Permeation Properties of Water Vapor through Graphene Oxide/Polymer Substrate Composite Membranes
Abstract
:1. Introduction
2. Experimental
2.1. Material
2.2. Membrane Fabrication
2.3. Characterization
2.4. Membrane Performance Measurements
3. Results and Discussion
3.1. Fabrication Conditions and Water Vapor Permeation Properties of the GO Membrane
3.2. Permeation Properties of Water Vapor
3.3. Comparison of Dehumidification Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Khajavi, S.; Jansen, J.C.; Kapteijn, F. Production of ultra pure water by desalination of seawater using a hydroxy sodalite membrane. J. Membr. Sci. 2010, 356, 52–57. [Google Scholar] [CrossRef]
- Li, G.M.; Feng, C.; Li, J.F.; Liu, J.Z.; Wu, Y.L. Water vapor permeation and compressed air dehydration performances of modified polyimide membrane. Sep. Purif. Technol. 2008, 60, 330–334. [Google Scholar] [CrossRef]
- Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A.G. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog. Polym. Sci. 2018, 77, 69–94. [Google Scholar] [CrossRef]
- Ong, Y.K.; Shi, G.M.; Le, N.L.; Tang, Y.P.; Zuo, J.; Nunes, S.P.; Chung, T.-S. Recent membrane development for pervaporation processes. Prog. Polym. Sci. 2016, 57, 1–31. [Google Scholar] [CrossRef]
- Shao, P.; Huang, R.Y.M. Polymeric membrane pervaporation. J. Membr. Sci. 2007, 287, 162–179. [Google Scholar] [CrossRef]
- Macedonio, F.; Drioli, E. Membrane Engineering for Green Process Engineering. Engineering 2017, 3, 290–298. [Google Scholar] [CrossRef]
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435–437. [Google Scholar] [CrossRef]
- Khan, M.; Tahir, M.N.; Adil, S.F.; Khan, H.U.; Siddiqui, M.R.H.; Al-warthan, A.A.; Tremel, W. Graphene based metal and metal oxide nanocomposites: Synthesis, properties and their applications. J. Mater. Chem. A 2015, 3, 18753–18808. [Google Scholar] [CrossRef]
- Haubner, K.; Murawski, J.; Olk, P.; Eng, L.M.; Ziegler, C.; Adolphi, B.; Jaehne, E. The route to functional graphene oxide. Chemphyschem 2010, 11, 2131–2139. [Google Scholar] [CrossRef]
- Konios, D.; Stylianakis, M.M.; Stratakis, E.; Kymakis, E. Dispersion behaviour of graphene oxide and reduced graphene oxide. J. Colloid Interface Sci. 2014, 430, 108–112. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.K.; Alwarappan, S.; Yoshimura, M.; Sahajwalla, V.; Nishina, Y. Graphene oxide: The new membrane material. Appl. Mater. Today 2015, 1, 1–12. [Google Scholar] [CrossRef]
- Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef]
- Sun, P.; Zhu, M.; Wang, K.; Zhong, M.; Wei, J.; Wu, D.; Xu, Z.; Zhu, H. Selective Ion Penetration of Graphene Oxide Membranes. ACS Nano 2013, 7, 428–437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chung, T.-S. Graphene oxide membranes for nanofiltration. Curr. Opin. Chem. Eng. 2017, 16, 9–15. [Google Scholar] [CrossRef]
- Huang, L.; Li, Y.; Zhou, Q.; Yuan, W.; Shi, G. Graphene oxide membranes with tunable semipermeability in organic solvents. Adv. Mater. 2015, 27, 3797–3802. [Google Scholar] [CrossRef]
- Klechikov, A.; Yu, J.; Thomas, D.; Sharifi, T.; Talyzin, A.V. Structure of graphene oxide membranes in solvents and solutions. Nanoscale 2015, 7, 15374–15384. [Google Scholar] [CrossRef]
- Nakagawa, K.; Araya, S.; Ushio, K.; Kunimatsu, M.; Yoshioka, T.; Shintani, T.; Kamio, E.; Tung, K.-L.; Matsuyama, H. Controlling interlayer spacing and organic solvent permeation in laminar graphene oxide membranes modified with crosslinker. Sep. Purif. Technol. 2021, 276, 119279. [Google Scholar] [CrossRef]
- Huang, K.; Liu, G.; Lou, Y.; Dong, Z.; Shen, J.; Jin, W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew. Chem. Int. Ed. Engl. 2014, 53, 6929–6932. [Google Scholar] [CrossRef]
- Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274. [Google Scholar] [CrossRef]
- Dikin, D.A.; Stankovich, S.; Zimney, E.J.; Piner, R.D.; Dommett, G.H.; Evmenenko, G.; Nguyen, S.T.; Ruoff, R.S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.H.; Yoon, W.H.; Yoon, S.-M.; Yoo, M.B.; Ahn, K.B.; Cho, H.Y.; Shin, J.H.; Yang, H.; Paik, U.; Kwon, S.; et al. Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes. Science 2013, 342, 91–94. [Google Scholar] [CrossRef]
- Lou, Y.; Liu, G.; Liu, S.; Shen, J.; Jin, W. A facile way to prepare ceramic-supported graphene oxide composite membrane via silane-graft modification. Appl. Surf. Sci. 2014, 307, 631–637. [Google Scholar] [CrossRef]
- Hu, M.; Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47, 3715–3723. [Google Scholar] [CrossRef]
- Zhang, M.C.; Sun, J.J.; Mao, Y.Y.; Liu, G.P.; Jin, W.Q. Effect of substrate on formation and nanofiltration performance of graphene oxide membranes. J. Membr. Sci. 2019, 574, 196–204. [Google Scholar] [CrossRef]
- Han, Y.; Xu, Z.; Gao, C. Ultrathin Graphene Nanofiltration Membrane for Water Purification. Adv. Funct. Mater. 2013, 23, 3693–3700. [Google Scholar] [CrossRef]
- Kim, S.; Ou, R.W.; Hu, Y.X.; Li, X.Y.; Zhang, H.C.; Simon, G.P.; Wang, H.T. Non-swelling graphene oxide-polymer nanocomposite membrane for reverse osmosis desalination. J. Membr. Sci. 2018, 562, 47–55. [Google Scholar] [CrossRef]
- Nicolai, A.; Sumpter, B.G.; Meuniera, V. Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 2014, 16, 8646–8654. [Google Scholar] [CrossRef]
- Castro-Munoz, R.; Buera-Gonzalez, J.; de la Iglesia, O.; Galiano, F.; Fila, V.; Malankowska, M.; Rubio, C.; Figoli, A.; Tellez, C.; Coronas, J. Towards the dehydration of ethanol using pervaporation cross-linked poly (vinyl alcohol)/graphene oxide membranes. J. Membr. Sci. 2019, 582, 423–434. [Google Scholar] [CrossRef]
- Hung, W.S.; Tsou, C.H.; De Guzman, M.; An, Q.F.; Liu, Y.L.; Zhang, Y.M.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Cross-Linking with Diamine Monomers To Prepare Composite Graphene Oxide-Framework Membranes with Varying d-Spacing. Chem. Mater. 2014, 26, 2983–2990. [Google Scholar] [CrossRef]
- Shin, Y.; Liu, W.; Schwenzer, B.; Manandhar, S.; Chase-Woods, D.; Engelhard, M.H.; Devanathan, R.; Fifield, L.S.; Bennett, W.D.; Ginovska, B.; et al. Graphene oxide membranes with high permeability and selectivity for dehumidification of air. Carbon 2016, 106, 164–170. [Google Scholar] [CrossRef]
- Petukhov, D.I.; Chernova, E.A.; Kapitanova, O.O.; Boytsova, O.V.; Valeev, R.G.; Chumakov, A.P.; Konovalov, O.V.; Eliseev, A.A. Thin graphene oxide membranes for gas dehumidification. J. Membr. Sci. 2019, 577, 184–194. [Google Scholar] [CrossRef]
- Buelke, C.; Alshami, A.; Casler, J.; Lin, Y.; Hickner, M.; Aljundi, I.H. Evaluating graphene oxide and holey graphene oxide membrane performance for water purification. J. Membr. Sci. 2019, 588, 117195. [Google Scholar] [CrossRef]
- Tsou, C.H.; An, Q.F.; Lo, S.C.; De Guzman, M.; Hung, W.S.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. J. Membr. Sci. 2015, 477, 93–100. [Google Scholar] [CrossRef]
- Lian, B.; De Luca, S.; You, Y.; Alwarappan, S.; Yoshimura, M.; Sahajwalla, V.; Smith, S.C.; Leslie, G.; Joshi, R.K. Extraordinary water adsorption characteristics of graphene oxide. Chem. Sci. 2018, 9, 5106–5111. [Google Scholar] [CrossRef]
- Majsztrik, P.; Bocarsly, A.; Benziger, J. Water Permeation through Nafion Membranes: The Role of Water Activity. J. Phys. Chem. B 2008, 112, 16280–16289. [Google Scholar] [CrossRef]
- Romero, T.; Merida, W. Water transport in liquid and vapour equilibrated Nafion (TM) membranes. J. Membr. Sci. 2009, 338, 135–144. [Google Scholar] [CrossRef]
- Azher, H.; Scholes, C.A.; Stevens, G.W.; Kentish, S.E. Water permeation and sorption properties of Nafion 115 at elevated temperatures. J. Membr. Sci. 2014, 459, 104–113. [Google Scholar] [CrossRef]
- Nakamura, A.; Makino, H. Aplications of the aromatic polyimide membranes Idehydration be vapor phase permeation process. Membrane 1987, 12, 289–292. [Google Scholar] [CrossRef]
- Katsuma, H.; Harutoshi, H.; Kanaki, T. Gas Separation Membrane. JP2018171570, 13 September 2018. [Google Scholar]
- Lin, H.Q.; Thompson, S.M.; Serbanescu-Martin, A.; Wijmans, J.G.; Amo, K.D.; Lokhandwala, K.A.; Merkel, T.C. Dehydration of natural gas using membranes. Part I: Composite membranes. J. Membr. Sci. 2012, 413, 70–81. [Google Scholar] [CrossRef]
- Suzuki, S.; Shoji, N.; Tsuru, T. Performance evaluation of water vapor permeation through perfluorosulfonic acid capillary membranes. Sep. Purif. Technol. 2021, 266, 118508. [Google Scholar] [CrossRef]
Membrane | Configuration | Thickness [µm] | Temperature [°C] | Feed-in Gas RH [%] | Water Vapor Permeance [mol/ (m2 s Pa)] | Ref. |
---|---|---|---|---|---|---|
Nafion115® (perfluorosulfonic acid polymer) | Flat sheet | 127 | 30 | 80 | 2.6 × 10−6 | [36] |
Nafion115® (perfluorosulfonic acid polymer) | Flat sheet | 127 | 30 | 100 | 1.2 × 10−6 | [37] |
Nafion115® (perfluorosulfonic acid polymer) | Flat sheet | 127 | 30 | 80 | 5.1−6.0 × 10−6 | [38] |
Polyimide® (perfluorosulfonic acid polymer) | Hollow fiber | 40 | 100 | 3.3 × 10−7 | [39] | |
Polyimide | Hollow fiber | 35 | 30 | 1.4 × 10−6 | [40] | |
Polyetherimide | 1.2 × 10−6 | |||||
Polysulfone | 1.1 × 10−6 | |||||
Pebax® (polyether–polyamide copolymer) | Flat sheet (without support layer) | 2 | 21 | 40 | 2.0 × 10−6 | [41] |
Flat sheet (with support layer) | 252 | 6.7 × 10−7 | ||||
Sunsep® (perfluorosulfonic acid polymer) | Capillary | 250 | 30 | 90 | 7.2 × 10−6 | [42] |
GO | Flat sheet | <0.1 | 25 | 90−100 | 1.18 × 10−5 | This study |
Material of GO | Substrate | Membrane Preparation | GO Thickness [nm] | Water Vapor Permeance * [mol/ (m2 s Pa)] | H2O/N2 Selectivity [–] | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Material | Pore Size [µm] | Method | Concentration [mg/mL] | ||||||
Modified Hummer’s method | Freestanding | - | Casting | 8.9 | 6000 | 1.01 × 10−5 | >104 | [31] | |
Modified Hummer’s method | Anodic aluminum oxide (AAO) | 0.01−0.1 | Spin-coating | 0.5–6.0 | 730 | 1.24 × 10−5 | 13,000 | [32] | |
Purchased from Graphenea | Polyethersulfone (PES) | 0.22 | Filtration | 0.1–4 | 100−3500 | 2.7 × 10−6−1.2 × 10−5 | >104 | This study | |
Cellulose ester (CE) | 0.1 | or | 100−5000 | 1.3–6.9 × 10−6 | >104 | ||||
Polytetrafluoroethylene (PTFE) | 0.1 | Casting | 0.1–25 | 100−5000 | 1.0 × 10−6−1.1 × 10−5 | >104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takenaka, R.; Moriyama, N.; Nagasawa, H.; Kanezashi, M.; Tsuru, T. Permeation Properties of Water Vapor through Graphene Oxide/Polymer Substrate Composite Membranes. Membranes 2023, 13, 533. https://doi.org/10.3390/membranes13050533
Takenaka R, Moriyama N, Nagasawa H, Kanezashi M, Tsuru T. Permeation Properties of Water Vapor through Graphene Oxide/Polymer Substrate Composite Membranes. Membranes. 2023; 13(5):533. https://doi.org/10.3390/membranes13050533
Chicago/Turabian StyleTakenaka, Risa, Norihiro Moriyama, Hiroki Nagasawa, Masakoto Kanezashi, and Toshinori Tsuru. 2023. "Permeation Properties of Water Vapor through Graphene Oxide/Polymer Substrate Composite Membranes" Membranes 13, no. 5: 533. https://doi.org/10.3390/membranes13050533
APA StyleTakenaka, R., Moriyama, N., Nagasawa, H., Kanezashi, M., & Tsuru, T. (2023). Permeation Properties of Water Vapor through Graphene Oxide/Polymer Substrate Composite Membranes. Membranes, 13(5), 533. https://doi.org/10.3390/membranes13050533