The Use of Diethoxydimethylsilane as the Basis of a Hybrid Organosilicon Material for the Production of Biosensitive Membranes for Sensory Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism Cultivation
2.2. Obtaining a Biosensor Receptor Element by Cell Encapsulation via the Sol–Gel Method
2.3. Measuring the Catalytic Activity of Cells in a Biosensor
2.4. Sample Pore Structure Study by Low-Temperature Nitrogen Adsorption Method (BET Method)
2.5. Scanning Electron Microscopy
2.6. Energy Dispersive X-ray Spectroscopy and Elemental Mapping
2.7. Determination of BOD5 by Standard Dilution Method
3. Results
3.1. Determination of the Structure of Biomembranes Obtained by Sol–Gel Synthesis
3.2. Evaluation of the Catalytic Properties of the Obtained Biomembranes
3.3. Evaluation of the Protective Properties of the Obtained Biomembranes
3.4. Application of Obtained Biomembranes for Analysis of BOD in Real Samples
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, K.; Guo, J.; Li, Y.; Chen, J.; Li, P. High-flux ultrafiltration membranes combining artificial water channels and covalent organic frameworks. Membranes 2022, 12, 824. [Google Scholar] [CrossRef] [PubMed]
- De Guzman, M.R.; Ang, M.B.M.Y.; Hsu, K.-T.; Chu, M.-Y.; Millare, J.C.; Huang, S.-H.; Tsai, H.-A.; Lee, K.-R. Enhancing performance of thin-film nanocomposite membranes by embedding in situ silica nanoparticles. Membranes 2022, 12, 607. [Google Scholar] [CrossRef] [PubMed]
- Yandong, H.; Mingyong, H.; Wensheng, Y. Sol-gel construction of mesoporous silica nanomicrostructures. Chem. J. Chin. Univ. 2021, 42, 965–977. [Google Scholar] [CrossRef]
- Kamanina, O.A.; Saverina, E.A.; Rybochkin, P.V.; Arlyapov, V.A.; Vereshchagin, A.N.; Ananikov, V.P. Preparation of hybrid sol-gel materials based on living cells of microorganisms and their application in nanotechnology. Nanomaterials 2022, 12, 1086. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, T.; Yao, Y.; Wei, A. Facile synthesis of novel fibrous silica@apatite@Au composites with superior photo-catalytic activity. Mater. Des. 2018, 147, 106–113. [Google Scholar] [CrossRef]
- Hong, D.; Park, M.; Yang, S.H.; Lee, J.; Kim, Y.-G.; Choi, I.S. Artificial spores: Cytoprotective nanoencapsulation of living cells. Trends Biotechnol. 2013, 31, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Lavrova, D.G.; Kamanina, O.A.; Machulin, A.V.; Suzina, N.E.; Alferov, V.A.; Ponamoreva, O.N. Effect of polyethylene glycol additives on structure, stability, and biocatalytic activity of ormosil sol–gel encapsulated yeast cells. J. Sol-Gel Sci. Technol. 2017, 88, 1–5. [Google Scholar] [CrossRef]
- Ponamoreva, O.N.; Kamanina, O.A.; Alferov, V.A.; Machulin, A.V.; Rogova, T.V.; Arlyapov, V.A.; Alferov, S.V.; Suzina, N.E.; Ivanova, E.P. Yeast-based self-organized hybrid bio-silica sol–gels for the design of biosensors. Biosens. Bioelectron. 2015, 67, 321–326. [Google Scholar] [CrossRef]
- Lavrova, D.G.; Kamanina, O.A.; Alferov, V.A.; Rybochkin, P.V.; Machulin, A.V.; Sidorov, A.I.; Ponamoreva, O.N. Impact of hydrophilic polymers in organosilica matrices on structure, stability, and biocatalytic activity of immobilized methylotrophic yeast used as biofilter bed. Enzym. Microb. Technol. 2021, 150, 109879. [Google Scholar] [CrossRef]
- Kamanina, O.A.; Lavrova, D.G.; Arlyapov, V.A.; Alferov, V.A.; Ponamoreva, O.N. Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater. Enzym. Microb. Technol. 2016, 92, 94–98. [Google Scholar] [CrossRef]
- Sakkos, J.K.; Mutlu, B.R.; Wackett, L.P.; Aksan, A. Adsorption and Biodegradation of Aromatic Chemicals by Bacteria Encapsulated in a Hydrophobic Silica Gel. ACS Appl. Mater. Interfaces 2017, 9, 26848–26858. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Z.; Liu, G.; Cheng, X.; Chi, Z.; Madzak, C.; Liu, C.; Chi, Z. Genetical surface display of silicatein on Yarrowia lipolytica confers living and renewable biosilica–yeast hybrid materials. ACS Omega 2020, 5, 7555–7566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, W.N.W. Sol–gel technology for innovative fabric finishing—A Review. J. Sol-Gel Sci. Technol. 2016, 78, 698–707. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Liu, J.; Luo, Z.; Zhang, Q.; Wang, P.; Liang, X.; Li, C.; Chen, J. Effects of diethoxydimethylsilane addition on the sol–gel process of tetraethylorthosilicate. J. Non. Cryst. Solids 2007, 353, 321–326. [Google Scholar] [CrossRef]
- Yildirim, N.; Odaci, D.; Ozturk, G.; Alp, S.; Ergun, Y.; Dornbusch, K.; Feller, K.-H.; Timur, S. Sol–gel encapsulated glucose oxidase arrays based on a pH sensitive fluorescent dye. Dye. Pigm. 2011, 89, 144–148. [Google Scholar] [CrossRef]
- Habib, O.; Demirkol, D.O.; Timur, S. Sol–gel/chitosan/gold nanoparticle-modified electrode in mediated bacterial biosensor. Food Anal. Methods 2012, 5, 188–194. [Google Scholar] [CrossRef]
- Irani, M.; Keshtkar, A.R.; Moosavian, M.A. Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofiber prepared by sol–gel/electrospinning. Chem. Eng. J. 2012, 200–202, 192–201. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Y.; Wu, D.; Sun, Y.; Gao, H.; Yuan, H.; Deng, F. Comparative study on the hydrolysis kinetics of substituted ethoxysilanes by liquid-state 29Si NMR. J. Non. Cryst. Solids 2004, 343, 61–70. [Google Scholar] [CrossRef]
- Schmidt, H.; Scholze, H.; Kaiser, A. Principles of hydrolysis and condensation reaction of alkoxysilanes. J. Non. Cryst. Solids 1984, 63, 1–11. [Google Scholar] [CrossRef]
- Arlyapov, V.A.; Yudina, N.Y.; Asulyan, L.D.; Kamanina, O.A.; Alferov, S.V.; Shumsky, A.N.; Machulin, A.V.; Alferov, V.A.; Reshetilov, A.N. Registration of BOD using Paracoccus yeei bacteria isolated from activated sludge. 3 Biotech 2020, 10, 207. [Google Scholar] [CrossRef]
- Arlyapov, V.A.; Kharkova, A.S.; Kurbanaliyeva, S.K.; Kuznetsova, L.S.; Machulin, A.V.; Tarasov, S.E.; Melnikov, P.V.; Ponamoreva, O.N.; Alferov, V.A.; Reshetilov, A.N. Use of biocompatible redox-active polymers based on carbon nanotubes and modified organic matrices for development of a highly sensitive BOD biosensor. Enzym. Microb. Technol. 2021, 143, 109706. [Google Scholar] [CrossRef] [PubMed]
- Febriasari, A.; Huriya; Ananto, A.H.; Suhartini, M.; Kartohardjono, S. Polysulfone–polyvinyl pyrrolidone blend polymer composite membranes for batik industrial wastewater treatment. Membranes 2021, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Kharkova, A.S.; Arlyapov, V.A.; Turovskaya, A.D.; Avtukh, A.N.; Starodumova, I.P.; Reshetilov, A.N. Mediator BOD biosensor based on cells of microorganisms isolated from activated sludge. Appl. Biochem. Microbiol. 2019, 55, 189–197. [Google Scholar] [CrossRef]
- Kachala, V.V.; Khemchyan, L.L.; Kashin, A.S.; Orlov, N.V.; Grachev, A.A.; Zalesskiy, S.S.; Ananikov, V.P. Target-oriented analysis of gaseous, liquid and solid chemical systems by mass spectrometry, nuclear magnetic resonance spectroscopy and electron microscopy. Russ. Chem. Rev. 2013, 82, 648. [Google Scholar] [CrossRef]
- Kashin, A.S.; Ananikov, V.P. A SEM study of nanosized metal films and metal nanoparticles obtained by magnetron sputtering. Russ. Chem. Bull. 2011, 60, 2602–2607. [Google Scholar] [CrossRef]
- ISO 5815–1:2003; Water Quality—Determination of Biochemical Oxygen Demand after N Days (BODn), Part 1: Dilution and Seeding Method with Allylthiourea Addition. ISO: London, UK, 2003.
- Arkles, B. Infrared analysis of organosilicon compounds. In Silicon Compounds: Silanes & Silicones, 3rd ed.; Arkles, B., Larson, G.L., Eds.; Gelest, Inc.: Morrisville, PA, USA, 2013; pp. 175–178. [Google Scholar]
- Pereira, A.P.V.; Vasconcelos, W.L.; Oréfice, R.L. Novel multicomponent silicate–poly(vinyl alcohol) hybrids with controlled reactivity. J. Non. Cryst. Solids 2000, 273, 180–185. [Google Scholar] [CrossRef]
- Shokri, B.; Abbasi-Firouzjah, M.; Hosseini, S.I. FTIR analysis of silicon dioxide thin film deposited by Metal organic-based PECVD. In Proceedings of the 19th International Symposium on Plasma Chemistry Society, Bochum, Germany, 27–31 July 2009; Volume 2631. [Google Scholar]
- Kohler, T.; Hejtmann, G.; Henneck, S.; Schubert, M.; Guyenot, M. Sol–gel encapsulation for power electronics utilizing 3-Glycidyloxypropyltriethoxysilane and 3-Mercaptopropyltrimethoxysilane. J. Sol-Gel Sci. Technol. 2022, 103, 832–842. [Google Scholar] [CrossRef]
- Kamanina, O.A.; Arlyapov, V.A.; Rybochkin, P.V.; Lavrova, D.G.; Podsevalova, E.A.; Ponamoreva, O.N. Application of organosilicate matrix based on methyltriethoxysilane, PVA and bacteria Paracoccus yeei to create a highly sensitive BOD. 3 Biotech 2021, 11, 331. [Google Scholar] [CrossRef]
- Thévenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Biosens. Bioelectron. 2001, 16, 121–131. [Google Scholar] [CrossRef]
Reference | This Study | [7] | |
---|---|---|---|
Precursors | 50 vol.% DEDMS: 50 vol.% TEOS | 50 vol.% MTES: 50 vol.% TEOS | |
Biosensor Characteristics | |||
Linear BOD range, mg/dm3 | 0.076–0.800 | 0.1–20.0 | |
Sensitivity coefficient × 10−3, min−1 | 1050 ± 90 | 30 ± 2 | |
Long-term stability, days | 68 | 31 | |
Relative standard deviation, % (n = 10, P = 0.95) | 6 | 3 |
Biosensor Characteristics | Before UV Irradiation | After UV Irradiation |
---|---|---|
Sensitivity coefficient × 10−3, min−1 | 1050 ± 90 | 750 ± 50 |
Minimum reporting level of determined BOD, mg/dm3 | 0.076 | 0.13 |
Upper reporting level of determined BOD, mg/dm3 | 0.80 ± 0.04 | 0.43 ± 0.03 |
№ of Water Sample | Determination of BOD, mg (O2)/dm3 | |
---|---|---|
By Biosensor Method | By the Standard Dilution Method | |
1 | 1.2 ± 0.3 | 1.6 ± 0.2 |
2 | 1.5 ± 0.3 | 2.0 ± 0.3 |
3 | 2.0 ± 0.2 | 2.1 ± 0.3 |
4 | 4.5 ± 0.6 | 4.0 ± 0.6 |
5 | 4.3 ± 0.8 | 4.1 ± 0.6 |
6 | 4.8 ± 0.2 | 4.3 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamanina, O.A.; Lantsova, E.A.; Rybochkin, P.V.; Arlyapov, V.A.; Plekhanova, Y.V.; Reshetilov, A.N. The Use of Diethoxydimethylsilane as the Basis of a Hybrid Organosilicon Material for the Production of Biosensitive Membranes for Sensory Devices. Membranes 2022, 12, 983. https://doi.org/10.3390/membranes12100983
Kamanina OA, Lantsova EA, Rybochkin PV, Arlyapov VA, Plekhanova YV, Reshetilov AN. The Use of Diethoxydimethylsilane as the Basis of a Hybrid Organosilicon Material for the Production of Biosensitive Membranes for Sensory Devices. Membranes. 2022; 12(10):983. https://doi.org/10.3390/membranes12100983
Chicago/Turabian StyleKamanina, Olga A., Elizaveta A. Lantsova, Pavel V. Rybochkin, Vyacheslav A. Arlyapov, Yulia V. Plekhanova, and Anatoly N. Reshetilov. 2022. "The Use of Diethoxydimethylsilane as the Basis of a Hybrid Organosilicon Material for the Production of Biosensitive Membranes for Sensory Devices" Membranes 12, no. 10: 983. https://doi.org/10.3390/membranes12100983
APA StyleKamanina, O. A., Lantsova, E. A., Rybochkin, P. V., Arlyapov, V. A., Plekhanova, Y. V., & Reshetilov, A. N. (2022). The Use of Diethoxydimethylsilane as the Basis of a Hybrid Organosilicon Material for the Production of Biosensitive Membranes for Sensory Devices. Membranes, 12(10), 983. https://doi.org/10.3390/membranes12100983