Protein Corona of Anionic Fluid-Phase Liposomes Compromises Their Integrity Rather than Uptake by Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Liposome Preparation
2.3. Liposome Characterization
2.4. Isolation of Liposome–Protein Complexes for Zeta Potential Determination
2.5. Liposome Stability Assay
2.6. Isolation of Liposome–Protein Complexes for LC-MS/MS
2.7. HPLC-MS/MS Sample Preparation
2.8. HPLC-MS/MS Data Acquisition and Analysis
2.9. Delipidization of Liposome–Protein Complexes, SDS-PAGE, and Immunoblotting
2.10. Internalization by Cultured Cells
2.11. Internalization Ex Vivo by Blood Cells
2.12. Statistical Analysis of Experimental Data
3. Results
3.1. Characteristics of the Liposomes
Composition | Sample ID | DH ± SD, nm | PDI ± SD | Zeta Potential * ± SD, mV | |
---|---|---|---|---|---|
Liposomes | Liposome–Protein Complexes | ||||
ePC | PC | 117.4 ± 3.1 | 0.050 ± 0.016 | –2.7 ± 0.4 | –3.4 ± 0.2 |
ePC–Chol 67:33 | 33CH | 129.7 ± 1.8 | 0.082 ± 0.010 | –4.1 ± 1.1 | –6.6 ± 0.6 |
ePC–Chol–POPG 57:33:10 | CHPG | 121.7 ± 0.5 | 0.058 ± 0.001 | –49.1 ± 3.0 | –33.4 ± 1.7 |
ePC–POPG 90:10 | 10PG | 114.9 ± 1.1 | 0.059 ± 0.005 | –41.0 ± 1.0 | –33.5 ± 0.9 |
ePC–POPG 60:40 | 40PG | 109.9 ± 2.4 | 0.058 ± 0.041 | –64.1 ± 4.2 | –22.3 ± 0.9 |
3.2. Liposome Stability Assessment
3.3. Plasma Protein Binding by the Liposomes
3.3.1. Immunoglobulins
3.3.2. Lipoprotein Components
3.3.3. The Coagulation Cascade
3.3.4. Complement Components
3.3.5. Transport Proteins
3.4. Liposome Internalization by the Cells
3.4.1. Cultured Cells
3.4.2. Ex Vivo Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walczyk, D.; Bombelli, F.B.; Monopoli, M.P.; Lynch, I.; Dawson, K.A. What the Cell “Sees” in Bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761–5768. [Google Scholar] [CrossRef] [PubMed]
- Lynch, I.; Cedervall, T.; Lundqvist, M.; Cabaleiro-Lago, C.; Linse, S.; Dawson, K.A. The Nanoparticle-Protein Complex as a Biological Entity; a Complex Fluids and Surface Science Challenge for the 21st Century. Adv. Colloid Interface Sci. 2007, 134–135, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Ganesh, S.; Wang, W.; Amiji, M. The Role of Surface Chemistry in Serum Protein Corona-Mediated Cellular Delivery and Gene Silencing with Lipid Nanoparticles. Nanoscale 2019, 11, 8760–8775. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Tao, W.; Liu, D.; Wu, J.; Guo, Z.; Ji, X.; Bharwani, Z.; Zhao, L.; Zhao, X.; Farokhzad, O.C.; et al. Surface De-PEGylation Controls Nanoparticle-Mediated SiRNA Delivery In Vitro and In Vivo. Theranostics 2017, 7, 1990–2002. [Google Scholar] [CrossRef] [Green Version]
- Luiz, H.; Oliveira Pinho, J.; Gaspar, M.M. Advancing Medicine with Lipid-Based Nanosystems—The Successful Case of Liposomes. Biomedicines 2023, 11, 435. [Google Scholar] [CrossRef]
- Filipczak, N.; Pan, J.; Yalamarty, S.S.K.; Torchilin, V.P. Recent Advancements in Liposome Technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22. [Google Scholar] [CrossRef]
- Hajipour, M.J.; Safavi-Sohi, R.; Sharifi, S.; Mahmoud, N.; Ashkarran, A.A.; Voke, E.; Serpooshan, V.; Ramezankhani, M.; Milani, A.S.; Landry, M.P.; et al. An Overview of Nanoparticle Protein Corona Literature. Small 2023. [Google Scholar] [CrossRef]
- Semple, S.; Chonn, A.; Cullis, P.R. Interactions of Liposomes and Lipid-Based Carrier Systems with Blood Proteins: Relation to Clearance Behaviour in Vivo. Adv. Drug Deliv. Rev. 1998, 32, 3–17. [Google Scholar] [CrossRef]
- van der Koog, L.; Gandek, T.B.; Nagelkerke, A. Liposomes and Extracellular Vesicles as Drug Delivery Systems: A Comparison of Composition, Pharmacokinetics, and Functionalization. Adv. Healthc. Mater. 2022, 11, 2100639. [Google Scholar] [CrossRef]
- Holzschuh, S.; Kaeß, K.; Fahr, A.; Decker, C. Quantitative In Vitro Assessment of Liposome Stability and Drug Transfer Employing Asymmetrical Flow Field-Flow Fractionation (AF4). Pharm. Res. 2016, 33, 842–855. [Google Scholar] [CrossRef]
- Chonn, A.; Semple, S.C.; Cullis, P.R. Association of Blood Proteins with Large Unilamellar Liposomes in Vivo. J. Biol. Chem. 1992, 267, 18759–18765. [Google Scholar] [CrossRef]
- Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886. [Google Scholar] [CrossRef]
- Sheikholeslami, B.; Lam, N.W.; Dua, K.; Haghi, M. Exploring the Impact of Physicochemical Properties of Liposomal Formulations on Their in Vivo Fate. Life Sci. 2022, 300, 120574. [Google Scholar] [CrossRef]
- Farzaneh, H.; Ebrahimi Nik, M.; Mashreghi, M.; Saberi, Z.; Jaafari, M.R.; Teymouri, M. A Study on the Role of Cholesterol and Phosphatidylcholine in Various Features of Liposomal Doxorubicin: From Liposomal Preparation to Therapy. Int. J. Pharm. 2018, 551, 300–308. [Google Scholar] [CrossRef]
- Garbuzenko, O.; Barenholz, Y.; Priev, A. Effect of Grafted PEG on Liposome Size and on Compressibility and Packing of Lipid Bilayer. Chem. Phys. Lipids 2005, 135, 117–129. [Google Scholar] [CrossRef]
- Bunker, A.; Magarkar, A.; Viitala, T. Rational Design of Liposomal Drug Delivery Systems, a Review: Combined Experimental and Computational Studies of Lipid Membranes, Liposomes and Their PEGylation. Biochim. Biophys. Acta (BBA)-Biomembr. 2016, 1858, 2334–2352. [Google Scholar] [CrossRef]
- Kozma, G.T.; Shimizu, T.; Ishida, T.; Szebeni, J. Anti-PEG Antibodies: Properties, Formation, Testing and Role in Adverse Immune Reactions to PEGylated Nano-Biopharmaceuticals. Adv. Drug Deliv. Rev. 2020, 154–155, 163–175. [Google Scholar] [CrossRef]
- Zalba, S.; ten Hagen, T.L.M.; Burgui, C.; Garrido, M.J. Stealth Nanoparticles in Oncology: Facing the PEG Dilemma. J. Control. Release 2022, 351, 22–36. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Caracciolo, G.; Cavaliere, C.; Crescenzi, C.; Pozzi, D.; Laganà, A. Shotgun Proteomic Analytical Approach for Studying Proteins Adsorbed onto Liposome Surface. Anal. Bioanal. Chem. 2011, 401, 1195–1202. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cavaliere, C.; Piovesana, S. Liposome Protein Corona Characterization as a New Approach in Nanomedicine. Anal. Bioanal.Chem. 2019, 411, 4313–4326. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, G.; Pozzi, D.; Capriotti, A.L.; Cavaliere, C.; Laganà, A. Effect of DOPE and Cholesterol on the Protein Adsorption onto Lipid Nanoparticles. J. Nanoparticle Res. 2013, 15, 1498. [Google Scholar] [CrossRef]
- Digiacomo, L.; Cardarelli, F.; Pozzi, D.; Palchetti, S.; Digman, M.A.; Gratton, E.; Capriotti, A.L.; Mahmoudi, M.; Caracciolo, G.; Nanoscienze, I.; et al. An Apolipoprotein-Enriched Biomolecular Corona Switches the Cellular Uptake Mechanism and Trafficking Pathway of Lipid Nanoparticles. Nanoscale 2017, 9, 17254–17262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caracciolo, G.; Pozzi, D.; Capriotti, A.L.L.; Cavaliere, C.; Piovesana, S.; Amenitsch, H.; Laganà, A. Lipid Composition: A “Key Factor” for the Rational Manipulation of the Liposome–Protein Corona by Liposome Design. RSC Adv. 2015, 5, 5967–5975. [Google Scholar] [CrossRef]
- Hadjidemetriou, M.; Al-Ahmady, Z.; Kostarelos, K. Time-Evolution of in Vivo Protein Corona onto Blood-Circulating PEGylated Liposomal Doxorubicin (DOXIL) Nanoperticles. Nanoscale 2016, 8, 6948–6957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadjidemetriou, M.; McAdam, S.; Garner, G.; Thackeray, C.; Knight, D.; Smith, D.; Al-Ahmady, Z.; Mazza, M.; Rogan, J.; Clamp, A.; et al. The Human in Vivo Biomolecule Corona onto PEGylated Liposomes: A Proof-of-Concept Clinical Study. Adv. Mater. 2019, 31, e1803335. [Google Scholar] [CrossRef] [Green Version]
- Gardner, L.; Warrington, J.; Rogan, J.; Rothwell, D.G.; Brady, G.; Dive, C.; Kostarelos, K.; Hadjidemetriou, M. The Biomolecule Corona of Lipid Nanoparticles Contains Circulating Cell-Free DNA. Nanoscale Horiz. 2020, 5, 1476–1486. [Google Scholar] [CrossRef]
- Palchetti, S.; Caputo, D.; Digiacomo, L.; Capriotti, A.L.; Coppola, R.; Pozzi, D.; Caracciolo, G. Protein Corona Fingerprints of Liposomes: New Opportunities for Targeted Drug Delivery and Early Detection in Pancreatic Cancer. Pharmaceutics 2019, 11, 31. [Google Scholar] [CrossRef] [Green Version]
- Münter, R.; Simonsen, J.B. Comment on “Optimal Centrifugal Isolating of Liposome–Protein Complexes from Human Plasma” by L. Digiacomo, F. Giulimondi, A.L. Capriotti, S. Piovesana, C.M. Montone, R.Z. Chiozzi, A. Laganá, M. Mahmoudi, D. Pozzi and G. Caracciolo, Nanoscale Adv. 2021, 3, 3824. Nanoscale Adv. 2023, 5, 290–299. [Google Scholar] [CrossRef]
- Boldyrev, I.A.; Zhai, X.; Momsen, M.M.; Brockman, H.L.; Brown, R.E.; Molotkovsky, J.G. New BODIPY Lipid Probes for Fluorescence Studies of Membranes. J. Lipid Res. 2007, 48, 1518–1532. [Google Scholar] [CrossRef] [Green Version]
- Tretiakova, D.; Onishchenko, N.; Boldyrev, I.; Mikhalyov, I.; Tuzikov, A.; Bovin, N.; Evtushenko, E.; Vodovozova, E. Influence of Stabilizing Components on the Integrity of Antitumor Liposomes Loaded with Lipophilic Prodrug in the Bilayer. Colloids Surf. B Biointerfaces 2018, 166, 45–53. [Google Scholar] [CrossRef]
- Zougman, A.; Banks, R.E. C-STrap Sample Preparation Method-in-Situ Cysteinyl Peptide Capture for Bottom-up Proteomics Analysis in the Strap Format. PLoS ONE 2015, 10, e0138775. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant Computational Platform for Mass Spectrometry-Based Shotgun Proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- Dos Santos, N.; Allen, C.; Doppen, A.M.; Anantha, M.; Cox, K.A.K.; Gallagher, R.C.; Karlsson, G.; Edwards, K.; Kenner, G.; Samuels, L.; et al. Influence of Poly(Ethylene Glycol) Grafting Density and Polymer Length on Liposomes: Relating Plasma Circulation Lifetimes to Protein Binding. Biochim. Biophys. Acta Biomembr. 2007, 1768, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Tretiakova, D.S.; Khaidukov, S.V.; Babayants, A.A.; Frolova, I.S.; Shcheglovitova, O.N.; Onishchenko, N.R.; Vodovozova, E.L. Lipophilic Prodrug of Methotrexate in the Membrane of Liposomes Promotes Their Uptake by Human Blood Phagocytes. Acta Nat. 2020, 12, 99–109. [Google Scholar] [CrossRef]
- Jaye, D.L.; Geigerman, C.M.; Fuller, R.E.; Akyildiz, A.; Parkos, C.A. Direct Fluorochrome Labeling of Phage Display Library Clones for Studying Binding Specificities: Applications in Flow Cytometry and Fluorescence Microscopy. J. Immunol. Methods 2004, 295, 119–127. [Google Scholar] [CrossRef]
- Barba-Bon, A.; Nilam, M.; Hennig, A. Supramolecular Chemistry in the Biomembrane. ChemBioChem 2020, 21, 886–910. [Google Scholar] [CrossRef]
- Le Grandois, J.; Marchioni, E.; Zhao, M.; Giuffrida, F.; Ennahar, S.; Bindler, F. Investigation of Natural Phosphatidylcholine Sources: Separation and Identification by Liquid Chromatography−Electrospray Ionization−Tandem Mass Spectrometry (LC−ESI−MS 2) of Molecular Species. J. Agric. Food Chem. 2009, 57, 6014–6020. [Google Scholar] [CrossRef]
- Liu, H.; Bachand, G.D.; Kim, H.; Hayden, C.C.; Abate, E.A.; Sasaki, D.Y. Lipid Nanotube Formation from Streptavidin−Membrane Binding. Langmuir 2008, 24, 3686–3689. [Google Scholar] [CrossRef]
- Walkey, C.D.; Chan, W.C.W. Understanding and Controlling the Interaction of Nanomaterials with Proteins in a Physiological Environment. Chem. Soc. Rev. 2012, 41, 2780–2799. [Google Scholar] [CrossRef]
- Arcella, A.; Palchetti, S.; Digiacomo, L.; Pozzi, D.; Capriotti, A.L.; Frati, L.; Oliva, M.A.; Tsaouli, G.; Rota, R.; Screpanti, I.; et al. Brain Bargeting by Liposome-Biomolecular Corona Boosts Anticancer Efficacy of Temozolomide in Glioblastoma Cells. ACS Chem. Neurosci. 2018, 9, 3166–3174. [Google Scholar] [CrossRef]
- Onishchenko, N.; Tretiakova, D.; Vodovozova, E. Spotlight on the Protein Corona of Liposomes. Acta Biomater. 2021, 134, 57–78. [Google Scholar] [CrossRef] [PubMed]
- Thakur, R.; Das, A.; Chakraborty, A. Interaction of Human Serum Albumin with Liposomes of Saturated and Unsaturated Lipids with Different Phase Transition Temperatures: A Spectroscopic Investigation by Membrane Probe PRODAN. RSC Adv. 2014, 4, 14335–14347. [Google Scholar] [CrossRef]
- Estapé Senti, M.; de Jongh, C.A.; Dijkxhoorn, K.; Verhoef, J.J.F.; Szebeni, J.; Storm, G.; Hack, C.E.; Schiffelers, R.M.; Fens, M.H.; Boross, P. Anti-PEG Antibodies Compromise the Integrity of PEGylated Lipid-Based Nanoparticles via Complement. J. Control. Release 2022, 341, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.K.; Alam Shibly, S.U.; Yamazaki, M. Membrane Tension in Negatively Charged Lipid Bilayers in a Buffer under Osmotic Pressure. J. Phys. Chem. B 2020, 124, 5588–5599. [Google Scholar] [CrossRef] [PubMed]
- Janosi, L.; Gorfe, A.A. Simulating POPC and POPC/POPG Bilayers: Conserved Packing and Altered Surface Reactivity. J. Chem. Theory Comput. 2010, 6, 3267–3273. [Google Scholar] [CrossRef]
- Murzyn, K.; Róg, T.; Pasenkiewicz-Gierula, M. Phosphatidylethanolamine-Phosphatidylglycerol Bilayer as a Model of the Inner Bacterial Membrane. Biophys. J. 2005, 88, 1091–1103. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Róg, T.; Gurtovenko, A.A.; Vattulainen, I.; Karttunen, M. Atomic-Scale Structure and Electrostatics of Anionic Palmitoyloleoylphosphatidylglycerol Lipid Bilayers with Na+ Counterions. Biophys. J. 2007, 92, 1114–1124. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Heberle, F.A.; Tristram-Nagle, S.; Szymanski, M.; Koepfinger, M.; Katsaras, J.; Kučerka, N. Molecular Structures of Fluid Phase Phosphatidylglycerol Bilayers as Determined by Small Angle Neutron and X-Ray Scattering. Biochim. Biophys. Acta (BBA)-Biomembr. 2012, 1818, 2135–2148. [Google Scholar] [CrossRef]
- Simonsen, J.B.; Münter, R. Pay Attention to Biological Nanoparticles When Studying the Protein Corona on Nanomedicines. Angew. Chem.-Int. Ed. 2020, 59, 12584–12588. [Google Scholar] [CrossRef]
- Abbas, A.; Lichtman, A.; Pillai, S. Basic Immunology, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780323549431. [Google Scholar]
- Wang, H.; Lin, S.; Wu, X.; Jiang, K.; Lu, H.; Zhan, C. Interplay between Liposomes and IgM: Principles, Challenges, and Opportunities. Adv. Sci. 2023. [Google Scholar] [CrossRef]
- Blandino, R.; Baumgarth, N. Secreted IgM: New Tricks for an Old Molecule. J. Leukoc. Biol. 2019, 106, 1021–1034. [Google Scholar] [CrossRef]
- Sanjurjo, L.; Aran, G.; Roher, N.; Valledor, A.F.; Sarrias, M.-R. AIM/CD5L: A Key Protein in the Control of Immune Homeostasis and Inflammatory Disease. J. Leukoc. Biol. 2015, 98, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Hellstrand, E.; Lynch, I.; Andersson, A.; Drakenberg, T.; Dahlbäck, B.; Dawson, K.A.; Linse, S.; Cedervall, T. Complete High-Density Lipoproteins in Nanoparticle Corona. FEBS J. 2009, 276, 3372–3381. [Google Scholar] [CrossRef]
- Kontush, A.; Lindahl, M.; Lhomme, M.; Calabresi, L.; Chapman, M.J.; Davidson, W.S. Structure of HDL: Particle Subclasses and Molecular Components. In High Density Lipoproteins: From Biological Understanding to Clinical Exploitation; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–51. [Google Scholar]
- Cochran, B.J.; Ong, K.-L.; Manandhar, B.; Rye, K.-A. APOA1: A Protein with Multiple Therapeutic Functions. Curr. Atheroscler. Rep. 2021, 23, 11. [Google Scholar] [CrossRef]
- Goswami, B.; Tayal, D.; Gupta, N.; Mallika, V. Paraoxonase: A Multifaceted Biomolecule. Clin. Chim. Acta 2009, 410, 1–12. [Google Scholar] [CrossRef]
- Cai, R.; Ren, J.; Ji, Y.; Wang, Y.; Liu, Y.; Chen, Z.; Farhadi Sabet, Z.; Wu, X.; Lynch, I.; Chen, C. Corona of Thorns: The Surface Chemistry-Mediated Protein Corona Perturbs the Recognition and Immune Response of Macrophages. ACS Appl. Mater. Interfaces 2020, 12, 1997–2008. [Google Scholar] [CrossRef]
- Liu, Y.; Morton, R.E. Apolipoprotein F: A Natural Inhibitor of Cholesteryl Ester Transfer Protein and a Key Regulator of Lipoprotein Metabolism. Curr. Opin. Lipidol. 2020, 31, 194–199. [Google Scholar] [CrossRef]
- Sørensen, O.; Bratt, T.; Johnsen, A.H.; Madsen, M.T.; Borregaard, N. The Human Antibacterial Cathelicidin, HCAP-18, Is Bound to Lipoproteins in Plasma. J. Biol. Chem. 1999, 274, 22445–22451. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Mesquita, B.; Horvatovich, P.; Salvati, A. Tuning Liposome Composition to Modulate Corona Formation in Human Serum and Cellular Uptake. Acta Biomater. 2020, 106, 314–327. [Google Scholar] [CrossRef]
- Nordström, R.; Browning, K.L.; Parra-Ortiz, E.; Damgaard, L.S.E.; Häffner, S.M.; Maestro, A.; Campbell, R.A.; Cooper, J.F.K.; Malmsten, M. Membrane Interactions of Antimicrobial Peptide-Loaded Microgels. J. Colloid Interface Sci. 2020, 562, 322–332. [Google Scholar] [CrossRef]
- Lozeau, L.D.; Rolle, M.W.; Camesano, T.A. A QCM-D Study of the Concentration- and Time-Dependent Interactions of Human LL37 with Model Mammalian Lipid Bilayers. Colloids Surf. B Biointerfaces 2018, 167, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Fuior, E.V.; Gafencu, A.V. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int. J. Mol. Sci. 2019, 20, 5939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritz, S.; Schöttler, S.; Kotman, N.; Baier, G.; Musyanovych, A.; Kuharev, J.; Landfester, K.; Schild, H.; Jahn, O.; Tenzer, S.; et al. Protein Corona of Nanoparticles: Distinct Proteins Regulate the Cellular Uptake. Biomacromolecules 2015, 16, 1311–1321. [Google Scholar] [CrossRef]
- Bayly, G.R. Lipids and Disorders of Lipoprotein Metabolism. In Clinical Biochemistry: Metabolic and Clinical Aspects, 3rd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2014; pp. 702–736. ISBN 9780702054785. [Google Scholar]
- Sheng, Y.; Sali, A.; Herzog, H.; Lahnstein, J.; Krilis, S.A. Site-Directed Mutagenesis of Recombinant Human Beta 2-Glycoprotein I Identifies a Cluster of Lysine Residues That Are Critical for Phospholipid Binding and Anti-Cardiolipin Antibody Activity. J. Immunol. 1996, 157, 3744–3751. [Google Scholar] [CrossRef] [PubMed]
- Cutsforth, G.A.; Koppaka, V.; Krishnaswamy, S.; Wu, J.R.; Mann, K.G.; Lentz, B.R. Insights into the Complex Association of Bovine Factor Va with Acidic-Lipid-Containing Synthetic Membranes. Biophys. J. 1996, 70, 2938–2949. [Google Scholar] [CrossRef] [Green Version]
- Litvinov, R.I.; Pieters, M.; de Lange-Loots, Z.; Weisel, J.W. Fibrinogen and Fibrin. In Subcellular Biochemistry—Macromolecular Protein Complexes III: Structure and Function; Robin Harris, J., Marles-Wright, J., Eds.; Springer: Cham, Switzerland, 2021; pp. 471–501. [Google Scholar]
- Faizullin, D.; Valiullina, Y.; Salnikov, V.; Zuev, Y. Direct Interaction of Fibrinogen with Lipid Microparticles Modulates Clotting Kinetics and Clot Structure. Nanomedicine 2020, 23, 102098. [Google Scholar] [CrossRef]
- Lubbers, R.; van Essen, M.F.; van Kooten, C.; Trouw, L.A. Production of Complement Components by Cells of the Immune System. Clin. Exp. Immunol. 2017, 188, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.; Lu, F.; Mejia, P. C1 Inhibitor, a Multi-Functional Serine Protease Inhibitor. Thromb. Haemost. 2010, 104, 886–893. [Google Scholar] [CrossRef]
- Kajdácsi, E.; Jandrasics, Z.; Veszeli, N.; Makó, V.; Koncz, A.; Gulyás, D.; Köhalmi, K.V.; Temesszentandrási, G.; Cervenak, L.; Gál, P.; et al. Patterns of C1-Inhibitor/Plasma Serine Protease Complexes in Healthy Humans and in Hereditary Angioedema Patients. Front. Immunol. 2020, 11, 794. [Google Scholar] [CrossRef]
- Ermert, D.; Blom, A.M. C4b-Binding Protein: The Good, the Bad and the Deadly. Novel Functions of an Old Friend. Immunol. Lett. 2016, 169, 82–92. [Google Scholar] [CrossRef] [Green Version]
- Panagi, Z.; Avgoustakis, K.; Evangelatos, G.; Ithakissios, D.S. In Vitro Binding of HSA, IgG, and HDL on Liposomes of Different Composition and Its Correlation with the BLOOD/RES Ratio of Liposomes. Int. J. Pharm. 1999, 176, 203–207. [Google Scholar] [CrossRef]
- Miao, L.; Lin, J.; Huang, Y.; Li, L.; Delcassian, D.; Ge, Y.; Shi, Y.; Anderson, D.G. Synergistic Lipid Compositions for Albumin Receptor Mediated Delivery of MRNA to the Liver. Nat. Commun. 2020, 11, 2424. [Google Scholar] [CrossRef]
- Pupim, L.B.; Martin, C.J.; Ikizler, T.A. Assessment of Protein and Energy Nutritional Status. In Nutritional Management of Renal Disease; Elsevier: Amsterdam, The Netherlands, 2013; pp. 137–158. [Google Scholar]
- AlSawaftah, N.M.; Awad, N.S.; Paul, V.; Kawak, P.S.; Al-Sayah, M.H.; Husseini, G.A. Transferrin-Modified Liposomes Triggered with Ultrasound to Treat HeLa Cells. Sci. Rep. 2021, 11, 11589. [Google Scholar] [CrossRef]
- Boehnke, N.; Straehla, J.P.; Safford, H.C.; Kocak, M.; Rees, M.G.; Ronan, M.; Rosenberg, D.; Adelmann, C.H.; Chivukula, R.R.; Nabar, N.; et al. Massively Parallel Pooled Screening Reveals Genomic Determinants of Nanoparticle Delivery. Science 2022, 377, eabm5551. [Google Scholar] [CrossRef]
- Yang, K.; Reker-Smit, C.; Stuart, M.C.A.; Salvati, A. Effects of Protein Source on Liposome Uptake by Cells: Corona Composition and Impact of the Excess Free Proteins. Adv. Healthc. Mater. 2021, 10, e2100370. [Google Scholar] [CrossRef]
- Gordon, S. Phagocytosis: An Immunobiologic Process. Immunity. 2016, 44, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Bros, M.; Nuhn, L.; Simon, J.; Moll, L.; Mailänder, V.; Landfester, K.; Grabbe, S. The Protein Corona as a Confounding Variable of Nanoparticle-Mediated Targeted Vaccine Delivery. Front. Immunol. 2018, 9, 1760. [Google Scholar] [CrossRef]
HP | PC | 33CH | 10PG | 40PG | CHPG | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Polypeptide Chain | RPA, % (Mean ± SD) | Polypeptide Chain | RPA, % (Mean ± SD) | Polypeptide Chain | RPA, % (Mean ± SD) | Polypeptide Chain | RPA, % (Mean ± SD) | Polypeptide Chain | RPA, % (Mean ± SD) | Polypeptide Chain | RPA, % (Mean ± SD) | ||||||
1 | APOC4-C2 | 29.2 ± 6.0 | 1 | APOC4-C2 | 25.0 ± 5.6 | 1 | APOC4-C2 | 25.2 ± 1.2 | 1 | APOC4-C2 | 24.7 ± 6.2 | 1 | APOC1 | 37.1 ± 5.6 | 1 | APOC4-C2 | 22.5 ± 3.5 |
2 | IGHM | 12.4 ± 2.6 | 2 | APOC3 | 10.8 ± 1.4 | 2 | IGHM | 12.3 ± 1.5 | 2 | IGHM | 8.8 ± 3.4 | 2 | APOH | 14.2 ± 4.9 | 2 | IGHM | 11.1 ± 2.1 |
3 | APOE | 9.5 ± 0.7 | 3 | IGHM | 10.1 ± 4.7 | 3 | APOC3 | 9.4 ± 0.7 | 3 | APOC3 | 8.2 ± 1.4 | 3 | APOC4-C2 | 11.0 ± 1.2 | 3 | APOC1 | 10.1 ± 1.3 |
4 | APOC1 | 7.0 ± 2.3 | 4 | APOE | 7.8 ± 1.8 | 4 | APOE | 7.0 ± 1.5 | 4 | APOC1 | 8.0 ± 3.1 | 4 | IGHM | 6.0 ± 1.5 | 4 | APOC3 | 6.9 ± 1.7 |
5 | APOC3 | 6.6 ± 1.7 | 5 | ALB | 6.3 ± 0.9 | 5 | IGKC | 5.8 ± 0.6 | 5 | APOE | 6.2 ± 0.8 | 5 | APOE | 5.6 ± 1.5 | 5 | IGKC | 6.7 ± 2.0 |
6 | IGLC6 | 5.5 ± 1.8 | 6 | APOM | 4.3 ± 1.3 | 6 | APOC1 | 5.4 ± 5.4 | 6 | ALB | 5.6 ± 0.9 | 6 | APOC3 | 4.9 ± 0.7 | 6 | APOE | 6.6 ± 1.2 |
7 | IGKC | 4.6 ± 1.0 | 7 | IGKC | 3.8 ± 1.7 | 7 | IGLC6 | 4.0 ± 1.4 | 7 | IGKC | 4.0 ± 1.0 | 7 | IGLC6 | 2.2 ± 1.4 | 7 | IGLC6 | 4.3 ± 0.7 |
8 | IGJ | 3.3 ± 1.1 | 8 | IGLC6 | 3.4 ± 1.8 | 8 | IGJ | 2.3 ± 0.5 | 8 | PON1 | 3.7 ± 1.5 | 8 | ALB | 1.7 ± 0.8 | 8 | ALB | 4.2 ± 0.9 |
9 | CD5L | 1.7 ± 0.7 | 9 | PON1 | 2.2 ± 0.9 | 9 | FGA | 2.0 ± 0.0 | 9 | IGLC6 | 3.2 ± 1.4 | 9 | IGKC | 1.4 ± 0.7 | 9 | IGJ | 2.6 ± 0.4 |
10 | HP | 1.4 ± 0.2 | 10 | IGJ | 2.1 ± 1.0 | 10 | ALB | 1.9 ± 0.8 | 10 | APOM | 2.0 ± 0.8 | 10 | IGJ | 1.4 ± 0.5 | 10 | APOA1 | 1.9 ± 0.3 |
11 | APOA2 | 1.3 ± 0.7 | 11 | APOA1 | 1.5 ± 0.4 | 11 | FGB | 1.6 ± 0.0 | 11 | IGJ | 1.8 ± 0.7 | 11 | CAMP | 1.0 ± 0.4 | 11 | CAMP | 1.9 ± 0.7 |
12 | APOA1 | 1.3 ± 0.3 | 12 | APOF | 1.4 ± 0.3 | 12 | FGG | 1.4 ± 0.0 | 12 | CAMP | 1.6 ± 0.9 | 12 | APOA2 | 0.9 ± 0.4 | 12 | CD5L | 1.4 ± 0.2 |
13 | VWF | 1.1 ± 0.2 | 13 | IGHG1 | 1.2 ± 0.3 | 13 | CD5L | 1.4 ± 0.3 | 13 | APOA1 | 1.3 ± 0.3 | 13 | PON1 | 0.9 ± 0.7 | 13 | APOB | 1.3 ± 0.1 |
14 | IGHV3-74 | 1.1 ± 0.5 | 14 | APOB | 1.1 ± 0.2 | 14 | APOA1 | 1.1 ± 0.2 | 14 | C4BPA | 1.2 ± 0.3 | 14 | APOM | 0.9 ± 0.4 | 14 | APOA2 | 1.1 ± 0.1 |
15 | APOB | 0.9 ± 0.1 | 15 | CD5L | 1.0 ± 0.4 | 15 | HP | 1.0 ± 0.2 | 15 | IGHG1 | 1.2 ± 0.5 | 15 | CD5L | 0.8 ± 0.3 | 15 | HP | 1.0 ± 0.2 |
16 | IGKV2-24 | 0.7 ± 0.3 | 16 | VWF | 0.9 ± 0.2 | 16 | APOB | 1.0 ± 0.0 | 16 | CD5L | 1.0 ± 0.4 | 16 | SAA2-SAA4 | 0.7 ± 0.2 | 16 | APOD | 0.9 ± 0.2 |
17 | APOD | 0.6 ± 0.3 | 17 | HP | 0.9 ± 0.2 | 17 | VWF | 0.8 ± 0.1 | 17 | APOA2 | 1.0 ± 0.4 | 17 | APOD | 0.5 ± 0.2 | 17 | VWF | 0.8 ± 0.1 |
18 | LGALS3BP | 0.6 ± 0.1 | 18 | APOA2 | 0.8 ± 0.4 | 18 | APOM | 0.7 ± 0.4 | 18 | APOB | 1.0 ± 0.3 | 18 | APOA1 | 0.5 ± 0.2 | 18 | IGHV3-74 | 0.8 ± 0.1 |
19 | IGHV3-72 | 0.6 ± 0.3 | 19 | IGHV3-74 | 0.7 ± 0.3 | 19 | APOA2 | 0.7 ± 0.3 | 19 | HP | 0.9 ± 0.2 | 19 | HP | 0.5 ± 0.2 | 19 | C4BPA | 0.7 ± 0.2 |
20 | SAA2-SAA4 | 0.5 ± 0.2 | 20 | IGHV3-72 | 0.7 ± 0.5 | 20 | IGHV3-74 | 0.7 ± 0.2 | 20 | APOF | 0.8 ± 0.2 | 20 | VWF | 0.5 ± 0.1 | 20 | SAA2-SAA4 | 0.7 ± 0.1 |
21 | IGKV4-1 | 0.5 ± 0.2 | 21 | SAA2-SAA4 | 0.6 ± 0.2 | 21 | CLU | 0.7 ± 0.1 | 21 | VWF | 0.7 ± 0.1 | 21 | IGHG1 | 0.4 ± 0.1 | 21 | IGHA1 | 0.6 ± 0.3 |
22 | IGLV8-61 | 0.4 ± 0.2 | 22 | C4BPA | 0.6 ± 0.2 | 22 | SAA2-SAA4 | 0.7 ± 0.2 | 22 | IGHA1 | 0.7 ± 0.2 | 22 | IGK | 0.4 ± 0.3 | 22 | APOM | 0.6 ± 0.1 |
23 | C4BPB | 0.4 ± 0.3 | 23 | SERPINA1 | 0.6 ± 0.1 | 23 | C4BPA | 0.6 ± 0.2 | 23 | SAA2-SAA4 | 0.7 ± 0.2 | 23 | APOB | 0.3 ± 0.0 | 23 | IGK | 0.6 ± 0.1 |
24 | ALB | 0.4 ± 0.1 | 24 | IGK | 0.6 ± 0.2 | 24 | IGK | 0.6 ± 0.3 | 24 | IGHG-2 | 0.6 ± 0.2 | 24 | IGLL5 | 0.3 ± 0.1 | 24 | IGHG1 | 0.5 ± 0.2 |
25 | IGHA1 | 0.4 ± 0.3 | 25 | IGHG2 | 0.5 ± 0.1 | 25 | APOD | 0.5 ± 0.2 | 25 | IGHV3-74 | 0.6 ± 0.3 | 25 | F5 | 0.3 ± 0.0 | 25 | IGKV2-24 | 0.5 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tretiakova, D.; Kobanenko, M.; Alekseeva, A.; Boldyrev, I.; Khaidukov, S.; Zgoda, V.; Tikhonova, O.; Vodovozova, E.; Onishchenko, N. Protein Corona of Anionic Fluid-Phase Liposomes Compromises Their Integrity Rather than Uptake by Cells. Membranes 2023, 13, 681. https://doi.org/10.3390/membranes13070681
Tretiakova D, Kobanenko M, Alekseeva A, Boldyrev I, Khaidukov S, Zgoda V, Tikhonova O, Vodovozova E, Onishchenko N. Protein Corona of Anionic Fluid-Phase Liposomes Compromises Their Integrity Rather than Uptake by Cells. Membranes. 2023; 13(7):681. https://doi.org/10.3390/membranes13070681
Chicago/Turabian StyleTretiakova, Daria, Maria Kobanenko, Anna Alekseeva, Ivan Boldyrev, Sergey Khaidukov, Viktor Zgoda, Olga Tikhonova, Elena Vodovozova, and Natalia Onishchenko. 2023. "Protein Corona of Anionic Fluid-Phase Liposomes Compromises Their Integrity Rather than Uptake by Cells" Membranes 13, no. 7: 681. https://doi.org/10.3390/membranes13070681
APA StyleTretiakova, D., Kobanenko, M., Alekseeva, A., Boldyrev, I., Khaidukov, S., Zgoda, V., Tikhonova, O., Vodovozova, E., & Onishchenko, N. (2023). Protein Corona of Anionic Fluid-Phase Liposomes Compromises Their Integrity Rather than Uptake by Cells. Membranes, 13(7), 681. https://doi.org/10.3390/membranes13070681