Forward Osmosis Membranes: The Significant Roles of Selective Layer
Abstract
:1. Introduction
1.1. Basic FO Concept
1.2. FO Target Applications
1.3. Development of DS
2. Selecting the High-Selective FO Membranes
2.1. State-of-the-Art FO Membranes and Performance Evaluation Method
2.2. High Selective FO Membranes for Targeted Applications
3. Selective Layer of FO Membranes
3.1. Substrates and Polyamide Formation
3.2. Role of Interlayers
3.3. Suitable IP Methods and Formula
3.4. Roles of Nanochannels of TFN Membranes
3.5. Non-Polyamide Selective Layer
4. Conclusions
- (1)
- In addition to special FO application that does not need DS regeneration, the general FO applications requiring draw solute recovery is promising for feed streams with high TDS and/or high viscosity. For the FO application process that needs to recover the draw solutes, the key to the success of FO is whether the draw solutes can be recovered with low energy consumption and how to avoid or reduce the influence of reverse solutes permeation on the feed solutions;
- (2)
- Since the feed stream contains high TDS for most of the promising FO applications, the A value and S value of FO membranes become less important due to the low water flux. However, the A/B ratio shall be kept as high as possible to eliminate reverse solute leakage to feed solutions;
- (3)
- The mechanical strength of the FO membrane should not be compromised, although a porous substrate with a small S value is preferred for FO feed with low TDS. Testing A and B values under low-pressure RO mode is a good method to ensure the general handleability of the membrane;
- (4)
- The porous substrate of the FO membrane does not help make a tight polyamide layer. To increase the solute rejection or A/B ratio of a TFC membrane, creating an interlayer on the porous substrate for interfacial polymerization reaction is an effective approach;
- (5)
- Most independent findings suggest that the incorporation of nanoparticles into polyamide layers can increase A and possibly A/B when the selectivity-permeability trade-off is properly controlled. However, if the TFC and TFN membranes in the same period are compared together, statistically, the permeability coefficient (A) and selectivity (A/B) of TFN are lower than those of the TFC membrane, which is different from our expectation. Future research may need to take advantage of the excellent water permeability and selectivity of nanomaterials so that TFN membranes truly lead to TFC membranes from a lateral statistical point of view;
- (6)
- More pilot and industrial scale studies are needed to guide the development of membranes and module designs. Membrane researchers and developers shall pay more attention to FO applications, which shall be promising and show energy savings compared to other processes/technologies.
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
CNTs | Carbon nanotubes |
CTA | Cellulose triacetate |
COF | Covalent Organic Frame |
DMF | Dimethylformamide |
DMSO | Dimethyl sulfoxide |
ELD | Electroless deposition |
FO | Forward osmosis |
GO | Graphene Oxide |
ICP | Internal concentration polarization |
ISA | Integrally skinned asymmetric |
MD | Membrane distillation |
MED | Multi-effect distillation |
MOF | Metal-Organic Frameworks |
MXene | Ti3C2Tx |
MF | Microfiltration |
MPD | M-phenylenediamine |
MSF | Multi stage flash distillation |
NF | Nanofiltration |
PA | Polyamide |
PE | Polyethylene |
PEI | Polyetherimide |
RO | Reverse osmosis |
TFC | Thin film composite |
TFN | Thin film nanocomposite |
TMC | Trimesoyl chloride |
UF | Ultrafiltration |
References
- Wang, D.; Zhang, J.; Li, J.; Wang, W.; Shon, H.K.; Huang, H.; Zhao, Y.; Wang, Z. Inorganic scaling in the treatment of shale gas wastewater by fertilizer drawn forward osmosis process. Desalination 2022, 521, 115396. [Google Scholar] [CrossRef]
- Chang, H.; Liu, S.; Tong, T.; He, Q.; Crittenden, J.C.; Vidic, R.D.; Liu, B. On-Site Treatment of Shale Gas Flowback and Produced Water in Sichuan Basin by Fertilizer Drawn Forward Osmosis for Irrigation. Environ. Sci. Technol. 2020, 54, 10926–10935. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.L.; Mohammad, A.W.; Johnson, D.; Hilal, N. Forward osmosis research trends in desalination and wastewater treatment: A review of research trends over the past decade. J. Water Process Eng. 2019, 31, 100886. [Google Scholar] [CrossRef]
- Akther, N.; Phuntsho, S.; Chen, Y.; Ghaffour, N.; Shon, H.K. Recent advances in nanomaterial-modified polyamide thin-film composite membranes for forward osmosis processes. J. Membr. Sci. 2019, 584, 20–45. [Google Scholar] [CrossRef]
- Jain, H.; Garg, M.C. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. Environ. Technol. Innov. 2021, 23, 101561. [Google Scholar] [CrossRef]
- Obaid, M.; Abdelkareem, M.A.; Kook, S.; Kim, H.-Y.; Hilal, N.; Ghaffour, N.; Kim, I.S. Breakthroughs in the fabrication of electrospun-nanofiber-supported thin film composite/nanocomposite membranes for the forward osmosis process: A review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1727–1795. [Google Scholar] [CrossRef]
- Kahrizi, M.; Gonzales, R.R.; Kong, L.; Matsuyama, H.; Lu, P.; Lin, J.; Zhao, S. Significant roles of substrate properties in forward osmosis membrane performance: A review. Desalination 2022, 528, 115615. [Google Scholar] [CrossRef]
- Suwaileh, W.A.; Johnson, D.J.; Sarp, S.; Hilal, N. Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination 2018, 436, 176–201. [Google Scholar] [CrossRef]
- Suzaimi, N.D.; Goh, P.S.; Ismail, A.F.; Mamah, S.C.; Malek, N.A.N.N.; Lim, J.W.; Wong, K.C.; Hilal, N. Strategies in forward osmosis membrane substrate fabrication and modification: A review. Membranes 2020, 10, 332. [Google Scholar] [CrossRef]
- Yadav, S.; Saleem, H.; Ibrar, I.; Naji, O.; Hawari, A.A.; Alanezi, A.A.; Zaidi, S.J.; Altaee, A.; Zhou, J. Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination 2020, 482, 114375. [Google Scholar] [CrossRef]
- Tharayil, J.M.; Manaf, A. Sustainable forward osmosis desalination: A review on polymeric membranes and flux parameters. Int. J. Environ. Chem. 2020, 19, 289–298. [Google Scholar] [CrossRef]
- Xu, W.; Ge, Q. Synthetic polymer materials for forward osmosis (FO) membranes and FO applications: A review. Rev. Chem. Eng. 2019, 35, 191–209. [Google Scholar] [CrossRef]
- Alihemati, Z.; Hashemifard, S.; Matsuura, T.; Ismail, A.; Hilal, N. Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap. Desalination 2020, 491, 114557. [Google Scholar] [CrossRef]
- Wu, W.; Shi, Y.; Liu, G.; Fan, X.; Yu, Y. Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review. Desalination 2020, 491, 114452. [Google Scholar] [CrossRef]
- Hung, W.-S.; Chiao, Y.-H.; Sengupta, A.; Lin, Y.-W.; Wickramasinghe, S.R.; Hu, C.-C.; Tsai, H.-A.; Lee, K.-R.; Lai, J.-Y. Tuning the interlayer spacing of forward osmosis membranes based on ultrathin graphene oxide to achieve desired performance. Carbon 2019, 142, 337–345. [Google Scholar] [CrossRef]
- Kanagaraj, P.; Liu, C.; Rana, D. Effect of the different layered structural modification on the performances of the thin-film composite forward osmosis flat sheet membranes–A review. React. Funct. Polym. 2021, 167, 104981. [Google Scholar] [CrossRef]
- Yadav, S.; Ibrar, I.; Bakly, S.; Khanafer, D.; Altaee, A.; Padmanaban, V.C.; Samal, A.K.; Hawari, A.H. Organic Fouling in Forward Osmosis: A Comprehensive Review. Water 2020, 12, 1505. [Google Scholar] [CrossRef]
- Firouzjaei, M.D.; Seyedpour, S.F.; Aktij, S.A.; Giagnorio, M.; Bazrafshan, N.; Mollahosseini, A.; Samadi, F.; Ahmadalipour, S.; Firouzjaei, F.D.; Esfahani, M.R.; et al. Recent advances in functionalized polymer membranes for biofouling control and mitigation in forward osmosis. J. Membr. Sci. 2020, 596, 117604. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, M.; Wang, Z.; Hu, W.; Cao, J.; Wu, Z.-C. Uniqueness of biofouling in forward osmosis systems: Mechanisms and control. Crit. Rev. Environ. Sci. Technol. 2018, 48, 1031–1066. [Google Scholar] [CrossRef]
- Lee, W.J.; Ng, Z.C.; Hubadillah, S.K.; Goh, P.S.; Lau, W.J.; Othman, M.H.D.; Ismail, A.F.; Hilal, N. Fouling mitigation in forward osmosis and membrane distillation for desalination. Desalination 2020, 480, 114338. [Google Scholar] [CrossRef]
- Ly, Q.V.; Hu, Y.; Li, J.; Cho, J.; Hur, J. Characteristics and influencing factors of organic fouling in forward osmosis operation for wastewater applications: A comprehensive review. Environ. Int. 2019, 129, 164–184. [Google Scholar] [CrossRef]
- Zhu, L.; Ding, C.; Zhu, T.; Wang, Y. A review on the forward osmosis applications and fouling control strategies for wastewater treatment. Front. Chem. Sci. Eng. 2022, 16, 661–680. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, W.; Ge, Q. Synthetic draw solutes for forward osmosis: Status and future. Rev. Chem. Eng. 2018, 34, 767–795. [Google Scholar] [CrossRef]
- Long, Q.; Jia, Y.; Li, J.; Yang, J.; Liu, F.; Zheng, J.; Yu, B. Recent advance on draw solutes development in forward osmosis. Processes 2018, 6, 165. [Google Scholar] [CrossRef]
- Wang, J.; Gao, S.; Tian, J.; Cui, F.; Shi, W. Recent developments and future challenges of hydrogels as draw solutes in forward osmosis process. Water 2020, 12, 692. [Google Scholar] [CrossRef]
- Lim, W.J.; Ooi, B.S. Applications of responsive hydrogel to enhance the water recovery via membrane distillation and forward osmosis: A review. J. Water Process Eng. 2022, 47, 102828. [Google Scholar] [CrossRef]
- Hamad, M.J.; Chirwa, E.M. Forward osmosis for water recovery using polyelectrolyte PolyDADMAC and DADMAC draw solutions as a low pressure energy saving process. Desalination 2019, 453, 89–101. [Google Scholar] [CrossRef]
- Chaoui, I.; Abderafi, S.; Vaudreuil, S.; Bounahmidi, T. Water desalination by forward osmosis: Draw solutes and recovery methods—review. Environ. Technol. Rev. 2019, 8, 25–46. [Google Scholar] [CrossRef]
- Sreedhar, I.; Khaitan, S.; Gupta, R.; Reddy, B.M.; Venugopal, A. An odyssey of process and engineering trends in forward osmosis. Environ. Sci. Water Res. Technol. 2018, 4, 129–168. [Google Scholar] [CrossRef]
- Ray, S.S.; Chen, S.-S.; Sangeetha, D.; Chang, H.-M.; Cao Ngoc Dan, T.; Le, Q.H.; Ku, H.-M. Developments in forward osmosis and membrane distillation for desalination of waters. Environ. Chem. Lett. 2018, 16, 1247–1265. [Google Scholar] [CrossRef]
- Ang, W.L.; Mohammad, A.W.; Johnson, D.; Hilal, N. Unlocking the application potential of forward osmosis through integrated/hybrid process. Sci. Total Environ. 2020, 706, 136047. [Google Scholar] [CrossRef]
- Singh, S.K.; Sharma, C.; Maiti, A. A comprehensive review of standalone and hybrid forward osmosis for water treatment: Membranes and recovery strategies of draw solutions. J. Environ. Chem. Eng. 2021, 9, 105473. [Google Scholar] [CrossRef]
- Awad, A.M.; Jalab, R.; Minier-Matar, J.; Adham, S.; Nasser, M.S.; Judd, S.J. The status of forward osmosis technology implementation. Desalination 2019, 461, 10–21. [Google Scholar] [CrossRef]
- Wenten, I.G.; Khoiruddin, K.; Reynard, R.; Lugito, G.; Julian, H. Advancement of forward osmosis (FO) membrane for fruit juice concentration. J. Food Eng. 2021, 290, 110216. [Google Scholar] [CrossRef]
- Pei, J.; Gao, S.; Sarp, S.; Wang, H.; Chen, X.; Yu, J.; Yue, T.; Youravong, W.; Li, Z. Emerging forward osmosis and membrane distillation for liquid food concentration: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1910–1936. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Li, Z.; Xiong, Q.; Wu, C.; Huang, J.; Zhou, R.; Jin, Y. Exploration of sodium lactate as the draw solute of forward osmosis for food processing. J. Food Eng. 2021, 296, 110465. [Google Scholar] [CrossRef]
- Wibisono, Y.; Agung Nugroho, W.; Akbar Devianto, L.; Adi Sulianto, A.; Roil Bilad, M. Microalgae in Food-Energy-Water Nexus: A Review on Progress of Forward Osmosis Applications. Membranes 2019, 9, 166. [Google Scholar] [CrossRef]
- Yazdanabad, S.K.; Samimi, A.; Shokrollahzadeh, S.; Kalhori, D.M.; Moazami, N.; Ibáñez González, M.J.; Mazzuca Sobczuk, T.; Molina Grima, E. Microalgae biomass dewatering by forward osmosis: Review and critical challenges. Algal Res. 2021, 56, 102323. [Google Scholar] [CrossRef]
- Francis, L.; Ogunbiyi, O.; Saththasivam, J.; Lawler, J.; Liu, Z. A comprehensive review of forward osmosis and niche applications. Environ. Sci. Water Res. Technol. 2020, 6, 1986–2015. [Google Scholar] [CrossRef]
- Aende, A.; Gardy, J.; Hassanpour, A. Seawater desalination: A review of forward osmosis technique, its challenges, and future prospects. Processes 2020, 8, 901. [Google Scholar] [CrossRef]
- Haupt, A.; Lerch, A. Forward osmosis application in manufacturing industries: A short review. Membranes 2018, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Aditya, L.; Mahlia, T.M.I.; Nguyen, L.N.; Vu, H.P.; Nghiem, L.D. Microalgae-bacteria consortium for wastewater treatment and biomass production. Sci. Total Environ. 2022, 838, 155871. [Google Scholar] [CrossRef] [PubMed]
- Das, P.; Singh, K.K.K.; Dutta, S. Insight into emerging applications of forward osmosis systems. J. Ind. Eng. Chem. 2019, 72, 1–17. [Google Scholar] [CrossRef]
- Hai, F.I.; Nguyen, L.N.; Nghiem, L.D.; Liao, B.-Q.; Koyuncu, I.; Price, W.E. Trace Organic Contaminants Removal by Combined Processes for Wastewater Reuse. In Advanced Treatment Technologies for Urban Wastewater Reuse; Fatta-Kassinos, D., Dionysiou, D.D., Kümmerer, K., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 39–77. [Google Scholar]
- Volpin, F.; Fons, E.; Chekli, L.; Kim, J.E.; Jang, A.; Shon, H.K. Hybrid forward osmosis-reverse osmosis for wastewater reuse and seawater desalination: Understanding the optimal feed solution to minimise fouling. Process Saf. Environ. 2018, 117, 523–532. [Google Scholar] [CrossRef]
- Binger, Z.M.; Achilli, A. Forward osmosis and pressure retarded osmosis process modeling for integration with seawater reverse osmosis desalination. Desalination 2020, 491, 114583. [Google Scholar] [CrossRef]
- Baena-Moreno, F.M.; Rodríguez-Galán, M.; Arroyo-Torralvo, F.; Vilches, L.F. Low-energy method for water-mineral recovery from acid mine drainage based on membrane technology: Evaluation of inorganic salts as draw solutions. Environ. Sci. Technol. 2020, 54, 10936–10943. [Google Scholar] [CrossRef]
- Nicoll, P.; Thompson, N.; Gray, V. Forward osmosis applied to evaporative cooling make-up water. Power Plant. Chem. 2012, 14, 632. [Google Scholar]
- Chen, G.Q.; Artemi, A.; Lee, J.; Gras, S.L.; Kentish, S.E. A pilot scale study on the concentration of milk and whey by forward osmosis. Sep. Purif. Technol. 2019, 215, 652–659. [Google Scholar] [CrossRef]
- Cornelissen, E.R.; Harmsen, D.; de Korte, K.F.; Ruiken, C.J.; Qin, J.J.; Oo, H.; Wessels, L.P. Membrane fouling and process performance of forward osmosis membranes on activated sludge. J. Membr. Sci. 2008, 319, 158–168. [Google Scholar] [CrossRef]
- Zhao, S.; Zou, L.; Tang, C.Y.; Mulcahy, D. Recent developments in forward osmosis: Opportunities and challenges. J. Membr. Sci. 2012, 396, 1–21. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, S.; Xiong, Q.; Wu, C.; Huang, J.; Zhou, R.; Jin, Y. Assessment of highly concentrated pear juice production through single-run forward osmosis using sodium lactate as the draw solute. J. Food Eng. 2022, 333, 111122. [Google Scholar] [CrossRef]
- Colciaghi, R.; Simonetti, R.; Molinaroli, L.; Binotti, M.; Manzolini, G. Potentialities of thermal responsive polymer in forward osmosis (FO) process for water desalination. Desalination 2021, 519, 115311. [Google Scholar] [CrossRef]
- Ahmed, M.; Kumar, R.; Garudachari, B.; Thomas, J.P. Performance evaluation of a thermoresponsive polyelectrolyte draw solution in a pilot scale forward osmosis seawater desalination system. Desalination 2019, 452, 132–140. [Google Scholar] [CrossRef]
- Volpin, F.; Heo, H.; Hasan Johir, M.A.; Cho, J.; Phuntsho, S.; Shon, H.K. Techno-economic feasibility of recovering phosphorus, nitrogen and water from dilute human urine via forward osmosis. Water Res. 2019, 150, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Gwak, G.; Kim, D.I.; Hong, S. New industrial application of forward osmosis (FO): Precious metal recovery from printed circuit board (PCB) plant wastewater. J. Membr. Sci. 2018, 552, 234–242. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.-N.; Chong, J.Y.; Wang, R. Thermo-responsive nonionic amphiphilic copolymers as draw solutes in forward osmosis process for high-salinity water reclamation. Water Res. 2022, 221, 118768. [Google Scholar] [CrossRef]
- Zeweldi, H.G.; Bendoy, A.P.; Park, M.J.; Shon, H.K.; Johnson, E.M.; Kim, H.-S.; Kim, H.; Chung, W.-J.; Nisola, G.M. Forward osmosis with direct contact membrane distillation using tetrabutylphosphonium p-toluenesulfonate as an effective and safe thermo-recyclable osmotic agent for seawater desalination. Chemosphere 2020, 263, 128070. [Google Scholar] [CrossRef]
- Kwon, S.J.; Park, S.-H.; Shin, M.G.; Park, M.S.; Park, K.; Hong, S.; Park, H.; Park, Y.-I.; Lee, J.-H. Fabrication of high performance and durable forward osmosis membranes using mussel-inspired polydopamine-modified polyethylene supports. J. Membr. Sci. 2019, 584, 89–99. [Google Scholar] [CrossRef]
- D’Haese, A.K.H.; Motsa, M.M.; Van der Meeren, P.; Verliefde, A.R.D. A refined draw solute flux model in forward osmosis: Theoretical considerations and experimental validation. J. Membr. Sci. 2017, 522, 316–331. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, W.; Ge, Q. Novel multicharge hydroacid complexes that effectively remove heavy metal ions from water in forward osmosis processes. Environ. Sci. Technol. 2018, 52, 4464–4471. [Google Scholar] [CrossRef]
- Kumar, R.; Al-Haddad, S.; Al-Rughaib, M.; Salman, M. Evaluation of hydrolyzed poly (isobutylene-alt-maleic anhydride) as a polyelectrolyte draw solution for forward osmosis desalination. Desalination 2016, 394, 148–154. [Google Scholar] [CrossRef]
- Chen, R.; Liao, X.; Ge, Q. A novel multinuclear zinc complex Zn-Bet-Tf2N for electroplating wastewater treatment using forward osmosis technique. Chem. Eng. J. 2021, 404, 126569. [Google Scholar] [CrossRef]
- Chang, H.-M.; Chen, S.-S.; Chen, Y.-T.; Chang, W.-S.; Li, C.-W.; Nguyen, N.C.; Ray, S.S.; Cao, D.T.N. Recovery of iodide as triiodide from thin-film transistor liquid crystal display wastewater by forward osmosis. J. Hazard. Mater. 2021, 403, 123637. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Chen, R.; Zhang, W.-H.; Ge, Q. A pH-responsive supramolecular draw solute that achieves high-performance in arsenic removal via forward osmosis. Water Res. 2019, 165, 114993. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ge, Q. A Bifunctional Zwitterion That Serves as Both a Membrane Modifier and a Draw Solute for Forward Osmosis Wastewater Treatment. ACS Appl. Mater. Interfaces 2019, 11, 36118–36129. [Google Scholar] [CrossRef]
- Boo, C.; Khalil, Y.F.; Elimelech, M. Performance evaluation of trimethylamine–carbon dioxide thermolytic draw solution for engineered osmosis. J. Membr. Sci. 2015, 473, 302–309. [Google Scholar] [CrossRef]
- Shokrollahzadeh, S.; Bide, Y.; Gholami, S. Enhancing forward osmosis performance via an oligomeric deep eutectic solvent as a draw solute. Desalination 2020, 491, 114473. [Google Scholar] [CrossRef]
- Inada, A.; Kumagai, K.; Matsuyama, H. Effect of the molecular weights of thermoresponsive polyalkylene glycol draw solutes on forward osmosis performance. Sep. Purif. Technol. 2020, 252, 117462. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.; Schmucker, D.; Fortner, J.D. Highly stable superparamagnetic iron oxide nanoparticles as functional draw solutes for osmotically driven water transport. npj Clean Water 2020, 3, 8. [Google Scholar] [CrossRef]
- Azadi, F.; Karimi-Jashni, A.; Zerafat, M.M. Desalination of brackish water by gelatin-coated magnetite nanoparticles as a novel draw solute in forward osmosis process. Environ. Technol. 2021, 42, 2885–2895. [Google Scholar] [CrossRef]
- Ellis, S.N.; Riabtseva, A.; Dykeman, R.R.; Hargreaves, S.; Robert, T.; Champagne, P.; Cunningham, M.F.; Jessop, P.G. Nitrogen Rich CO2-Responsive Polymers as Forward Osmosis Draw Solutes. Ind. Eng. Chem. Res. 2019, 58, 22579–22586. [Google Scholar] [CrossRef]
- Blandin, G.; Vervoort, H.; D’Haese, A.; Schoutteten, K.; Bussche, J.V.; Vanhaecke, L.; Myat, D.T.; Le-Clech, P.; Verliefde, A.R.D. Impact of hydraulic pressure on membrane deformation and trace organic contaminants rejection in pressure assisted osmosis (PAO). Process Saf. Environ. 2016, 102, 316–327. [Google Scholar] [CrossRef]
- Nicoll, P.G. Forward osmosis—A brief introduction. In Proceedings of the The International Desalination Association World Congress on Desalination and Water Reuse, Tianjin, China, 20–25 October 2013. [Google Scholar]
- Ren, J.; McCutcheon, J.R. A new commercial biomimetic hollow fiber membrane for forward osmosis. Desalination 2018, 442, 44–50. [Google Scholar] [CrossRef]
- Rastgar, M.; Shakeri, A.; Salehi, H. Study of polyamide thin film characteristics impact on permeability/selectivity performance and fouling behavior of forward osmosis membrane. Environ. Sci. Pollut. Res. 2019, 26, 1181–1191. [Google Scholar] [CrossRef]
- Wei, J.; Liu, X.; Qiu, C.Q.; Wang, R.; Tang, C.Y.Y. Influence of monomer concentrations on the performance of polyamide-based thin film composite forward osmosis membranes. J. Membr. Sci. 2011, 381, 110–117. [Google Scholar] [CrossRef]
- Tian, M.; Wang, Y.-N.; Wang, R.; Fane, A.G. Synthesis and characterization of thin film nanocomposite forward osmosis membranes supported by silica nanoparticle incorporated nanofibrous substrate. Desalination 2017, 401, 142–150. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhao, S.; Fang, Z.; Ng, D.; Xie, C.; Wang, H.; Xie, Z. Thin-Film Composite Membrane with Interlayer Decorated Metal–Organic Framework UiO-66 toward Enhanced Forward Osmosis Performance. Ind. Eng. Chem. Res. 2019, 58, 195–206. [Google Scholar] [CrossRef]
- He, M.; Wang, L.; Lv, Y.; Wang, X.; Zhu, J.; Zhang, Y.; Liu, T. Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal. Chem. Eng. J. 2020, 389, 124452. [Google Scholar] [CrossRef]
- Xu, L.; Yang, T.; Li, M.; Chang, J.; Xu, J. Thin-film nanocomposite membrane doped with carboxylated covalent organic frameworks for efficient forward osmosis desalination. J. Membr. Sci. 2020, 610, 118111. [Google Scholar] [CrossRef]
- Xu, S.; Li, F.; Su, B.; Hu, M.Z.; Gao, X.; Gao, C. Novel graphene quantum dots (GQDs)-incorporated thin film composite (TFC) membranes for forward osmosis (FO) desalination. Desalination 2019, 451, 219–230. [Google Scholar] [CrossRef]
- Wang, Y.N.; Goh, K.; Li, X.; Setiawan, L.; Wang, R. Membranes and processes for forward osmosis-based desalination: Recent advances and future prospects. Desalination 2017, 434, 81–99. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, H.; Kang, G.; Jie, X.; Jin, Y.; Cao, Y. Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component. J. Membr. Sci. 2016, 497, 485–493. [Google Scholar] [CrossRef]
- Low, K.S.; Wang, Y.-N.; Ng, D.Y.F.; Goh, K.; Li, Y.; Wang, R. Understanding the effect of transverse vibration on hollow fiber membranes for submerged forward osmosis processes. J. Membr. Sci. 2020, 610, 118211. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, L.; Guan, C.-Y.; Liu, C.-X.; Lang, W.-Z.; Wang, Y. Construction of SiO2@ MWNTs incorporated PVDF substrate for reducing internal concentration polarization in forward osmosis. J. Membr. Sci. 2018, 564, 328–341. [Google Scholar] [CrossRef]
- Du, C.H.; Zhang, X.Y.; Wu, C.J. Chitosan-modified graphene oxide as a modifier for improving the structure and performance of forward osmosis membranes. Polym. Adv. Technol. 2020, 31, 807–816. [Google Scholar] [CrossRef]
- Shah, A.A.; Cho, Y.H.; Nam, S.-E.; Park, A.; Park, Y.-I.; Park, H. High performance thin-film nanocomposite forward osmosis membrane based on PVDF/bentonite nanofiber support. J. Ind. Eng. Chem. 2020, 86, 90–99. [Google Scholar] [CrossRef]
- Sirinupong, T.; Youravong, W.; Tirawat, D.; Lau, W.; Lai, G.; Ismail, A. Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications. Arab. J. Chem. 2018, 11, 1144–1153. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y.; Quan, X.; Chen, S. Highly permeable thin-film composite forward osmosis membrane based on carbon nanotube hollow fiber scaffold with electrically enhanced fouling resistance. Environ. Sci. Technol. 2018, 52, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, A.; Salehi, H.; Ghorbani, F.; Amini, M.; Naslhajian, H. Polyoxometalate based thin film nanocomposite forward osmosis membrane: Superhydrophilic, anti-fouling, and high water permeable. J. Colloid Interface Sci. 2019, 536, 328–338. [Google Scholar] [CrossRef]
- Werber, J.R.; Deshmukh, A.; Elimelech, M. The Critical Need for Increased Selectivity, Not Increased Water Permeability, for Desalination Membranes. Environ. Sci. Technol. Lett. 2016, 3, 112–120. [Google Scholar] [CrossRef]
- Bogler, A.; Lin, S.; Bar-Zeev, E. Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: Principles, impacts and future directions. J. Membr. Sci. 2017, 542, 378–398. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Han, X.; Liu, Y.; Wang, C.; Yan, F.; Wang, J. Regulating the interfacial polymerization process toward high-performance polyamide thin-film composite reverse osmosis and nanofiltration membranes: A review. J. Membr. Sci. 2021, 640, 119765. [Google Scholar] [CrossRef]
- Lu, P.; Li, W.; Yang, S.; Wei, Y.; Zhang, Z.; Li, Y. Layered double hydroxides (LDHs) as novel macropore-templates: The importance of porous structures for forward osmosis desalination. J. Membr. Sci. 2019, 585, 175–183. [Google Scholar] [CrossRef]
- Shakeri, A.; Babaheydari, S.M.M.; Salehi, H.; Razavi, S.R. Reduction of the Structure Parameter of Forward Osmosis Membranes by Using Sodium Bicarbonate as Pore-Forming Agent. Langmuir 2021, 37, 7591–7599. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Hu, Y.; Wang, N.; Wang, T.; Liu, Z. Breaking the permeability–selectivity trade-off in thin-film composite polyamide membranes with a PEG-b-PSF-b-PEG block copolymer ultrafiltration membrane support through post-annealing treatment. NPG Asia Mater. 2019, 11, 13. [Google Scholar] [CrossRef]
- Tian, M.; Qiu, C.; Liao, Y.; Chou, S.; Wang, R. Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Sep. Purif. Technol. 2013, 118, 727–736. [Google Scholar] [CrossRef]
- Song, X.; Liu, Z.; Sun, D.D. Nano Gives the Answer: Breaking the Bottleneck of Internal Concentration Polarization with a Nanofiber Composite Forward Osmosis Membrane for a High Water Production Rate. Adv. Mater. 2011, 23, 3256–3260. [Google Scholar] [CrossRef]
- Han, C.; Zhang, X.; Ding, C.; Xiong, S.; Yu, X.; Wang, Y. Improved performance of thin-film composite membrane supported by aligned nanofibers substrate with slit-shape pores for forward osmosis. J. Membr. Sci. 2020, 612, 118447. [Google Scholar] [CrossRef]
- Tian, M.; Wang, R.; Goh, K.; Liao, Y.; Fane, A.G. Synthesis and characterization of high-performance novel thin film nanocomposite PRO membranes with tiered nanofiber support reinforced by functionalized carbon nanotubes. J. Membr. Sci. 2015, 486, 151–160. [Google Scholar] [CrossRef]
- Zhou, Z.; Hu, Y.; Wang, Q.; Mi, B. Carbon nanotube-supported polyamide membrane with minimized internal concentration polarization for both aqueous and organic solvent forward osmosis process. J. Membr. Sci. 2020, 611, 118273. [Google Scholar] [CrossRef]
- Zhou, Z.; Hu, Y.; Boo, C.; Liu, Z.; Li, J.; Deng, L.; An, X. High-Performance Thin-Film Composite Membrane with an Ultrathin Spray-Coated Carbon Nanotube Interlayer. Environ. Sci. Technol. Lett. 2018, 5, 243–248. [Google Scholar] [CrossRef]
- Zhang, M.; Jin, W.; Yang, F.; Duke, M.; Dong, Y.; Tang, C.Y. Engineering a Nanocomposite Interlayer for a Novel Ceramic-Based Forward Osmosis Membrane with Enhanced Performance. Environ. Sci. Technol. 2020, 54, 7715–7724. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ding, M.; Xu, H.; Yang, W.; Zhang, K.; Tian, H.; Wang, H.; Xie, Z. Scalable Ti3C2Tx MXene Interlayered Forward Osmosis Membranes for Enhanced Water Purification and Organic Solvent Recovery. ACS Nano 2020, 14, 9125–9135. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Teng, K.; Guo, C.; Shi, H.; Li, B.; Pei, X.; Wang, W.; Xu, Z. Synergistic effect of polyvinyl alcohol sub-layer and graphene oxide condiment from active layer on desalination behavior of forward osmosis membrane. J. Taiwan Inst. Chem. Eng. 2020, 112, 366–376. [Google Scholar] [CrossRef]
- Lim, S.; Park, K.H.; Tran, V.H.; Akther, N.; Phuntsho, S.; Choi, J.Y.; Shon, H.K. Size-controlled graphene oxide for highly permeable and fouling-resistant outer-selective hollow fiber thin-film composite membranes for forward osmosis. J. Membr. Sci. 2020, 609, 118171. [Google Scholar] [CrossRef]
- Choi, H.-g.; Shah, A.A.; Nam, S.-E.; Park, Y.-I.; Park, H. Thin-film composite membranes comprising ultrathin hydrophilic polydopamine interlayer with graphene oxide for forward osmosis. Desalination 2019, 449, 41–49. [Google Scholar] [CrossRef]
- Cao, S.; Deshmukh, A.; Wang, L.; Han, Q.; Shu, Y.; Ng, H.Y.; Wang, Z.; Lienhard, J.H. Enhancing the Permselectivity of Thin-Film Composite Membranes Interlayered with MoS2 Nanosheets via Precise Thickness Control. Environ. Sci. Technol. 2022, 56, 8807–8818. [Google Scholar] [CrossRef]
- Yu, F.; Shi, H.; Shi, J.; Teng, K.; Xu, Z.; Qian, X. High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer. J. Membr. Sci. 2020, 616, 118611. [Google Scholar] [CrossRef]
- Mohammadifakhr, M.; Trzaskus, K.; Kemperman, A.J.B.; Roesink, H.D.W.; de Grooth, J. Increasing the success rate of interfacial polymerization on hollow fibers by the single-step addition of an intermediate layer. Desalination 2020, 491, 114581. [Google Scholar] [CrossRef]
- Shah, A.A.; Cho, Y.H.; Choi, H.-g.; Nam, S.-E.; Kim, J.F.; Kim, Y.; Park, Y.-I.; Park, H. Facile integration of halloysite nanotubes with bioadhesive as highly permeable interlayer in forward osmosis membranes. J. Ind. Eng. Chem. 2019, 73, 276–285. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, F.; Guo, H.; Peng, L.E.; Ma, X.-h.; Song, X.-x.; Wang, Z.; Tang, C.Y. Mechanistic Insights into the Role of Polydopamine Interlayer toward Improved Separation Performance of Polyamide Nanofiltration Membranes. Environ. Sci. Technol. 2020, 54, 11611–11621. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Wu, C.; Yang, Z.; Tang, C.Y. Carbon Nanotube Interlayer Enhances Water Permeance and Antifouling Performance of Nanofiltration Membranes: Mechanisms and Experimental Evidence. Environ. Sci. Technol. 2022, 56, 2656–2664. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Yuan, J.; Wu, H.; Su, Y.; Yang, H.; You, X.; Zhang, R.; He, X.; Khan, N.A.; Kasher, R.; et al. Ultrathin nanofiltration membrane with polydopamine-covalent organic framework interlayer for enhanced permeability and structural stability. J. Membr. Sci. 2019, 576, 131–141. [Google Scholar] [CrossRef]
- Razavi, S.R.; Shakeri, A.; Mirahmadi Babaheydari, S.M.; Salehi, H.; Lammertink, R. High-Performance thin film composite forward osmosis membrane on tannic Acid/Fe3+ coated microfiltration substrate. Chem Eng. Res. Des. 2020, 161, 232–239. [Google Scholar] [CrossRef]
- Lai, G.S.; Zhao, Y.; Wang, R. Liposome-integrated seawater reverse osmosis membrane prepared via facile spray-assisted interfacial polymerization. J. Membr. Sci. 2022, 650, 120405. [Google Scholar] [CrossRef]
- Gao, S.; Zhu, Y.; Gong, Y.; Wang, Z.; Fang, W.; Jin, J. Ultrathin Polyamide Nanofiltration Membrane Fabricated on Brush-Painted Single-Walled Carbon Nanotube Network Support for Ion Sieving. ACS Nano 2019, 13, 5278–5290. [Google Scholar] [CrossRef]
- Wang, C.; Park, M.J.; Seo, D.H.; Shon, H.K. Inkjet printing of graphene oxide and dopamine on nanofiltration membranes for improved anti-fouling properties and chlorine resistance. Sep. Purif. Technol. 2021, 254, 117604. [Google Scholar] [CrossRef]
- Ma, T.; Hui, H.; You, X.; Pei, Z.; Tian, M.; Wu, B. Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling study with cleaning. Front. Environ. Sci. Eng. 2022, 16, 118. [Google Scholar] [CrossRef]
- Tijing, L.D.; Dizon, J.R.C.; Ibrahim, I.; Nisay, A.R.N.; Shon, H.K.; Advincula, R.C. 3D printing for membrane separation, desalination and water treatment. Appl Mater. Today 2020, 18, 100486. [Google Scholar] [CrossRef]
- Low, Z.-X.; Chua, Y.T.; Ray, B.M.; Mattia, D.; Metcalfe, I.S.; Patterson, D.A. Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 2017, 523, 596–613. [Google Scholar] [CrossRef]
- Lee, J.; Lim, Y.J.; Low, J.H.; Lee, S.M.; Lee, C.-H.; Wang, R.; Bae, T.-H. Synergistic effect of highly porous microstructured support and co-solvent assisted interfacial polymerization on the performance of thin-film composite FO membranes. Desalination 2022, 539, 115947. [Google Scholar] [CrossRef]
- Li, S.-L.; Wu, P.; Wang, J.; Wang, J.; Hu, Y. Fabrication of high performance polyamide reverse osmosis membrane from monomer 4-morpholino-m-phenylenediamine and tailoring with zwitterions. Desalination 2020, 473, 114169. [Google Scholar] [CrossRef]
- Liu, M.; Nothling, M.D.; Zhang, S.; Fu, Q.; Qiao, G.G. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Prog. Polym. Sci. 2022, 126, 101504. [Google Scholar] [CrossRef]
- Origomisan, J.O.; Khoo, Y.S.; Lau, W.J.; Ismail, A.F.; Adewuyi, A. Chapter 4-A 15-year review of novel monomers for thin-film composite membrane fabrication for water applications. In 60 Years of the Loeb-Sourirajan Membrane; Tseng, H.-H., Lau, W.J., Al-Ghouti, M.A., An, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 97–129. [Google Scholar]
- Lu, X.; Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: History, current efforts, and future directions. Chem. Soc. Rev. 2021, 50, 6290–6307. [Google Scholar] [CrossRef]
- Khorshidi, B.; Thundat, T.; Pernitsky, D.; Sadrzadeh, M. A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane. J. Membr. Sci. 2017, 535, 248–257. [Google Scholar] [CrossRef]
- You, M.; Wang, B.; An, L.; Xu, F.; Cao, Z.; Meng, J. Different roles of aqueous and organic additives in the morphology and performance of polyamide thin-film composite membranes. Chem. Eng. Res. Des. 2021, 165, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, W.; Wang, Z.; Wang, H.; Zhao, S.; Wang, J.; Zhang, P.; Cao, X. 1-methylimidazole as a novel additive for reverse osmosis membrane with high flux-rejection combinations and good stability. J. Membr. Sci. 2020, 599, 117830. [Google Scholar] [CrossRef]
- Wu, D.; Huang, Y.; Yu, S.; Lawless, D.; Feng, X. Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. J. Membr. Sci. 2014, 472, 141–153. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Jeong, B.-H.; Huang, X.; Hoek, E.M.V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J. Membr. Sci. 2008, 311, 34–45. [Google Scholar] [CrossRef]
- Zhou, S.H.; Long, L.; Yang, Z.; So, S.L.; Gan, B.W.; Guo, H.; Feng, S.P.; Tang, C.Y. Unveiling the Growth of Polyamide Nanofilms at Water/Organic Free Interfaces: Toward Enhanced Water/Salt Selectivity. Environ. Sci. Technol. 2022, 56, 10279–10288. [Google Scholar] [CrossRef]
- Seyedpour, S.F.; Rahimpour, A.; Shamsabadi, A.A.; Soroush, M. Improved performance and antifouling properties of thin-film composite polyamide membranes modified with nano-sized bactericidal graphene quantum dots for forward osmosis. Chem. Eng. Res. Des. 2018, 139, 321–334. [Google Scholar] [CrossRef]
- Amini, M.; Jahanshahi, M.; Rahimpour, A. Synthesis of novel thin film nanocomposite (TFN) forward osmosis membranes using functionalized multi-walled carbon nanotubes. J. Membr. Sci. 2013, 435, 233–241. [Google Scholar] [CrossRef]
- Rezaei-DashtArzhandi, M.; Sarrafzadeh, M.H.; Goh, P.S.; Lau, W.J.; Ismail, A.F.; Mohamed, M.A. Development of novel thin film nanocomposite forward osmosis membranes containing halloysite/graphitic carbon nitride nanoparticles towards enhanced desalination performance. Desalination 2018, 447, 18–28. [Google Scholar] [CrossRef]
- Guo, J.; Huang, M.; Gao, P.; Zhang, Y.; Chen, H.; Zheng, S.; Mu, T.; Luo, X. Simultaneous robust removal of tetracycline and tetracycline resistance genes by a novel UiO/TPU/PSF forward osmosis membrane. Chem. Eng. J. 2020, 398, 125604. [Google Scholar] [CrossRef]
- Shakeri, A.; Mighani, H.; Salari, N.; Salehi, H. Surface modification of forward osmosis membrane using polyoxometalate based open frameworks for hydrophilicity and water flux improvement. J. Water Process Eng. 2019, 29, 100762. [Google Scholar] [CrossRef]
- Emadzadeh, D.; Lau, W.J.; Rahbari-Sisakht, M.; Ilbeygi, H.; Rana, D.; Matsuura, T.; Ismail, A.F. Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chem. Eng. J. 2015, 281, 243–251. [Google Scholar] [CrossRef]
- Shakeri, A.; Razavi, R.; Salehi, H.; Fallahi, M.; Eghbalazar, T. Thin film nanocomposite forward osmosis membrane embedded with amine-functionalized ordered mesoporous silica. Appl. Surf. Sci. 2019, 481, 811–818. [Google Scholar] [CrossRef]
- Lim, Y.J.; Goh, K.; Wang, R. The coming of age of water channels for separation membranes: From biological to biomimetic to synthetic. Chem. Soc. Rev. 2022, 51, 4537–4582. [Google Scholar] [CrossRef]
- Li, Y.; Qi, S.; Tian, M.; Widjajanti, W.; Wang, R. Fabrication of aquaporin-based biomimetic membrane for seawater desalination. Desalination 2019, 467, 103–112. [Google Scholar] [CrossRef]
- Zhao, D.L.; Japip, S.; Zhang, Y.; Weber, M.; Maletzko, C.; Chung, T.-S. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: A review. Water Res. 2020, 173, 115557. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.-p.; Zong, Z.-a.; Lin, R.; Zhang, X.-y.; Chen, F.-s.; Ding, W.-d.; Zhang, L.-l.; Meng, X.-m.; Hou, J. Thin film nanocomposite membrane incorporated with 2D-MOF nanosheets for highly efficient reverse osmosis desalination. J. Membr. Sci. 2022, 653, 120520. [Google Scholar] [CrossRef]
- Ritt, C.L.; Stassin, T.; Davenport, D.M.; DuChanois, R.M.; Nulens, I.; Yang, Z.; Ben-Zvi, A.; Segev-Mark, N.; Elimelech, M.; Tang, C.Y.; et al. The open membrane database: Synthesis–structure–performance relationships of reverse osmosis membranes. J. Membr. Sci. 2022, 641, 119927. [Google Scholar] [CrossRef]
- Aziz, A.A.; Wong, K.C.; Goh, P.S.; Ismail, A.F.; Azelee, I.W. Tailoring the surface properties of carbon nitride incorporated thin film nanocomposite membrane for forward osmosis desalination. J. Water Process Eng. 2020, 33, 101005. [Google Scholar] [CrossRef]
- Qiu, M.; He, C. Efficient removal of heavy metal ions by forward osmosis membrane with a polydopamine modified zeolitic imidazolate framework incorporated selective layer. J. Hazard. Mater. 2019, 367, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Li, P.; Li, N.; Wang, W.; Guo, C.; Shan, M.; Qian, X. Constructing dense and hydrophilic forward osmosis membrane by cross-linking reaction of graphene quantum dots with monomers for enhanced selectivity and stability. J. Colloid Interface Sci. 2021, 589, 486–499. [Google Scholar] [CrossRef]
- Dai, R.; Zhang, X.; Liu, M.; Wu, Z.; Wang, Z. Porous metal organic framework CuBDC nanosheet incorporated thin-film nanocomposite membrane for high-performance forward osmosis. J. Membr. Sci. 2019, 573, 46–54. [Google Scholar] [CrossRef]
- Kong, G.; Fan, L.; Zhao, L.; Feng, Y.; Cui, X.; Pang, J.; Guo, H.; Sun, H.; Kang, Z.; Sun, D.; et al. Spray-dispersion of ultra-small EMT zeolite crystals in thin-film composite membrane for high-permeability nanofiltration process. J. Membr. Sci. 2021, 622, 119045. [Google Scholar] [CrossRef]
- Lim, S.; Akther, N.; Tran, V.H.; Bae, T.-H.; Phuntsho, S.; Merenda, A.; Dumée, L.F.; Shon, H.K. Covalent organic framework incorporated outer-selective hollow fiber thin-film nanocomposite membranes for osmotically driven desalination. Desalination 2020, 485, 114461. [Google Scholar] [CrossRef]
- Goh, K.S.; Chen, Y.; Ng, D.Y.F.; Chew, J.W.; Wang, R. Organic solvent forward osmosis membranes for pharmaceutical concentration. J. Membr. Sci. 2022, 642, 119965. [Google Scholar] [CrossRef]
- Han, C.; Liu, Q.; Xia, Q.; Wang, Y. Facilely cyclization-modified PAN nanofiber substrate of thin film composite membrane for ultrafast polar solvent separation. J. Membr. Sci. 2022, 641, 119911. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, Y.; Wang, L.; Yang, H.; Jin, H.; Lu, P.; Li, Y. Simultaneous phase-inversion and crosslinking in organic coagulation bath to prepare organic solvent forward osmosis membranes. J. Membr. Sci. 2021, 620, 118829. [Google Scholar] [CrossRef]
- Liu, T.-Y.; Yuan, H.-G.; Liu, Y.-Y.; Ren, D.; Su, Y.-C.; Wang, X. Metal–Organic Framework Nanocomposite Thin Films with Interfacial Bindings and Self-Standing Robustness for High Water Flux and Enhanced Ion Selectivity. ACS Nano 2018, 12, 9253–9265. [Google Scholar] [CrossRef]
- Mahpoz, N.M.; Makhtar, S.N.N.M.; Pauzi, M.Z.M.; Abdullah, N.; Rahman, M.A.; Abas, K.H.; Ismail, A.F.; Othman, M.H.D.; Jaafar, J. ZIF-8 membrane supported on alumina hollow fiber with enhanced salt removal by forward osmosis. Desalination 2020, 496, 114697. [Google Scholar] [CrossRef]
- Pardeshi, P.M.; Mungray, A.A. Photo-polymerization as a new approach to fabricate the active layer of forward osmosis membrane. Sci. Rep. 2019, 9, 1937. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Chen, J.; Li, C.; Jiang, L.; Qiu, M.; Li, X.; Wang, Y.; Cui, L. Enhanced flux and fouling resistance forward osmosis membrane based on a hydrogel/MOF hybrid selective layer. J. Colloid Interface Sci. 2021, 585, 158–166. [Google Scholar] [CrossRef]
- Zhou, S.; Gao, J.; Zhu, J.; Peng, D.; Zhang, Y.; Zhang, Y. Self-cleaning, antibacterial mixed matrix membranes enabled by photocatalyst Ti-MOFs for efficient dye removal. J. Membr. Sci. 2020, 610. [Google Scholar] [CrossRef]
- Cong, S.; Yuan, Y.; Wang, J.; Wang, Z.; Kapteijn, F.; Liu, X. Highly Water-Permeable Metal–Organic Framework MOF-303 Membranes for Desalination. J. Am. Chem. Soc. 2021, 143, 20055–20058. [Google Scholar] [CrossRef] [PubMed]
Classification | Draw Solutes | Regenerate Method | Molecular Weight/Size | Js/Jv | Ref. |
---|---|---|---|---|---|
Non-responsive: inorganic salts; polyelectrolytes; surfactants; zwitterions Features: widely available; high solubility; difficult to regenerate | NaCl | - | 58.5 g/mol | 0.76 | [59] |
MgSO4 | - | 120.37 g/mol | 0.15 g/L | [60] | |
MgCl2 | - | 95.21 g/mol | 0.22 g/L | [60] | |
NMe4-Cr-OA | MD | - | - | [61] | |
Polydiallyldimethylammonium chloride (PolyDADMAC) | NF | 5919 g/mol | 0.014 g/L | [62] | |
Zn-Bet-Tf2N | Solvent extraction | - | - | [63] | |
EDTA-2Na | MD | - | - | [64] | |
1,4-bis(3-propane- sulphonate sodium)-piperazinediethanesulfonic acid disodium-sulfate | Acid precipitation | 105 nm | - | [65] | |
Bifunctional zwitterion of (1-(3-aminopropyl) imidazole) propanesulfonate (APIS) | Acid precipitation +filtration | - | - | [66] | |
Responsive: magnetic nanoparticles; volatile liquids; NH3-CO2; responsive small molecules and polymers Features: specifically designed; easy regenerate; cut energy cost | Trimethylamine-carbon dioxide (TMA-CO2) | Thermal separation | 59.11 g/mol | - | [67] |
Tetrabutylphosphonium p-toluenesulfonate ([P4444]TsO) | ∼98% was precipitated by heating the draw solutes at 60 °C | - | 0.002815 mol/L | [58] | |
Oligo-deep eutectic solvent | Phase separation at 5 °C | - | 0.043 g/L | [68] | |
Poly(propylene glycol-ran-ethylene glycol) monobutyl ethers (PAGBs) | Thermos responsive lower critical solution temperature (LCST) 42 and 53 °C | 1810–3911 g/mol | - | [69] | |
Organic-coated engineered superparamagnetic iron oxide nanoparticles | - | 12.3 ± 1.0 nm | - | [70] | |
Gelatin-coated magnetite nanoparticles (MNPs) | Magnetic field | 40 nm | - | [71] | |
Nitrogen Rich CO2-Responsive Polymers | - | 12,000 g/mol | - | [72] | |
Pluronic® L35 | 95 °C | 1900 g/mol | [57] |
Membrane Key Information | A, Lm−2 h−1·bar−1 | B, Lm−2 h−1 | A/B, bar−1 | R, % | P, Bar | S, µm | Jv, Lm−2 h−1 (AL-FW) | Js/Jv, g/L | Draw Solution (Feed Water) (#) | Surface Velocity, cm/s | [Ref] |
---|---|---|---|---|---|---|---|---|---|---|---|
HTI-CTA | 0.59 ± 0.04 | 0.36 ± 0.05 | 1.6 | 88.8 ± 2.1 | 5 | 417 ± 41 | 13.6 | 0.74 | 1 M (DI) | 16.7 | [59] |
HTI-TFC | 1.48 ± 0.06 | 0.35 ± 0.01 | 4.2 | 94.7 ± 1.5 | 5 | 453 ± 52 | 17.7 | 0.55 | 1 M (DI) | 16.7 | |
DPE-TFC | 6.7 ± 0.15 | 0.68 ± 0.02 | 9.85 | 98.1 ± 0.2 | 5 | 168 ± 4 | 53.0 | 0.28 | 1 M (DI) | 16.7 | |
NIPS-TFC | 1.86 ± 0.2 | 0.77 ± 0.14 | 2.4 | 91.6 | 5 | 796 ± 85.3 | 17.0 ± 0.9 | - | 2 M (DI) | - | [84] |
NIPS-TFC | 4.00 ± 0.33 | 0.22 ± 0.05 | 18.2 | 96.7 | 2 | 290 ± 56 | 26 | 0.14 | 1 M (DI) | 10–40 | [85] |
NIPS-TFC | 1.21 ± 0.01 | 0.12 ± 0.02 | 10.1 | 93.6 ± 2.4 | 2 | 240.5 | 22.1 | 0.19 | 1 M (DI) | - | [86] |
NIPS-TFC | 2.12 | 5.35 | 0.4 | 91.4 | 5 | 484 | 21.3 | 0.23 * | 1 M (DI) | - | [87] |
Nanofiber TFC | 2.99 ± 0.11 | 0.41 ± 0.12 | 7.3 | 74.2 ± 3.9 | 0.51 * | 174 | 42 | <0.25 | 1 M (DI) | ~9 | [78] |
Nanofiber TFC | 2.82 ± 0.10 | 0.50 ± 0.02 | 5.6 | 77.2 | 7 | 187.9 | 40.64 | - | 1 M (DI) | 11.27 | [88] |
TFC | 0.58 ± 0.01 | 0.05 | 11.6 | 91.1 | 10 | 200 * | 12.3 | - | 0.5 M (DI) | 2.5 | [89] |
CNTs hollow fiber TFC | 2.45 ± 0.10 | 0.12 ± 0.04 | 20.4 | 92.6 ± 1.4 | 1 | 125.6 | 61.0 | 0.14 | 1 M (DI) | 25 | [90] |
TFN | 4.47 ± 0.24 | 0.81 ± 0.01 | 5.5 | 96.7 ± 0.2 | 2 | 741 | 11.4 | 0.27 ± 0.04 | 1 M (DI) | 4.9 | [79] |
TFN | 5.1 ± 0.13 | 0.39 ± 0.03 | 13.1 | 90.9 ± 0.7 | 2 | - | 30.2 | 0.35 | 1 M (DI) | [91] | |
TFN | 2.5 | - | 92.5 | 2 | 58.6 | 39.2 | 0.1 | 1 M (DI) | 8 | [81] | |
TFN | 2.55 ± 0.01 | 0.19 ± 0.02 | 13.4 | 96.8 ± 0.4 | 3 | - | 12.9 | 0.11 | 0.5 M MgCl2 (DI) | 7.3 | [82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, M.; Ma, T.; Goh, K.; Pei, Z.; Chong, J.Y.; Wang, Y.-N. Forward Osmosis Membranes: The Significant Roles of Selective Layer. Membranes 2022, 12, 955. https://doi.org/10.3390/membranes12100955
Tian M, Ma T, Goh K, Pei Z, Chong JY, Wang Y-N. Forward Osmosis Membranes: The Significant Roles of Selective Layer. Membranes. 2022; 12(10):955. https://doi.org/10.3390/membranes12100955
Chicago/Turabian StyleTian, Miao, Tao Ma, Kunli Goh, Zhiqiang Pei, Jeng Yi Chong, and Yi-Ning Wang. 2022. "Forward Osmosis Membranes: The Significant Roles of Selective Layer" Membranes 12, no. 10: 955. https://doi.org/10.3390/membranes12100955
APA StyleTian, M., Ma, T., Goh, K., Pei, Z., Chong, J. Y., & Wang, Y. -N. (2022). Forward Osmosis Membranes: The Significant Roles of Selective Layer. Membranes, 12(10), 955. https://doi.org/10.3390/membranes12100955