Graphene Oxide-Based Membranes Intercalated with an Aromatic Crosslinker for Low-Pressure Nanofiltration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of GO
2.3. Preparation of GO/DCX Membranes
2.4. Membrane Performance Test
2.5. Membrane Characterization
3. Results and Discussion
3.1. Characterization of the GO and GO/DCX Membranes
3.2. Molecular Separation Performance of the Membranes
3.3. Ionic Separation Performance of the Membranes
3.4. Long-Term Stability of the DCX-Crosslinked GO Membrane
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Obotey Ezugbe, E.; Rathilal, S. Membrane Technologies in Wastewater Treatment: A Review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Mariñas, B.J.; Mayes, A.M.; Mayes, A.M. Science and Technology for Water Purification in the Coming Decades. Nanosci. Technol 2009, 452, 337–346. [Google Scholar]
- Pendergast, M.M.; Hoek, E.M.V. A Review of Water Treatment Membrane Nanotechnologies. Energy Environ. Sci. 2011, 4, 1946–1971. [Google Scholar] [CrossRef] [Green Version]
- Elimelech, M.; Phillip, W.A. The Future of Seawater Desalination: Energy, Technology, and the Environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Lee, Y.; Yun, K.H.; Sethunga, D.; Bae, T.H. Membrane Contactors for Maximizing Biomethane Recovery in Anaerobic Wastewater Treatments: Recent Efforts and Future Prospect. Appl. Sci. 2021, 11, 1372. [Google Scholar] [CrossRef]
- Lim, S.K.; Setiawan, L.; Bae, T.H.; Wang, R. Polyamide-Imide Hollow Fiber Membranes Crosslinked with Amine-Appended Inorganic Networks for Application in Solvent-Resistant Nanofiltration under Low Operating Pressure. J. Memb. Sci. 2016, 501, 152–160. [Google Scholar] [CrossRef]
- Mohammad, A.W.; Teow, Y.H.; Ang, W.L.; Chung, Y.T.; Oatley-Radcliffe, D.L.; Hilal, N. Nanofiltration Membranes Review: Recent Advances and Future Prospects. Desalination 2015, 356, 226–254. [Google Scholar] [CrossRef]
- Lee, J.; Yang, H.; Bae, T.-H. Polybenzimidazole Membrane Crosslinked with Epoxy-Containing Inorganic Networks for Organic Solvent Nanofiltration and Aqueous Nanofiltration under Extreme Basic Conditions. Membranes 2022, 12, 140. [Google Scholar] [CrossRef]
- Lim, S.K.; Goh, K.; Bae, T.H.; Wang, R. Polymer-Based Membranes for Solvent-Resistant Nanofiltration: A Review. Chinese J. Chem. Eng. 2017, 25, 1653–1675. [Google Scholar] [CrossRef]
- Lee, Y.; Chuah, C.Y.; Lee, J.; Bae, T.H. Effective Functionalization of Porous Polymer Fillers to Enhance CO2/N2 Separation Performance of Mixed-Matrix Membranes. J. Memb. Sci. 2022, 647, 120309. [Google Scholar] [CrossRef]
- Zhang, Y.; Chung, T.S. Graphene Oxide Membranes for Nanofiltration. Curr. Opin. Chem. Eng. 2017, 16, 9–15. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Bae, T.H. Graphene-Based Membranes for H2 Separation: Recent Progress and Future Perspective. Membranes 2020, 10, 336. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Ham, M.H.; Park, H.B.; Kim, C.M.; Song, J.H.; Kim, I.S. Tunable Semi-Permeability of Graphene-Based Membranes by Adjusting Reduction Degree of Laminar Graphene Oxide Layer. J. Memb. Sci. 2018, 547, 73–79. [Google Scholar] [CrossRef]
- Han, Z.Y.; Huang, L.J.; Qu, H.J.; Wang, Y.X.; Zhang, Z.J.; Rong, Q.L.; Sang, Z.Q.; Wang, Y.; Kipper, M.J.; Tang, J.G. A Review of Performance Improvement Strategies for Graphene Oxide-Based and Graphene-Based Membranes in Water Treatment. J. Mater. Sci. 2021, 56, 9545–9574. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Y.; Gao, X.; Ma, Z.; Wang, X.; Gao, C. Multilayered Graphene Oxide Membrane for Water Treatment: A Review. Carbon 2018, 139, 964–981. [Google Scholar] [CrossRef]
- Nie, L.; Chuah, C.Y.; Bae, T.H.; Lee, J.M. Graphene-Based Advanced Membrane Applications in Organic Solvent Nanofiltration. Adv. Funct. Mater. 2021, 31, 2006949. [Google Scholar] [CrossRef]
- Luo, J.; Cote, L.J.; Tung, V.C.; Tan, A.T.L.; Goins, P.E.; Wu, J.; Huang, J. Graphene Oxide Nanocolloids. J. Am. Chem. Soc. 2010, 132, 17667–17669. [Google Scholar] [CrossRef]
- Yang, E.; Goh, K.; Chuah, C.Y.; Wang, R.; Bae, T.H. Asymmetric Mixed-Matrix Membranes Incorporated with Nitrogen-Doped Graphene Nanosheets for Highly Selective Gas Separation. J. Memb. Sci. 2020, 615, 118293. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, P.; Liang, B.; Liu, Y.; Xu, T.; Wang, L.; Cao, B.; Pan, K. Graphene Oxide as an Effective Barrier on a Porous Nanofibrous Membrane for Water Treatment. ACS Appl. Mater. Interfaces 2016, 8, 6211–6218. [Google Scholar] [CrossRef]
- Dai, F.; Yu, R.; Yi, R.; Lan, J.; Yang, R.; Wang, Z.; Chen, J.; Chen, L. Ultrahigh Water Permeance of a Reduced Graphene Oxide Nanofiltration Membrane for Multivalent Metal Ion Rejection. Chem. Commun. 2020, 56, 15068–15071. [Google Scholar] [CrossRef]
- Nie, L.; Goh, K.; Wang, Y.; Lee, J.; Huang, Y.; Enis Karahan, H.E.; Zhou, K.; Guiver, M.D.; Bae, T.H. Realizing Small-Flake Graphene Oxide Membranes for Ultrafast Size-Dependent Organic Solvent Nanofiltration. Sci. Adv. 2020, 6, eaaz9184. [Google Scholar] [CrossRef] [PubMed]
- Abraham, J.; Vasu, K.S.; Williams, C.D.; Gopinadhan, K.; Su, Y.; Cherian, C.T.; Dix, J.; Prestat, E.; Haigh, S.J.; Grigorieva, I.V.; et al. Tunable Sieving of Ions Using Graphene Oxide Membranes. Nat. Nanotechnol. 2017, 12, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Kim, C.M.; Song, J.H.; Ki, H.; Ham, M.H.; Kim, I.S. Enhanced Desalination Performance of Forward Osmosis Membranes Based on Reduced Graphene Oxide Laminates Coated with Hydrophilic Polydopamine. Carbon 2017, 117, 293–300. [Google Scholar] [CrossRef]
- Luo, Z.; Fang, Q.; Xu, X.; Raj, D.V.; Zhou, X.; Liu, Z. Attapulgite Nanofibers and Graphene Oxide Composite Membrane for High-Performance Molecular Separation. J. Colloid Interface Sci. 2019, 545, 276–281. [Google Scholar] [CrossRef]
- Yu, Z.; Shao, L.; Li, X.; Zeng, H.; Liu, Y. One-Step Preparation of Sepiolite/Graphene Oxide Membrane for Multifunctional Oil-in-Water Emulsions Separation. Appl. Clay Sci. 2019, 181, 105208. [Google Scholar]
- Liu, P.; Zhu, C.; Mathew, A.P. Mechanically Robust High Flux Graphene Oxide—Nanocellulose Membranes for Dye Removal from Water. J. Hazard. Mater. 2019, 371, 484–493. [Google Scholar] [CrossRef]
- Ching, K.; Lian, B.; Leslie, G.; Chen, X.; Zhao, C. Metal-Cation-Modified Graphene Oxide Membranes for Water Permeation. Carbon 2020, 170, 646–657. [Google Scholar] [CrossRef]
- Chen, D.; Yu, S.; Yang, M.; Li, D.; Li, X. Solvent Resistant Nanofiltration Membranes Based on Crosslinked Polybenzimidazole. RSC Adv. 2016, 6, 16925–16932. [Google Scholar] [CrossRef]
- Ashraf, A.R.; Akhter, Z.; Simon, L.C.; McKee, V.; Castel, C.D. Synthesis of Polyimides from α,Aʹ-Bis(3-Aminophenoxy)-p-Xylene: Spectroscopic, Single Crystal XRD and Thermal Studies. J. Mol. Struct. 2018, 1160, 177–188. [Google Scholar] [CrossRef]
- Valtcheva, I.B.; Kumbharkar, S.C.; Kim, J.F.; Bhole, Y.; Livingston, A.G. Beyond Polyimide: Crosslinked Polybenzimidazole Membranes for Organic Solvent Nanofiltration (OSN) in Harsh Environments. J. Memb. Sci. 2014, 457, 62–72. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kahng, Y.H.; Kim, N.; Lee, J.H.; Hwang, Y.H.; Lee, S.M.; Choi, S.M.; Kim, W.B.; Lee, K. Impact of Synthesis Routes on the Chemical, Optical, and Electrical Properties of Graphene Oxides and Its Derivatives. Curr. Appl. Phys. 2015, 15, 1435–1444. [Google Scholar] [CrossRef]
- Kang, Y.; Qiu, R.; Jian, M.; Wang, P.; Xia, Y.; Motevalli, B.; Zhao, W.; Tian, Z.; Liu, J.Z.; Wang, H.; et al. The Role of Nanowrinkles in Mass Transport across Graphene-Based Membranes. Adv. Funct. Mater. 2020, 30, 2003159. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Veerapandian, M.; Yun, K.; Kim, S.J. The Chemical and Structural Analysis of Graphene Oxide with Different Degrees of Oxidation. Carbon 2013, 53, 38–49. [Google Scholar] [CrossRef]
- Jubsilp, C.; Takeichi, T.; Rimdusit, S. Property Enhancement of Polybenzoxazine Modified with Dianhydride. Polym. Degrad. Stab. 2011, 96, 1047–1053. [Google Scholar] [CrossRef]
- Huang, D.C.; Jiang, C.H.; Liu, F.J.; Cheng, Y.C.; Chen, Y.C.; Hsueh, K.L. Preparation of Ru-Cs Catalyst and Its Application on Hydrogen Production by Ammonia Decomposition. Int. J. Hydrogen Energy 2013, 38, 3233–3240. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Najjar, A.; Zakaria, Y.; Mansour, S.; Atieh, M.A. XPS and Structural Studies of High Quality Graphene Oxide and Reduced Graphene Oxide Prepared by Different Chemical Oxidation Methods. Ceram. Int. 2019, 45, 14439–14448. [Google Scholar] [CrossRef]
- Araujo, J.R.; Archanjo, B.S.; de Souza, K.R.; Kwapinski, W.; Falcão, N.P.S.; Novotny, E.H.; Achete, C.A. Selective Extraction of Humic Acids from an Anthropogenic Amazonian Dark Earth and from a Chemically Oxidized Charcoal. Biol. Fertil. Soils 2014, 50, 1223–1232. [Google Scholar] [CrossRef]
- Wilson, M.; Kore, R.; Ritchie, A.W.; Fraser, R.C.; Beaumont, S.K.; Srivastava, R.; Badyal, J.P.S. Palladium–Poly(Ionic Liquid) Membranes for Permselective Sonochemical Flow Catalysis. Colloids Surfaces A Physicochem. Eng. Asp. 2018, 545, 78–85. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, J.L.; Zeng, G.M.; Song, B.; Cao, W.C.; Liu, H.Y.; Huan, S.Y.; Peng, P. Novel “Loose” GO/MoS2 Composites Membranes with Enhanced Permeability for Effective Salts and Dyes Rejection at Low Pressure. J. Memb. Sci. 2019, 574, 112–123. [Google Scholar] [CrossRef]
- Baskoro, F.; Wong, C.B.; Kumar, S.R.; Chang, C.W.; Chen, C.H.; Chen, D.W.; Lue, S.J. Graphene Oxide-Cation Interaction: Inter-Layer Spacing and Zeta Potential Changes in Response to Various Salt Solutions. J. Memb. Sci. 2018, 554, 253–263. [Google Scholar] [CrossRef]
- Zhu, J.; Tian, M.; Hou, J.; Wang, J.; Lin, J.; Zhang, Y.; Liu, J.; Van Der Bruggen, B. Surface Zwitterionic Functionalized Graphene Oxide for a Novel Loose Nanofiltration Membrane. J. Mater. Chem. A 2016, 4, 1980–1990. [Google Scholar] [CrossRef]
- Kang, Y.; Obaid, M.; Jang, J.; Kim, I.S. Sulfonated Graphene Oxide Incorporated Thin Film Nanocomposite Nanofiltration Membrane to Enhance Permeation and Antifouling Properties. Desalination 2019, 470, 114125. [Google Scholar] [CrossRef]
- Yang, E.; Karahan, H.E.; Goh, K.; Chuah, C.Y.; Wang, R.; Bae, T.H. Scalable Fabrication of Graphene-Based Laminate Membranes for Liquid and Gas Separations by Crosslinking-Induced Gelation and Doctor-Blade Casting. Carbon 2019, 155, 129–137. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, W.; Van der Bruggen, B.; Gao, C.; Shen, J. Tunable Nanoscale Interlayer of Graphene with Symmetrical Polyelectrolyte Multilayer Architecture for Lithium Extraction. Adv. Mater. Interfaces 2018, 5, 1701449. [Google Scholar] [CrossRef]
- Schaep, J.; Van der Bruggen, B.; Vandecasteele, D.W.C. Influence of Ion Size and Charge in Nanofiltration. Sep. Purif. Technol. 1998, 14, 155–162. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, W.; Weyland, M.; Yuan, S.; Xia, Y.; Liu, H.; Jian, M.; Yang, J.; Easton, C.D.; Selomulya, C.; et al. Thermally Reduced Nanoporous Graphene Oxide Membrane for Desalination. Environ. Sci. Technol. 2019, 53, 8314–8323. [Google Scholar] [CrossRef]
- Yaroshchuk, A.E. Non-Steric Mechanism of Nanofiltration: Superposition of Donnan and Dielectric Exclusion. Sep. Purif. Technol. 2001, 22–23, 143–158. [Google Scholar] [CrossRef]
- Hu, R.; Zhao, G.; He, Y.; Zhu, H. The Application Feasibility of Graphene Oxide Membranes for Pressure-Driven Desalination in a Dead-End Flow System. Desalination 2020, 477, 114271. [Google Scholar] [CrossRef]
- Zhang, Z.; Zou, L.; Aubry, C.; Jouiad, M.; Hao, Z. Chemically Crosslinked RGO Laminate Film as an Ion Selective Barrier of Composite Membrane. J. Memb. Sci. 2016, 515, 204–211. [Google Scholar] [CrossRef]
- Song, X.; Zambare, R.S.; Qi, S.; Sowrirajalu, B.N.I.L.; James Selvaraj, A.P.; Tang, C.Y.; Gao, C. Charge-Gated Ion Transport through Polyelectrolyte Intercalated Amine Reduced Graphene Oxide Membranes. ACS Appl. Mater. Interfaces 2017, 9, 41482–41995. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Yu, T.; Graham, N. Development of a Stable Cation Modified Graphene Oxide Membrane for Water Treatment. 2D Mater. 2017, 4, 045006. [Google Scholar] [CrossRef]
- Mo, Y.; Zhao, X.; Shen, Y.X. Cation-Dependent Structural Instability of Graphene Oxide Membranes and Its Effect on Membrane Separation Performance. Desalination 2016, 399, 40–46. [Google Scholar] [CrossRef]
- Meng, N.; Zhao, W.; Shamsaei, E.; Wang, G.; Zeng, X.; Lin, X.; Xu, T.; Wang, H.; Zhang, X. A Low-Pressure GO Nanofiltration Membrane Crosslinked via Ethylenediamine. J. Memb. Sci. 2018, 548, 363–371. [Google Scholar] [CrossRef]
- Park, M.J.; Nisola, G.M.; Seo, D.H.; Wang, C.; Phuntsho, S.; Choo, Y.; Chung, W.J.; Shon, H.K. Chemically Cross-Linked Graphene Oxide as a Selective Layer on Electrospun Polyvinyl Alcohol Nanofiber Membrane for Nanofiltration Application. Nanomaterials 2021, 11, 2867. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Araya, S.; Kunimatsu, M.; Yoshioka, T.; Shintani, T.; Kamio, E.; Matsuyama, H. Fabrication of Stacked Graphene Oxide Nanosheet Membranes Using Triethanolamine as a Crosslinker and Mild Reducing Agent for Water Treatment. Membranes 2018, 8, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, F.X.; Liu, Q.; Dong, L.Q.; Zhang, T.; Wei, Y.B.; Chen, J.F.; Wang, Y.; Guo, C.M. Rejection of Pharmaceuticals by Graphene Oxide Membranes: Role of Crosslinker and Rejection Mechanism. J. Memb. Sci. 2020, 612, 118338. [Google Scholar] [CrossRef]
- Parsamehr, P.S.; Zahed, M.; Tofighy, M.A.; Mohammadi, T.; Rezakazemi, M. Preparation of Novel Cross-Linked Graphene Oxide Membrane for Desalination Applications Using (EDC and NHS)-Activated Graphene Oxide and PEI. Desalination 2019, 468, 114079. [Google Scholar] [CrossRef]
- Bandehali, S.; Moghadassi, A.; Parvizian, F.; Zhang, Y.; Hosseini, S.M.; Shen, J. New Mixed Matrix PEI Nanofiltration Membrane Decorated by Glycidyl-POSS Functionalized Graphene Oxide Nanoplates with Enhanced Separation and Antifouling Behaviour: Heavy Metal Ions Removal. Sep. Purif. Technol. 2020, 242, 116745. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, H.; Liu, Y.; Chen, M.; Chen, K.; Huang, Y.; Xiao, C. Design of a Novel Interfacial Enhanced GO-PA/APVC Nanofiltration Membrane with Stripe-like Structure. J. Memb. Sci. 2020, 604, 118064. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, K.; Zhang, W.; Bai, Y.; Sun, Y.; Gu, J. Graphene Oxide Quantum Dots Incorporated into a Thin Film Nanocomposite Membrane with High Flux and Antifouling Properties for Low-Pressure Nanofiltration. ACS Appl. Mater. Interfaces 2017, 9, 11082–11094. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Lin, F.W.; Du, Y.; Zhang, X.; Wu, J.; Xu, Z.K. Graphene Oxide Nanofiltration Membranes Stabilized by Cationic Porphyrin for High Salt Rejection. ACS Appl. Mater. Interfaces 2016, 8, 12588–12593. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Jia, M.; Wu, W.; Li, Z.; Li, W. Chemical Vapor Crosslinking of Graphene Oxide Membranes for Controlling Nanochannels. Environ. Sci. Nano 2020, 7, 2924–2929. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Chung, T.S. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Environ. Sci. Technol. 2015, 49, 10235–10242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, N.; Sun, Y.; Yang, H.; Zhang, X.; Li, Y.; Wang, G.; Zhou, J.; Zou, L.; Hao, Z. Interfacial Force-Assisted In-Situ Fabrication of Graphene Oxide Membrane for Desalination. ACS Appl. Mater. Interfaces 2018, 10, 27205–27214. [Google Scholar] [CrossRef] [PubMed]
Membrane | Atomic Percentage (%) and Ratio | |||
---|---|---|---|---|
C | O | Cl | C/O | |
Pristine GO | 79.4% | 20.6% | 0.0% | 3.9 |
GO/DCX RT | 86.6% | 10.2% | 0.2% | 8.5 |
GO/DCX HT | 91.7% | 7.0% | 1.3% | 13.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, H.; Park, Y.; Yang, E.; Bae, T.-H. Graphene Oxide-Based Membranes Intercalated with an Aromatic Crosslinker for Low-Pressure Nanofiltration. Membranes 2022, 12, 966. https://doi.org/10.3390/membranes12100966
Kwon H, Park Y, Yang E, Bae T-H. Graphene Oxide-Based Membranes Intercalated with an Aromatic Crosslinker for Low-Pressure Nanofiltration. Membranes. 2022; 12(10):966. https://doi.org/10.3390/membranes12100966
Chicago/Turabian StyleKwon, Hyuntak, Yongju Park, Euntae Yang, and Tae-Hyun Bae. 2022. "Graphene Oxide-Based Membranes Intercalated with an Aromatic Crosslinker for Low-Pressure Nanofiltration" Membranes 12, no. 10: 966. https://doi.org/10.3390/membranes12100966
APA StyleKwon, H., Park, Y., Yang, E., & Bae, T. -H. (2022). Graphene Oxide-Based Membranes Intercalated with an Aromatic Crosslinker for Low-Pressure Nanofiltration. Membranes, 12(10), 966. https://doi.org/10.3390/membranes12100966