2019, 107, 191–198. [Google Scholar] [CrossRef]
- Ribeiro, T.; Fernandes, C.; Nunes, F.M.; Filipe-Ribeiro, L.; Cosme, F. Influence of the Structural Features of Commercial Mannoproteins in White Wine Protein Stabilization and Chemical and Sensory Properties. Food Chem. 2014, 159, 47–54. [Google Scholar] [CrossRef]
- Pham, D.T.; Stockdale, V.J.; Wollan, D.; Jeffery, D.W.; Wilkinson, K.L. Compositional Consequences of Partial Dealcoholization of Red Wine by Reverse Osmosis-Evaporative Perstraction. Molecules 2019, 24, 1404. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, F.; Ribeiro, R.; Neves, L.; Lemperle, T.; Lança, M.; Ricardo da Silva, J.; Laureano, O. Alcohol Reduction in Wine by Nanofiltration. Some Comparisons with Reverse Osmosis Technique. In Proceedings of 1st International Symposium of Oenoviti International Network—Alcohol Level Reduction in Wine, Bordeaux, France, 6 September 2013; Institut des Sciences de la Vigne et du Vin: Villenave-d’Ornon, France, 2013; pp. 64–67. [Google Scholar]
- Russo, P.; Liguori, L.; Corona, O.; Albanese, D.; Matteo, M.D.; Cinquanta, L. Combined Membrane Process for Dealcoholization of Wines: Osmotic Distillation and Reverse Osmosis. Chem. Eng. Trans. 2019, 75, 7–12. [Google Scholar] [CrossRef]
- González-Manzano, S.; Dueñas, M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T.; Santos-Buelga, C. Studies on the Copigmentation between Anthocyanins and Flavan-3-Ols and Their Influence in the Colour Expression of Red Wine. Food Chem. 2009, 114, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Gambuti, A.; Rinaldi, A.; Lisanti, M.T.; Pessina, R.; Moio, L. Partial Dealcoholisation of Red Wines by Membrane Contactor Technique: Influence on Colour, Phenolic Compounds and Saliva Precipitation Index. Eur. Food Res. Technol. 2011, 233, 647–655. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Delgado, J.A.; Ferrer, M.A.; Viñas, M.A.G. The Aroma of La Mancha Chelva Wines: Chemical and Sensory Characterization. Food Res. Int. 2019, 119, 135–142. [Google Scholar] [CrossRef]
- Flanzy, C. Enología: Fundamentos Científicos y Tecnológicos, 2nd ed.; Mundi-Prensa: Madrid, Spain, 2003. [Google Scholar]
- Ramey, D.D.; Ough, C.S. Volatile Ester Hydrolysis or Formation During Storage of Model Solutions and Wines. J. Agric. Food Chem. 1980, 28, 928–934. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Noble, A.; Kwiatkowski, M.; Cheynier, V.; Waters, E. Taste and Mouth-Feel Properties of Different Types of Tannin-like Polyphenolic Compounds and Anthocyanins in Wine. Anal. Chim. Acta 2004, 513, 57–65. [Google Scholar] [CrossRef]
- Frost, R.; Quiñones, I.; Veldhuizen, M.; Alava, J.I.; Small, D.; Carreiras, M. What Can the Brain Teach Us about Winemaking? An FMRI Study of Alcohol Level Preferences. PLoS ONE 2015, 10, e0119220. [Google Scholar] [CrossRef]
- King, E.S.; Dunn, R.L.; Heymann, H. The Influence of Alcohol on the Sensory Perception of Red Wines. Food Qual. Prefer. 2013, 28, 235–243. [Google Scholar] [CrossRef]
- Goldner, M.C.; Zamora, M.C.; Lira, P.D.L.; Gianninoto, H.; Bandoni, A. Effect of Ethanol Level in the Perception of Aroma Attributes and the Detection of Volatile Compounds in Red Wine. J. Sens. Stud. 2009, 24, 243–257. [Google Scholar] [CrossRef]
- Lorenzo, C.; Pardo, F.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Differentiation of Co-Winemaking Wines by Their Aroma Composition. Eur. Food Res. Technol. 2008, 227, 777–787. [Google Scholar] [CrossRef]
- Ansardi, D.C.; Morrow, C.D. Poliovirus Capsid Proteins Derived from P1 Precursors with Glutamine-Valine Cleavage Sites Have Defects in Assembly and RNA Encapsidation. J. Virol. 1993, 67, 7284–7297. [Google Scholar] [CrossRef] [Green Version]
- Styger, G.; Prior, B.; Bauer, F.F. Wine Flavor and Aroma. J. Ind. Microbiol. Biotechnol. 2011, 38, 1145–1159. [Google Scholar] [CrossRef]
- Bowen, A.J.; Reynolds, A.G. Odor Potency of Aroma Compounds in Riesling and Vidal Blanc Table Wines and Icewines by Gas Chromatography-Olfactometry-Mass Spectrometry. J. Agric. Food Chem. 2012, 60, 2874–2883. [Google Scholar] [CrossRef]
- Pickering, G.J.; Heatherbell, D.A.; Vanhanen, L.P.; Barnes, M.F. The Effect of Ethanol Concentration on the Temporal Perception of Viscosity and Density in White Wine. Am. J. Enol. Vitic. 1998, 49, 306–318. [Google Scholar]
- Nurgel, C.; Pickering, G. Contribution of Glycerol, Ethanol and Sugar to the Perception of Viscosity and Density Elicited by Model White Wines. J. Texture Stud. 2005, 36, 303–323. [Google Scholar] [CrossRef]
- Fontoin, H.; Saucier, C.; Teissedre, P.L.; Glories, Y. Effect of PH, Ethanol and Acidity on Astringency and Bitterness of Grape Seed Tannin Oligomers in Model Wine Solution. Food Qual. Prefer. 2008, 19, 286–291. [Google Scholar] [CrossRef]
- Jordão, A.M.; Vilela, A.; Cosme, F. From Sugar of Grape to Alcohol of Wine: Sensorial Impact of Alcohol in Wine. Beverages 2015, 1, 292–310. [Google Scholar] [CrossRef] [Green Version]
- Lan, Y.B.; Xiang, X.F.; Qian, X.; Wang, J.M.; Ling, M.Q.; Zhu, B.Q.; Liu, T.; Sun, L.B.; Shi, Y.; Reynolds, A.G.; et al. Characterization and Differentiation of Key Odor-Active Compounds of ‘Beibinghong’ Icewine and Dry Wine by Gas Chromatography-Olfactometry and Aroma Reconstitution. Food Chem. 2019, 287, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Villamor, R.R.; Ross, C.F. Wine Matrix Compounds Affect Perception of Wine Aromas. Annu. Rev. Food Sci. Technol. 2013, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Xie, Z.; Zhang, H.; Qian, J. Kinetic Resolution of Both 1-Phenylethanol Enantiomers Produced by Hydrolysis of 1-Phenylethyl Acetate with Candida Antarctica Lipase B in Different Solvent Systems. Kinet. Catal. 2011, 52, 686–690. [Google Scholar] [CrossRef]
- Makhotkina, O.; Kilmartin, P.A. Hydrolysis and Formation of Volatile Esters in New Zealand Sauvignon Blanc Wine. Food Chem. 2012, 135, 486–493. [Google Scholar] [CrossRef]
- Fedrizzi, B.; Nicolis, E.; Camin, F.; Bocca, E.; Carbognin, C.; Scholz, M.; Barbieri, P.; Finato, F.; Ferrarini, R. Stable Isotope Ratios and Aroma Profile Changes Induced Due to Innovative Wine Dealcoholisation Approaches. Food Bioprocess Technol. 2014, 7, 62–70. [Google Scholar] [CrossRef]
- Marais, J. The Effect of PH on Esters and Quality of Colombar Wine during Maturation. Vitis 1978, 19, 151–154. [Google Scholar]
- Edwards, T.; Singleton, V.; Boulton, R. Formation of Ethyl Esters of Tartaric Acid During Wine Aging: Chemical and Sensory Effects. Am. J. Enol. Vitic. 1985, 36, 118–124. [Google Scholar]
- Saha, B.; Longo, R.; Torley, P.; Saliba, A.; Schmidtke, L. SPME Method Optimized by Box-Behnken Design for Impact Odorants in Reduced Alcohol Wines. Foods 2018, 7, 127. [Google Scholar] [CrossRef] [Green Version]
- Banvolgyi, S.; Savaş Bahçeci, K.; Vatai, G.; Bekassy, S.; Bekassy-Molnar, E. Partial Dealcoholization of Red Wine by Nanofiltration and Its Effect on Anthocyanin and Resveratrol Levels. Food Sci. Technol. Int. 2016, 22, 677–687. [Google Scholar] [CrossRef]
- Labanda, J.; Vichi, S.; Llorens, J.; López-Tamames, E. Membrane Separation Technology for the Reduction of Alcoholic Degree of a White Model Wine. LWT Food Sci. Technol. 2009, 42, 1390–1395. [Google Scholar] [CrossRef]
- Pozderović, A.; Popović, K.; Pichler, A.; Jakobek, L. Influencia de Los Parámetros de Procesamiento En El Flujo de Permeación y La Retención de Compuestos Aromáticos y Fenólicos en el Zumo Concentrado de Arándano Silvestre Mediante Ósmosis Inversa. CYTA J. Food 2016, 14, 382–390. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Luan, Y.; Duan, C.Q.; Yan, G.L. Use of Torulaspora Delbrueckii Co-Fermentation with Two Saccharomyces Cerevisiae Strains with Different Aromatic Characteristic to Improve the Diversity of Red Wine Aroma Profile. Front. Microbiol. 2018, 9, 606. [Google Scholar] [CrossRef]
- Yue, T.X.; Chi, M.; Song, C.Z.; Liu, M.Y.; Meng, J.F.; Zhang, Z.W.; Li, M.H. Aroma Characterization of Cabernet Sauvignon Wine from the Plateau of Yunnan (China) with Different Altitudes Using SPME-GC/MS. Int. J. Food Prop. 2015, 18, 1584–1596. [Google Scholar] [CrossRef]
- Chen, K.; Escott, C.; Loira, I.; del Fresno, J.M.; Morata, A.; Tesfaye, W.; Calderon, F.; Suárez-Lepe, J.A.; Han, S.; Benito, S. Use of Non-Saccharomyces Yeasts and Oenological Tannin in Red Winemaking: Influence on Colour, Aroma and Sensorial Properties of Young Wines. Food Microbiol. 2018, 69, 51–63. [Google Scholar] [CrossRef]
- Palomo, E.S.; Díaz-Maroto, M.C.; Viñas, M.A.G.; Soriano-Pérez, A.; Pérez-Coello, M.S. Aroma Profile of Wines from Albillo and Muscat Grape Varieties at Different Stages of Ripening. Food Control 2007, 18, 398–403. [Google Scholar] [CrossRef]
- Cordente, A.G.; Cordero-Bueso, G.; Pretorius, I.S.; Curtin, C.D. Novel Wine Yeast with Mutations in YAP1 That Produce Less Acetic Acid during Fermentation. FEMS Yeast Res. 2013, 13, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Whitener, M.E.B.; Stanstrup, J.; Carlin, S.; Divol, B.; Du Toit, M.; Vrhovsek, U. Effect of Non-Saccharomyces Yeasts on the Volatile Chemical Profile of Shiraz Wine. Aust. J. Grape Wine Res. 2017, 23, 179–192. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, B.Q.; Wang, Y.H.; Lu, L.; Lan, Y.B.; Reeves, M.J.; Duan, C.Q. Influence of Pre-Fermentation Cold Maceration Treatment on Aroma Compounds of Cabernet Sauvignon Wines Fermented in Different Industrial Scale Fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Gómez-Míguez, M.; Vicario, I.M.; Heredia, F.J. Assessment of Colour and Aroma in White Wines Vinifications: Effects of Grape Maturity and Soil Type. J. Food Eng. 2007, 79, 758–764. [Google Scholar] [CrossRef]
- Welke, J.E.; Zanus, M.; Lazzarotto, M.; Alcaraz Zini, C. Quantitative Analysis of Headspace Volatile Compounds Using Comprehensive Two-Dimensional Gas Chromatography and Their Contribution to the Aroma of Chardonnay Wine. Food Res. Int. 2014, 59, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Guth, H. Quantitation and Sensory Studies of Character Impact Odorants of Different White Wine Varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Meillon, S.; Viala, D.; Medel, M.; Urbano, C.; Guillot, G.; Schlich, P. Impact of Partial Alcohol Reduction in Syrah Wine on Perceived Complexity and Temporality of Sensations and Link with Preference. Food Qual. Prefer. 2010, 21, 732–740. [Google Scholar] [CrossRef]
Chemical Parameter | White Wine | Rosé Wine | Red Wine | ||||||
---|---|---|---|---|---|---|---|---|---|
CK | RO | VD | CK | RO | VD | CK | RO | VD | |
Alcohol (% v/v) | 13.4 a | 0.7 b | 0.7 b | 12.2 a | 0.7 b | 0.7 b | 13.9 a | 0.7 b | 0.7 b |
Reducing sugars (g/L) | 1.10 c | 2.00 b | 2.80 a | 15.90 c | 17.90 a | 16.30 b | 0.93 c | 3.13 b | 4.93 a |
Density | 0.99 a | 1.00 a | 1.01 a | 1.00 a | 1.02 a | 1.02 a | 0.99 a | 1.01 a | 1.02 a |
Free SO2 (ppm) | 1.00 a | 1.00 a | 0.83 b | 14.20 a | 4.80 b | 1.60 c | 10.60 a | 6.93 b | 1.30 c |
Total SO2 (ppm) | 24.00 a | 21.90 b | 20.23 c | 25.30 a | 21.50 c | 24.23 b | 21.50 a | 14.57 b | 12.93 c |
pH | 3.72 a | 3.55 c | 3.68 b | 3.72 a | 3.50 c | 3.62 b | 3.34 a | 3.12 c | 3.28 b |
Total acidity (g/L) | 4.36 c | 4.71 b | 6.39 a | 6.07 b | 5.81 b | 8.27 a | 4.99 b | 4.25 c | 5.69 a |
Volatile acidity (g/L) | 0.32 a | 0.07 c | 0.31 b | 0.29 a | 0.11 b | 0.27 a | 0.5 a | 0.09 c | 0.43 b |
Glycerol (g/L) | 5.90 b | 2.70 c | 6.50 a | 4.50 b | 2.20 c | 5.43 a | 8.30 a | 5.57 b | 3.90 c |
Color intensity (au) | 0.39 b | 0.30 c | 1.22 a | 1.96 b | 1.91 b | 2.35 a | 4.39 c | 7.53 b | 7.92 a |
Hue | 4.46 a | 1.35 c | 2.00 b | 0.93 a | 0.78 b | 0.79 b | 0.78 a | 0.76 a | 0.68 b |
L* | 96.44 a | 95.19 b | 94.91 c | 54.21 a | 54.20 a | 48.20 b | 50.43 a | 48.79 b | 47.27 c |
a* | −0.31 b | −1.63 c | −0.24 a | 36.53 b | 34.14 c | 45.12 a | 42.26 c | 48.79 b | 49.13 a |
b* | 13.38 a | 9.34 b | 14.94 a | 6.43 b | 5.79 c | 8.80 a | 4.00 c | 7.79 b | 7.80 a |
∆E* 1 | – | 3.23 | 1.31 | – | 1.00 | 7.14 | – | 3.14 | 4.59 |
Compounds | RI DB-WAX | White Wine | Rosé Wine | Red Wine | Odor Descriptor a | Odor Threshold (µg/L) b | Aroma Classes c | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | RO | VD | CK | RO | VD | CK | RO | VD | |||||
Esters | |||||||||||||
Ethyl acetate | 897 | 61 a | 41 b | 6 c | 398 a | 49 b | 3 c | 40 a | 16 b | ND | Fruity, balsamic | 7500 | 2,4 |
Isobutyl acetate | 1019 | ND | ND | ND | 6 a | 3 b | ND | ND | ND | ND | Fruity | 1600 | 2 |
Ethyl butanoate | 1041 | 38 a | 5 b | ND | 19 a | 9 b | 1 c | 31 a | 16 b | ND | Floral, fruity | 400 | 1,2 |
Isoamyl acetate | 1128 | 2155 a | 730 b | 516 b | 5422 a | 1777 b | ND | 1122 a | 453 b | 173 c | Fruity | 30 | 2 |
Ethyl hexanoate | 1238 | 2152 a | 184 b | 2 b | 1712 a | 127 b | 2 c | 966 a | 160 b | 1 c | Fruity | 14 | 2 |
Hexyl acetate | 1277 | 30 a | 19 b | 9 c | 1157 a | 196 b | 86 b | 72 a | ND | ND | Fruity, herb | 670 | 2,6 |
Ethyl (Z)hex-3-enoate | 1296 | 9 a | 1 b | ND | ND | ND | ND | ND | ND | ND | / | / | / |
Ethyl heptanoate | 1338 | 1 a | ND | ND | 3 a | ND | ND | ND | ND | ND | Fruity | 220 | 2 |
Ethyl 2-hexenoate | 1350 | 7 a | 1 b | 1 b | 17 a | 3 b | ND | 8 a | 2 b | ND | / | / | / |
Heptyl acetate | 1377 | ND | ND | ND | 6 a | ND | ND | ND | ND | ND | Floral | 1500 | 1 |
Ethyl octanoate | 1439 | 8991 a | 92 b | 18 b | 3856 a | 206 b | 17 c | 2505 a | 58 b | 6 c | Floral, fruity | 240 | 1,2 |
Ethyl trans-4-decenoate | 1503 | 1 | ND | ND | 38 a | 8 b | 1 c | 252 a | 20 b | ND | / | / | / |
Ethyl nonanoate | 1522 | 92 a | 11 b | 3 c | 3 a | ND | ND | 8 a | ND | ND | Floral, fruity | 1300 | 1,2 |
Ethyl 3-hydroxybutyrate | 1523 | 6 a | 2 b | 2 b | ND | ND | ND | 10 a | 8 ab | 7 b | / | 20,000 | 2 |
Isoamyl lactate | 1554 | ND | ND | ND | 3 a | 1 b | 1c | ND | ND | ND | / | / | / |
Ethyl decanoate | 1640 | 1819 a | 17 b | 5 b | 1177 a | 97 b | 2 c | 736 a | 4 b | ND | Fruity | 200 | 2 |
Isoamyl octanoate | 1662 | 26 a | 3 b | ND | 8 a | 6 b | ND | ND | ND | ND | Fruity | 125 | 2 |
Diethyl succinate | 1679 | 29 a | 18 b | 12 c | 9 a | 6 b | 5 b | 339 a | 97 b | 86 b | Fruity | 6000 | 2,3 |
Benzyl acetate | 1736 | ND | ND | ND | 10 a | 2 b | 1 b | ND | ND | ND | Green | / | 6 |
Methyl salicylate | 1751 | ND | ND | ND | 4 a | ND | ND | ND | ND | ND | Peppermint | 40 | / |
Phenethyl acetate | 1823 | 235 a | 62 b | 1 b | 693 a | 297 b | 162 c | 87 a | 32 b | ND | Floral | 250 | 1 |
Ethyl dodecanoate | 1847 | ND | ND | ND | ND | ND | ND | 297 a | ND | ND | Floral, fruity | 3500 | 1,2 |
Ethyl hexadecanoate | 2245 | 2 a | 1 b | ND | 14 a | 6 b | 1 c | 3 a | 1 b | ND | Fruity, waxy | 1500 | 2,3 |
Total esters | 15,654 | 1187 | 575 | 14,555 | 2793 | 282 | 6536 | 867 | 273 | ||||
Higher alcohols | |||||||||||||
Isobutanol | 1099 | 3 a | 3 a | ND | 3 a | 2 b | ND | 71 a | 18 b | ND | Bitter, green | 40,000 | 3,6 |
1-Pentanol | 1214 | 2556 a | 852 b | 5 b | 2724 a | 864 b | 6 c | 6306 a | 1529 b | 1 c | Balsamic, bitter almond | 64,000 | 3,4 |
4-methyl-1-pentanol | 1320 | ND | ND | ND | ND | ND | ND | 6 a | 2 b | ND | Almond | 5,000 | 4 |
1-Hexanol | 1358 | 124 a | 46 b | 1 b | 130 a | 54 b | 1 c | 346 a | 134 b | ND | Floral, green | 110 | 1,6 |
3-Ethoxy-1-propanol | 1363 | 5 a | 4 a | ND | ND | ND | ND | ND | ND | ND | Fruity | 100 | 2 |
cis-3-Hexen-1-ol | 1369 | 5 a | 1 b | ND | 5 a | 2 b | 1 c | ND | ND | ND | Fruity, green | 400 | 6,2 |
1-Heptanol | 1460 | 3 a | 2 b | 1 c | 3 a | 2 b | 1 c | 17 a | 10 b | 1 c | Oily | 2500 | 3 |
2-Ethyl-1-hexanol | 1493 | ND | ND | ND | 3 b | 5 a | ND | 17 a | 18 a | ND | Fruity, floral | 8000 | 1,2 |
2,3-Butanediol | 1547 | 9 a | 4 b | 2 c | 14 a | 3 b | 3 b | 5 a | 2 b | 2 b | Fruity | 150,000 | 2 |
1-Octanol | 1561 | 13 a | 11 ab | 1 b | 7 a | 4 b | 1 c | 32 a | 13 b | 1 c | Floral, fatty | 40 | 1,3 |
1-nonanol | 1639 | 5 a | 2 b | 1 b | 4 a | 4 a | 1 b | 43 a | 9 b | 1 c | Fruity | 600 | 2,7 |
1-Decanol | 1765 | 14 a | 3 b | 2 b | 18 a | 3 b | ND | 24 a | 3 b | ND | Fatty | 400 | 3 |
1-Undecanol | 1869 | ND | ND | ND | 3 a | 1 b | ND | ND | ND | ND | Fruity | / | 2 |
Benzyl alcohol | 1883 | 11 a | 5 b | ND | 21 a | 16 b | 11 c | 53 a | 34 b | 12 c | Fruity, floral | 200,000 | 1,2 |
2-Phenylethanol | 1918 | 930 a | 274 b | 185 b | 904 a | 672 b | 554 c | 2785 a | 688 b | 564 c | Floral | 10,000 | 1 |
Dodecanol | 1970 | 10 a | 5 b | 1 c | 9 a | 2 b | 1 c | ND | ND | ND | Fatty | 7 | 3 |
Total higher alcohols | 3688 | 1212 | 199 | 3848 | 1634 | 580 | 9705 | 2460 | 582 | ||||
Acids | |||||||||||||
Acetic acid | 1453 | 47 a | 4 b | 13 b | 21 a | 2 b | ND | 58 a | 4 c | 23 b | Sour, vinegar | 200,000 | 3,4 |
Isobutyric acid | 1568 | 4 a | ND | 1 b | 2 a | ND | 2 b | 7 a | 2 b | 1 b | Cheesy | 200,000 | 3 |
Butanoic acid | 1627 | 10 a | ND | 5 b | 8 a | 3 c | 5 b | 11 a | 2 c | 4 b | Rancid, sweat | 173 | 3 |
2-Methylbutanoic acid | 1670 | 19 a | ND | ND | 8 a | 4 b | ND | ND | ND | ND | Fatty, rancid | 250 | 3 |
2-methylhexanoic acid | 1671 | ND | ND | ND | ND | ND | ND | 36 a | 8 b | 8 b | Rancid | / | 3 |
Hexanoic acid | 1845 | 542 a | 115 ab | 103 b | 414 a | 107 b | 91 c | 388 a | 81 b | 40 c | Cheesy, fatty | 420 | 3 |
Octanoic acid | 2056 | 1440 a | 443 b | 189 b | 3094 a | 114 c | 289 b | 727 a | 216 b | 34 c | Rancid, fatty | 500 | 3 |
Decanoic acid | 2275 | 145 a | 33 b | 17 b | 112 a | 101 b | 17 c | 175 a | 28 b | 15 c | Rancid, fatty | 1400 | 3 |
Total acids | 2207 | 595 | 328 | 3659 | 331 | 404 | 1402 | 341 | 125 | ||||
Terpenics and C13-Norisoprenoids | |||||||||||||
Linalool | 1550 | 14 a | 8 b | 1 c | 9 a | 7 a | 1 b | ND | ND | ND | Floral | 25 | 1 |
α-Terpineol | 1705 | 3 a | 2 b | 1 c | 4 a | 1 b | ND | ND | ND | ND | Floral | 250 | 1 |
Citronellol | 1770 | 9 a | 5 ab | ND | 16 a | 8 b | 1 c | 17 a | 8 b | 1 c | Floral | 100 | 1 |
Nerol | 1806 | ND | ND | ND | 3 a | 1 b | ND | 10 a | ND | ND | Floral, citrus | 400 | 1 |
β-damascenone | 1831 | 37 a | 21 a b | 2 b | 14 a | 9 b | 1 c | 15 a | 6 b | 1 c | Floral, fruity | 0.05 | 1,2 |
Geraniol | 1852 | 25 a | 5 b | 1 c | 12 a | 5 b | 1 c | ND | ND | ND | Floral | 20 | 1 |
Geranyl acetone | 1860 | 10 a | 7 a | 1 b | 5 a | 2 b | 1 c | 5 a | ND | ND | Floral | 60 | 1 |
Nerolidol | 2039 | 14 a | 3 b | 1 b | ND | ND | ND | ND | ND | ND | Floral, fruity | 100 | 1,2 |
Total | 112 | 51 | 7 | 63 | 33 | 5 | 47 | 14 | 2 | ||||
Other compounds | |||||||||||||
Benzaldehyde | 1528 | 60 a | 13 b | 6 b | 110 a | 15 b | 1 c | 12 a | 4 b | 1 c | Fruity | 350 | 2 |
Methionol | 1724 | 4 a | 1 b | ND | 2 a | ND | ND | 8 a | 1 b | ND | Cooked potato, garlic | 1500 | 6 |
Total | 64 | 14 | 6 | 112 | 15 | 1 | 20 | 5 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sam, F.E.; Ma, T.; Liang, Y.; Qiang, W.; Atuna, R.A.; Amagloh, F.K.; Morata, A.; Han, S. Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines. Membranes 2021, 11, 957. https://doi.org/10.3390/membranes11120957
Sam FE, Ma T, Liang Y, Qiang W, Atuna RA, Amagloh FK, Morata A, Han S. Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines. Membranes. 2021; 11(12):957. https://doi.org/10.3390/membranes11120957
Chicago/Turabian StyleSam, Faisal Eudes, Tengzhen Ma, Yuhua Liang, Wenle Qiang, Richard Atinpoore Atuna, Francis Kweku Amagloh, Antonio Morata, and Shunyu Han. 2021. "Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines" Membranes 11, no. 12: 957. https://doi.org/10.3390/membranes11120957
APA StyleSam, F. E., Ma, T., Liang, Y., Qiang, W., Atuna, R. A., Amagloh, F. K., Morata, A., & Han, S. (2021). Comparison between Membrane and Thermal Dealcoholization Methods: Their Impact on the Chemical Parameters, Volatile Composition, and Sensory Characteristics of Wines. Membranes, 11(12), 957. https://doi.org/10.3390/membranes11120957