Electrodeposited Ionomer Protection Layer for Negative Electrodes in Zinc–Air Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrodeposition of PVBTMA on Zinc Metal
2.2. Characterization
2.3. Electrochemical Tests of Zn–Air Batteries
3. Results
3.1. Electropolymerization of PVBTMA on Zinc
3.2. ZAB Cycling Tests in Alkaline Solution
3.3. Miniaturized ZAB Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.M. Li-O-2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.M. Electrical Energy Storage for the Grid: A Battery of Choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Liang, R.L.; Liu, G.H.; Yu, A.P.; Bai, Z.Y.; Yang, L.; Chen, Z.W. Recent Progress in Electrically Rechargeable Zinc-Air Batteries. Adv. Mater. 2019, 31, 13. [Google Scholar] [CrossRef]
- Chakkaravarthy, C.; Waheed, A.K.A.; Udupa, H.V.K. Zinc-air alkaline batteries—A review. J. Power Sources 1981, 6, 203–228. [Google Scholar] [CrossRef]
- Caramia, V.; Bozzini, B. Materials science aspects of zinc–air batteries: A review. Mater. Renew. Sustain. Energy 2014, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Gu, P.; Zheng, M.B.; Zhao, Q.X.; Xiao, X.; Xue, H.G.; Pang, H. Rechargeable zinc-air batteries: A promising way to green energy. J. Mater. Chem. A 2017, 5, 7651–7666. [Google Scholar] [CrossRef]
- Khezri, R.; Hosseini, S.; Lahiri, A.; Motlagh, S.R.; Nguyen, M.T.; Yonezawa, T.; Kheawhom, S. Enhanced Cycling Performance of Rechargeable Zinc-Air Flow Batteries Using Potassium Persulfate as Electrolyte Additive. Int. J. Mol. Sci. 2020, 21, 16. [Google Scholar] [CrossRef]
- Li, Y.G.; Dai, H.J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257–5275. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Cano, Z.P.; Park, M.G.; Yu, A.P.; Fowler, M.; Chen, Z.W. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29, 34. [Google Scholar] [CrossRef]
- Lao-atiman, W.; Bumroongsil, K.; Arpornwichanop, A.; Bumroongsakulsawat, P.; Olaru, S.; Kheawhom, S. Model-Based Analysis of an Integrated Zinc-Air Flow Battery/Zinc Electrolyzer System. Front. Energy Res. 2019, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Ge, X.M.; Sumboja, A.; Wuu, D.; An, T.; Li, B.; Goh, F.W.T.; Hor, T.S.A.; Zong, Y.; Liu, Z.L. Oxygen Reduction in Alkaline Media: From Mechanisms to Recent Advances of Catalysts. Acs Catal. 2015, 5, 4643–4667. [Google Scholar] [CrossRef]
- Sarapuu, A.; Kibena-Poldsepp, E.; Borghei, M.; Tammeveski, K. Electrocatalysis of oxygen reduction on heteroatom-doped nanocarbons and transition metal-nitrogen-carbon catalysts for alkaline membrane fuel cells. J. Mater. Chem. A 2018, 6, 776–804. [Google Scholar] [CrossRef]
- Loh, A.; Trudgeon, D.P.; Li, X.H.; Liu, M.C.; Kong, L.B.; Walsh, F.C. Selection of oxygen reduction catalysts for secondary tri-electrode zinc-air batteries. Sci. Rep. 2022, 12, 16. [Google Scholar] [CrossRef]
- Sun, W.; Wang, F.; Zhang, B.; Zhang, M.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C.; et al. A rechargeable zinc-air battery based on zinc peroxide chemistry. Science 2021, 371, 46. [Google Scholar] [CrossRef]
- Dong, K.; Liang, J.; Wang, Y.Y.; Zhang, L.C.; Xu, Z.Q.; Sun, S.J.; Luo, Y.S.; Li, T.S.; Liu, Q.; Li, N.; et al. Conductive Two-Dimensional Magnesium Metal-Organic Frameworks for High-Efficiency O-2 Electroreduction to H2O2. Acs Catal. 2022, 12, 6092–6099. [Google Scholar] [CrossRef]
- Bai, X.; Wang, L.M.; Nan, B.; Tang, T.M.; Niu, X.D.; Guan, J.Q. Atomic manganese coordinated to nitrogen and sulfur for oxygen evolution. Nano Res. 2022, 15, 6019–6025. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, H.; Song, H.; Zhang, K.; Waterhouse, G.I.; Chang, J.; Tang, Z.; Lu, S. Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction—A review. Nano Res. Energy 2023. [Google Scholar] [CrossRef]
- Kordek, K.; Jiang, L.X.; Fan, K.C.; Zhu, Z.J.; Xu, L.; Al-Mamun, M.; Dou, Y.H.; Chen, S.; Liu, P.R.; Yin, H.J.; et al. Two-Step Activated Carbon Cloth with Oxygen-Rich Functional Groups as a High-Performance Additive-Free Air Electrode for Flexible Zinc-Air Batteries. Adv. Energy Mater. 2019, 9, 9. [Google Scholar] [CrossRef]
- Nallayagari, A.R.; Sgreccia, E.; Di Vona, M.L.; Pasquini, L.; Vacandio, F.; Knauth, P. Nanostructured, Metal-Free Electrodes for the Oxygen Reduction Reaction Containing Nitrogen-Doped Carbon Quantum Dots and a Hydroxide Ion-Conducting Ionomer. Molecules 2022, 27, 18. [Google Scholar] [CrossRef]
- Arafat, Y.; Azhar, M.R.; Zhong, Y.J.; Tade, M.O.; Shao, Z.P. Metal-free carbon based air electrodes for Zn-air batteries: Recent advances and perspective. Mater. Res. Bull. 2021, 140, 23. [Google Scholar] [CrossRef]
- Nallayagari, A.R.; Sgreccia, E.; Pasquini, L.; Vacandio, F.; Kaciulis, S.; Di Vona, M.L.; Knauth, P. Catalytic electrodes for the oxygen reduction reaction based on co-doped (B-N, Si-N, S-N) carbon quantum dots and anion exchange ionomer. Electrochim. Acta 2022, 427, 140861. [Google Scholar] [CrossRef]
- Wang, D.W.; Su, D.S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591. [Google Scholar] [CrossRef]
- Zhai, Y.P.; Zhang, B.W.; Shi, R.; Zhang, S.Y.; Liu, Y.; Wang, B.Y.; Zhang, K.; Waterhouse, G.I.N.; Zhang, T.R.; Lu, S.Y. Carbon Dots as New Building Blocks for Electrochemical Energy Storage and Electrocatalysis. Adv. Energy Mater. 2022, 12, 36. [Google Scholar] [CrossRef]
- Shang, Y.; Kundu, D. Understanding and Performance of the Zinc Anode Cycling in Aqueous Zinc-Ion Batteries and a Roadmap for the Future. Batter. Supercaps 2022, 5, 34. [Google Scholar] [CrossRef]
- Wongrujipairoj, K.; Poolnapol, L.; Arpornwichanop, A.; Suren, S.; Kheawhom, S. Suppression of zinc anode corrosion for printed flexible zinc-air battery. Phys. Status Solidi B-Basic Solid State Phys. 2017, 254, 6. [Google Scholar] [CrossRef]
- Popovic, J. The importance of electrode interfaces and interphases for rechargeable metal batteries. Nat. Commun. 2021, 12, 5. [Google Scholar] [CrossRef]
- Pourzolfaghar, H.; Hosseini, S.; Zuki, F.M.; Alinejad, M.; Li, Y.Y. Recent advancements to mitigate zinc oxide formation in zinc-air batteries: A technical review. Mater. Today Commun. 2021, 29, 14. [Google Scholar] [CrossRef]
- Wu, M.L.; Zhang, Y.; Xu, L.; Yang, C.P.; Hong, M.; Cui, M.J.; Clifford, B.C.; He, S.M.; Jing, S.S.; Yao, Y.; et al. A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter 2022, 5, 3402–3416. [Google Scholar] [CrossRef]
- Xu, L.; Meng, T.T.; Zheng, X.Y.; Li, T.Y.; Brozena, A.H.; Mao, Y.M.; Zhang, Q.; Clifford, B.C.; Rao, J.C.; Hu, L.B. Nanocellulose-Carboxymethylcellulose Electrolyte for Stable, High-Rate Zinc-Ion Batteries. Adv. Funct. Mater. 2023, 9. [Google Scholar] [CrossRef]
- Braglia, M.; Ferrari, I.V.; Pasquini, L.; Djenizian, T.; Sette, M.; Di Vona, M.L.; Knauth, P. Electrochemical synthesis of thin, dense, and conformal anion exchange membranes with quaternary ammonium groups. Electrochim. Acta 2018, 265, 78–88. [Google Scholar] [CrossRef]
- Pasquini, L.; Di Vona, M.L.; Sgreccia, E.; Ruzimuradov, O.; Knauth, P. Ionomer Thin-Films by Electrochemical Synthesis: Bipolar and Ampholytic Membranes. Chemelectrochem 2021, 8, 1493–1499. [Google Scholar] [CrossRef]
- Rossi, F.; Mele, C.; Boniardi, M.; Bozzini, B. Electrodeposition of Zinc from Alkaline Electrolytes Containing Quaternary Ammonium Salts and Ionomers: Impact of Cathodic-Anodic Cycling Conditions. Chemelectrochem 2020, 7, 1752–1764. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Z.S. Zinc based micro-electrochemical energy storage devices: Present status and future perspective. Ecomat 2020, 2, 25. [Google Scholar] [CrossRef]
- Wang, Y.M.; Peng, H.Q.; Hu, M.X.; Zhuang, L.; Lu, J.T.; Xiao, L. A stable zinc-based secondary battery realized by anion-exchange membrane as the separator. J. Power Sources 2021, 486, 10. [Google Scholar] [CrossRef]
- Di Vona, M.L.; Knauth, P. Electrochemical synthesis of ion exchange polymers: Comparison between hydroxide and proton conductors. Solid State Ion. 2020, 352, 7. [Google Scholar] [CrossRef]
- Liu, Y.E.; Wang, X. Stabilizing a Zn Anode by an Ionic Amphiphilic Copolymer Electrolyte Additive for Long-Life Aqueous Zn-Ion Batteries. Batteries 2023, 9, 10. [Google Scholar] [CrossRef]
- Leong, K.W.; Wang, Y.F.; Ni, M.; Pan, W.D.; Luo, S.J.; Leung, D.Y.C. Rechargeable Zn-air batteries: Recent trends and future perspectives. Renew. Sustain. Energy Rev. 2022, 154, 19. [Google Scholar] [CrossRef]
Parameters | Bare Zn Electrode (Before Electro-Deposition) | PVBTMA-Coated Zn Electrode (After Electro-Deposition) | Liquid Electrolyte ZAB | Miniaturized ZAB | ||
---|---|---|---|---|---|---|
PVBTMA-Coated Zn Anode before Cycling | PVBTMA-Coated Zn Anode after Cycling | PVBTMA-Coated Zn Anode before Cycling | PVBTMA-Coated Zn Anode after Cycling | |||
R1/Ohm | 108.0 | 111.0 | 1.3 | 4.1 | 4.1 | 12.8 |
R2/Ohm | 636.0 | 2257.0 | 5.3 | 22.1 | 27.7 | 67.0 |
Q2/μF.s(n−1) | 9 | 7 | 1667 | 249 | 233 | 22 |
n2 | 0.77 | 0.81 | 0.68 | 0.68 | 0.82 | 0.53 |
Q3/mF.s(n−1) | - | - | - | 7.9 | 2.1 | 5.6 |
n3 | - | - | - | 0.68 | 0.85 | 0.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwarteng, P.K.; Syahputra, S.; Pasquini, L.; Vacandio, F.; Di Vona, M.L.; Knauth, P. Electrodeposited Ionomer Protection Layer for Negative Electrodes in Zinc–Air Batteries. Membranes 2023, 13, 680. https://doi.org/10.3390/membranes13070680
Kwarteng PK, Syahputra S, Pasquini L, Vacandio F, Di Vona ML, Knauth P. Electrodeposited Ionomer Protection Layer for Negative Electrodes in Zinc–Air Batteries. Membranes. 2023; 13(7):680. https://doi.org/10.3390/membranes13070680
Chicago/Turabian StyleKwarteng, Papa K., Suanto Syahputra, Luca Pasquini, Florence Vacandio, Maria Luisa Di Vona, and Philippe Knauth. 2023. "Electrodeposited Ionomer Protection Layer for Negative Electrodes in Zinc–Air Batteries" Membranes 13, no. 7: 680. https://doi.org/10.3390/membranes13070680
APA StyleKwarteng, P. K., Syahputra, S., Pasquini, L., Vacandio, F., Di Vona, M. L., & Knauth, P. (2023). Electrodeposited Ionomer Protection Layer for Negative Electrodes in Zinc–Air Batteries. Membranes, 13(7), 680. https://doi.org/10.3390/membranes13070680