Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review
Abstract
:1. Introduction
Juice Source | Membrane Type and Operating Conditions | Concentration (°Brix) | Flux (L/m2h) | Major Findings | References | ||
---|---|---|---|---|---|---|---|
Starting | Final | Starting | Final | ||||
Apple | UF; A:150 cm2; TMP: 5.4 bar; Time: 120 & 150 | 13.0 | 16.5 | 26.3 | 44.6 | Total phenolic content increases from 107 to 312.3 (mg GAE/L). | [30] |
Keylime, watermelon, kiwifruit | CM; Time: 100 min; TMP: 300, 500, and 700 kPa | 11.6 | 11.8 | 273 | 388 | Excellent mechanical strength and highly resistant to operating pressures up to 700 kPa with small intrinsic resistance values at 0.023, 0.475, and 0.488. | [31] |
Pomegranate | MF; A: 14.6 cm2; 250 rpm; T: 25 °C; TMP: 1.4 bar | 10.0 | 16.2 | 135 | 2776 | The highest performance for the clarification of pomegranate juice was achieved for 0.05% of Al2O3-integrated PSF/ PEI membranes with the highest total soluble solid (16.2 ± 0.0 Brix), color (5781 ± 4 PtCo), and total phenolic content (2642.1 ± 46.4 mg GAE/L). | [2] |
Sugarcane | CM; TMP: 9.3 bar; Temp: 25 °C; Time: 1 h | 6.66 | 18 | 0.13 10.85 | 17.13 16.86 | The cake layer build-up on the surface of the UF membrane was observed to be the main fouling trends, and could be addressed via physical and chemical cleaning, thereby improving the general efficiency of the filtration process. | [32] |
Grapefruit | PES-MF; A: 17 cm2; T: 25 °C; TMP:0.5 & 1.5 bar | 9.9 | NA | 2 | 20 | In optimal conditions, the permeate flux of immersed membranes configuration attained 5 Lh−1.m−2. | [33] |
Watermelon | PES-UF; MWCO:50 kDa; TMP: 0.5–3 bar; A: 50 cm2; pH:2–13; Temp: 30 °C | 7.1 | 6.9 | NA | NA | Significant reductions in color (3.16–0.245% A420); turbidity (2.11–83.17% T660); lycopene: 33.51–12.15 mg/L. The ascorbic acid content in the permeate was on the lower side than in the feed. | [34] |
Nature of Juice | Membrane Type and Operating Conditions | Nature of Fouling Mitigation Technique | Major Findings | References |
---|---|---|---|---|
Brown sugar redissolved syrup | CM; Crossflow; TMP: 4 bar; cross-flow velocity: 4 m/s | Polydopamine | Modified ceramic membrane exhibited enhanced permeation flux of 193.75 LMH and higher turbidity reduction (˃99%). | [35] |
Apple | PVDF-MF; Crossflow; A: 22.8 cm2; TMP: 0.3 bar; cross flow rate: 229.3 mL/min; T: 25 °C | Polydopamine coating and nisin | Pure water flux increased from 480.8 to 491.4 Lm−2h−1, nisin-grafted membrane showed greater performance in terms of hydrophilicity and anti-bacterial property, and 14.6% less decline in flux was also attained. | [36] |
Pomegranate | PSF/PEI-MF; Dead-end; A:14.6 cm2; stirring speed: 250 rpm; T: 25 °C; TMP: 1.4 bar | TiO2 and Al2O3 | The 0.01% TiO2 membrane had the highest pure water flux of (2776 L/m2h) with the least contact angle (69°) as compared with 94° for a non-modified membrane. | [2] |
Apple | PSF/PEI-UF; cross-flow; A: 150 cm2; TMP: 5.4 bar; Time: 120 & 150 min. | Al2O3 and TiO2 | Membrane modified with 0.01% TiO2 recorded the highest apple juice flux of 44.6 L/m2h, superior porosity, and hydrophilicity. | [30] |
Pomegranate | RO-PSF; TMP: 3000 kPa; Temp: 25 °C; | Low-pressure nitrogen plasma | Lower contact angle (13.2°), increased flux, and soluble solids content for 90 W at 15 min. | [37] |
Apple | UF-PSF; A: 0.0140 m2; TMP: 250 kPa; flow rate: 210 L h−1; Temp: 25 °C | Low-pressure oxygen plasma treatment | Higher hydraulic permeability (36.1–152 Kgm−2s−1 kPa−1) × 105 under 90 W plasma power and 10 min exposure time. | [38] |
Sugar cane | PSF-UF; TMP: 104 kPa; Flow rate: 30 L/h; Time: 8 h; Temp: 25 °C | Polypyrrole and chitosan composite | Increased flux permeability from 9 to 16.3 L/m2.h; 71.2% rejection of polyphenol oxidase enzyme, 17% flux recovery, and 76% reduction in membrane hydraulic resistance. | [26] |
Sugar cane | CM; Temp (60,75,90 °C); pH (7.2, 7.5, 7.8); A: 0.1193 m2; TMP: 0.26 MPa | Lime saccharate | The pre-treatment increases the cake resistance. Partial liming of the juice at 75 °C produces higher permeate flux even at VCF of 20. Almost 90.17% purity and increased flux (121–248 L/m2.h) were achieved. | [39] |
Cranberry | UF; Time: 60, 120 min; MWCO (50, 100, 500 kDa); A: 0.014 m2; Temp: 15 °C. | Pectinolytic enzyme | Depectinization for 60 and 120 min reduced UF duration by 16.7 and 20 min, improved the permeate fluxes, and reduced the duration of clarification. | [40] |
Opuntia cactus cladode | MF-PES; A: 3.14 cm2; TMP: 0.2 bar; Time: 20 min | Pectinex Ultra, SP-L, Viscozyme-L | Viscozyme-L decreased the soluble polysaccharide content and attained lower viscosity and better membrane performance. The cake layer was the dominant resistance to membrane fouling during filtration. | [41] |
Carrot | PVDF; A: 78 cm2; P:1000 W, frequency: 20 kHz; distance: 1.7 cm; flow rates (10, 15, 20 mL/s); TMP: 0.5 & 1 bar; Temp: 25 °C | Ultrasound treatment | The best performance in terms of turbidity rejection (97.9%, particle size 531.1 µm, increased permeate flux, and excellent feed flow rate were recorded at 1 bar and 15 mL/s). | [42] |
Banana | UF; A: 0.0032 m2; TMP: 2 bar; enzyme concentrations: (0.1, 0.2, 0.3, 0.4, and 0.5%) | Pectinase enzyme (pre-treatment) | Pre-treatment of the banana juice before ultrafiltration also improved the permeate flux by 65.5% compared to the untreated sample. | [43] |
2. Factors Affecting the Performance of a Membrane during Fruit Juice Clarification
2.1. Nature of Membrane
2.2. Temperature
2.3. Juice Composition
2.4. Transmembrane Pressure
2.5. Cross-Flow Velocity
3. Strategies for Curtailing Membrane Fouling to Enhance the Fruit Juice Processing Performance
3.1. Membrane Modification
3.2. Pre-Treatment of Juice
3.2.1. Chemical or Enzymatic Pre-Treatment
3.2.2. Physical Pre-Treatment
3.2.3. Hydrodynamics
3.2.4. Membrane Cleaning
4. Conclusions and Future Research Recommendations
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AAC | ascorbic acid content |
Al2O3 | aluminum oxide |
CA | cellulose acetate |
CE | cellulose esters |
COFs | covalent organic frameworks |
CRV | cross-flow velocity |
FO | forward osmosis |
MF | microfiltration |
MCE | mixed cellulose ester |
MOFs | metal–organic frameworks |
MWCO | molecular weight cut-off |
NF | nanofiltration |
PAN | polyacrylonitrile |
PA | polyamide |
PDA | polydopamine |
PEG | polyethylene glycol |
PEI | polyether-imide |
PES | polyethersulfone |
PFP | polyvinyl pyrrolidone |
PVA | polyvinyl alcohol |
PVDF | polyvinylidene fluoride |
PVP | polyvinyl pyrrolidone |
PSF | polysulfone |
PP | polypropylene |
RO | reverse osmosis |
SSC | soluble solids content |
TiO2 | titanium dioxide |
TFC | thin film composite |
TMP | transmembrane pressure |
TPC | total phenolic content |
TSS | total soluble solids |
UF | ultrafiltration |
UV | ultraviolet |
VCF | volumetric concentration factor |
References
- Davarcı, A.; Kadiroğlu, P.; Dıblan, S.; Selli, S.; Kelebek, H. Influence of processing steps on phenolic composition of clarified and unclarified pomegranate juices as characterized by LC-DAD-ESI-MS/MS. J. Food Process. Preserv. 2019, 43, e14018. [Google Scholar] [CrossRef]
- Severcan, S.S.; Uzal, N.; Kahraman, K. Clarification of pomegranate juice using PSF microfiltration membranes fabricated with nano TiO2 and Al2O3. J. Food Process. Preserv. 2020, 44, e14559. [Google Scholar] [CrossRef]
- Polidori, J.; Dhuique-Mayer, C.; Dornier, M. Crossflow microfiltration coupled with diafiltration to concentrate and purify carotenoids and flavonoids from citrus juices. Innov. Food Sci. Emerg. Technol. 2018, 45, 320–329. [Google Scholar] [CrossRef]
- Terra, N.M.; Madrona, G.S.; Ferreira, F.B.; Cardoso, V.L.; Reis, M.H.M. High performance of asymmetric alumina hollow fiber membranes for the clarification of genipap (Genipa americana L.) fruit extract. Food Bioprocess Technol. 2019, 12, 27–38. [Google Scholar] [CrossRef]
- Roobab, U.; Abida, A.; Chacha, J.S.; Athar, A.; Madni, G.M.; Ranjha, M.M.A.N.; Rusu, A.V.; Zeng, X.-A.; Aadil, R.M.; Trif, M. Applications of innovative non-thermal pulsed electric field technology in developing safer and healthier fruit juices. Molecules 2022, 27, 4031. [Google Scholar] [CrossRef]
- Jen, B.; Adeline, L.; Yien, S.; Yin, T.; Thoo, Y. Impact of ozone treatment on the physico-chemical properties, bioactive compounds, pectin methylesterase activity and microbiological properties of watermelon juice. J. Food Sci. Technol. 2022, 59, 979–989. [Google Scholar] [CrossRef]
- Menezes, M.; Bindes, M.; Hespanhol, M.; Reis, M.; Luiz, V.; Boffito, D.C. Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (chitosan and Moringa oleífera seeds). Ultrason. Sonochemistry 2018, 51, 111–119. [Google Scholar] [CrossRef]
- Hurtado, A.; Guàrdia, D.; Picouet, P.; Jofré, A.; María, J.; Bañón, S. Stabilization of red fruit-based smoothies by high-pressure processing. Part A. Effects on microbial growth, enzyme activity, antioxidant capacity and physical stability. J. Sci. Food Agric. 2017, 97, 770–776. [Google Scholar] [CrossRef]
- Gomes, W.F.; Rodrigues, S.; Fernandes, F.A.N. Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L.) Oscar. Food Sci. Technol. 2017, 84, 457–463. [Google Scholar] [CrossRef]
- Sauceda-gálvez, J.N.; Roca-couso, R.; Martinez-garcia, M.; Hernández-herrero, M.M. Inactivation of ascospores of Talaromyces macrosporus and Neosartorya spinosa by UV-C, UHPH and their combination in clarified apple juice. Food Control 2019, 98, 120–125. [Google Scholar] [CrossRef]
- Cristina, I.; Santos, J.; Espindola, D.; Rodrigues, G.; Liz, D.; Luna, A.S.; Bordignon-luiz, M.T.; Schwinden, E.; De Gois, J.S.; Maia, I.; et al. Gravitational assisted three-stage block freeze concentration process for producing enriched concentrated orange juice (Citrus sinensis L.): Multi-elemental profiling and polyphenolic bioactives. J. Food Eng. 2022, 315, 110802. [Google Scholar] [CrossRef]
- Kaushal, J.; Khatri, M.; Singh, G.; Arya, S.K. A multifaceted enzyme conspicuous in fruit juice clarification: An elaborate review on xylanase. Int. J. Biol. Macromol. 2021, 193, 1350–1361. [Google Scholar] [CrossRef] [PubMed]
- Dal Magro, L.; de Moura, K.S.; Backes, B.E.; de Menezes, E.W.; Benvenutti, E.V.; Nicolodi, S.; Klein, M.P.; Fernandez-Lafuente, R.; Rodrigues, R.C. Immobilization of pectinase on chitosan-magnetic particles: Influence of particle preparation protocol on enzyme properties for fruit juice clarification. Biotechnol. Rep. 2019, 24, e00373. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Petruzzi, L.; Perricone, M.; Speranza, B.; Campaniello, D.; Sinigaglia, M.; Corbo, M.R. Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Compr. Rev. Food Sci. Food Saf. 2018, 17, 2–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onsekizoglu, P.; Bahceci, K.S.; Acar, M.J. Clarification and the concentration of apple juice using membrane processes: A comparative quality assessment. J. Memb. Sci. 2010, 352, 160–165. [Google Scholar] [CrossRef]
- Servent, A.; Abreu, F.A.P.; Dhuique-Mayer, C.; Belleville, M.P.; Dornier, M. Concentration and purification by crossflow microfiltration with diafiltration of carotenoids from a by-product of cashew apple juice processing. Innov. Food Sci. Emerg. Technol. 2020, 66, 102519. [Google Scholar] [CrossRef]
- Dornier, M.; Belleville, M.P.; Vaillant, F. Membrane Technologies for Fruit Juice Processing. In Fruit Preservation; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 9781493933112. [Google Scholar]
- Shahbazi, Z.; Mirsaeedghazi, H.; Sharif Paghaleh, A. Selection of the most effective chemical cleaning procedure in the membrane clarification of pomegranate juice. J. Food Process. Preserv. 2021, 45, e15195. [Google Scholar] [CrossRef]
- Le, T.T.H.; Vu, L.T.K.; Le, N.L. Effects of membrane pore size and transmembrane pressure on ultrafiltration of red-fleshed dragon fruit (Hylocereus polyrhizus) juice. J. Chem. Technol. Biotechnol. 2021, 96, 1561–1572. [Google Scholar] [CrossRef]
- Conidi, C.; Castro-Muñoz, R.; Cassano, A. Membrane-based operations in the fruit juice processing industry: A review. Beverages 2020, 6, 18. [Google Scholar] [CrossRef] [Green Version]
- Charcosset, C. Classical and Recent Applications of Membrane Processes in the Food Industry. Food Eng. Rev. 2021, 13, 322–343. [Google Scholar] [CrossRef]
- Lu, C.; Bao, Y.; Huang, J.Y. Fouling in membrane filtration for juice processing. Curr. Opin. Food Sci. 2021, 42, 76–85. [Google Scholar] [CrossRef]
- Urošević, T.; Povrenović, D.; Vukosavljević, P.; Urošević, I.; Stevanović, S. Recent developments in microfiltration and ultrafiltration of fruit juices. Food Bioprod. Process. 2017, 106, 147–161. [Google Scholar] [CrossRef]
- Katibi, K.K.; Yunos, K.F.; Man, H.C.; Aris, A.Z.; Zuhair, M.; Syahidah, R. Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers 2021, 13, 392. [Google Scholar] [CrossRef] [PubMed]
- Conidi, C.; Drioli, E.; Cassano, A. Membrane-based agro-food production processes for polyphenol separation, purification and concentration. Curr. Opin. Food Sci. 2018, 23, 149–164. [Google Scholar] [CrossRef]
- Panigrahi, C.; Ravuru, S.S.; Mukherjee, M.; Mishra, H.N.; De, S. Antimicrobial and antifouling performance of modified membrane during UF of sugarcane juice. J. Food Eng. 2023, 340, 111291. [Google Scholar] [CrossRef]
- Omar, J.M.; Nor, M.Z.M.; Basri, M.S.M.; Che Pa, N.F. Clarification of guava juice by an ultrafiltration process: Analysis on the operating pressure, membrane fouling and juice qualities. Food Res. 2020, 4, 85–92. [Google Scholar] [CrossRef]
- Utoro, P.A.R.; Sukoyo, A.; Sandra, S.; Izza, N.; Dewi, S.R.; Wibisono, Y. High-throughput microfiltration membranes with natural biofouling reducer agent for food processing. Processes 2019, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Daneshnia, S.; Shams, A.; Daraei, D.; Abdouss, M.; Daneshmayeh, M. Novel thin film nanocomposite membrane modified with Boron Nitride Nanosheets for water treatment. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 651, 129768. [Google Scholar] [CrossRef]
- Severcan, S.S.; Uzal, N.; Kahraman, K. Clarification of Apple Juice Using New Generation Nanocomposite Membranes Fabricated with TiO2 and Al2O3 Nanoparticles. Food Bioprocess Technol. 2020, 13, 391–403. [Google Scholar] [CrossRef]
- Hubadillah, S.K.; Othman, M.H.D.; Harun, Z.; Jamalludin, M.R.; Zahar, M.I.I.M.; Ismail, A.F.; Rahman, M.A.; Jaafar, J. High strength and antifouling metakaolin-based ceramic membrane for juice clarification. J. Aust. Ceram. Soc. 2019, 55, 529–540. [Google Scholar] [CrossRef]
- Akhtar, A.; Subbiah, S.; Mohanty, K.; Sundar, R.; Unnikrishnan, R.; Hareesh, U.S. Sugarcane juice clarification by lanthanum phosphate nanofibril coated ceramic ultrafiltration membrane: PPO removal in absence of lime pre-treatment, fouling and cleaning studies. Sep. Purif. Technol. 2020, 249, 117157. [Google Scholar] [CrossRef]
- Rouquié, C.; Dahdouh, L.; Delalonde, M.; Wisniewski, C. New prospects for immersed hollow-fiber membranes in fruit juices microfiltration: Case of grapefruit juice. J. Food Eng. 2019, 246, 75–85. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Analysis of fouling and juice quality in crossflow ultrafiltration of watermelon juice. Food Sci. Technol. 2018, 38, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.S.; Li, W.; Lu, H.Q.; Liao, C.Y.; Yu, H.Q.; Li, K. Polydopamine-modified ceramic membrane for filtering brown sugar redissolved syrup: Characterisation, experiments, and advanced modelling. J. Memb. Sci. 2022, 657, 120607. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Wang, W.; Pei, J.; Zhang, J.; Yue, T.; Youravong, W.; Li, Z. Bacteriocin assisted food functional membrane for simultaneous exclusion and inactivation of Alicyclobacillus acidoterrestris in apple juice. J. Memb. Sci. 2021, 618, 118741. [Google Scholar] [CrossRef]
- Bagci, P.O.; Akbas, M.; Gulec, H.A.; Bagci, U. Coupling reverse osmosis and osmotic distillation for clarified pomegranate juice concentration: Use of plasma modified reverse osmosis membranes for improved performance. Innov. Food Sci. Emerg. Technol. 2019, 52, 213–220. [Google Scholar] [CrossRef]
- Gulec, H.A.; Bagci, P.O.; Bagci, U. Performance enhancement of ultrafiltration in apple juice clarification via low-pressure oxygen plasma: A comparative evaluation versus pre-flocculation treatment. Food Sci. Technol. 2018, 91, 511–517. [Google Scholar] [CrossRef]
- Shi, C.; Rackemann, D.W.; Moghaddam, L.; Wei, B.; Li, K.; Lu, H.; Xie, C.; Hang, F.; Doherty, W.O.S. Ceramic membrane filtration of factory sugarcane juice: Effect of pretreatment on permeate flux, juice quality and fouling. J. Food Eng. 2019, 243, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Perreault, V.; Gouin, N.; Bérubé, A.; Villeneuve, W.; Pouliot, Y.; Doyen, A. Effect of pectinolytic enzyme pretreatment on the clarification of cranberry juice by ultrafiltration. Membranes 2021, 11, 55. [Google Scholar] [CrossRef]
- Le, D.G.; Le, T.T.H.; Le, N.L. Improved microfiltration of Opuntia cactus cladode juice by enzymatic treatment. J. Food Process. Preserv. 2021, 45, 15108. [Google Scholar] [CrossRef]
- Hemmati, A.; Mirsaeedghazi, H.; Aboonajmi, M. The effect of ultrasound treatment on the efficiency of membrane clarification of carrot juice. J. Food Process. Preserv. 2021, 45, e15001. [Google Scholar] [CrossRef]
- Yee, W.P.; Nor, M.Z.M.; Basri, M.S.M.; Roslan, J. Membrane-based clarification of banana juice: Pre-treatment effect on the flux behaviour, fouling mechanism and juice quality attributes. Food Res. 2021, 5, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Castro-Muñoz, R.; Fíla, V.; Barragán-Huerta, B.E.; Yáñez-Fernández, J.; Piña-Rosas, J.A.; Arboleda-Mejía, J. Processing of Xoconostle fruit (Opuntia joconostle) juice for improving its commercialization using membrane filtration. J. Food Process. Preserv. 2018, 42, e13394. [Google Scholar] [CrossRef]
- Gulec, H.A.; Bagci, P.O.; Bagci, U. Clarification of Apple Juice Using Polymeric Ultrafiltration Membranes: A Comparative Evaluation of Membrane Fouling and Juice Quality. Food Bioprocess Technol. 2017, 10, 875–885. [Google Scholar] [CrossRef]
- Cassano, A.; Marchio, M.; Drioli, E. Clarification of blood orange juice by ultrafiltration: Analyses of operating parameters, membrane fouling and juice quality. Desalination 2007, 212, 15–27. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, L.; Grimi, N.; Jaffrin, M.Y.; Tang, B. Application of UF-RDM (Ultafiltration Rotating Disk Membrane) module for separation and concentration of leaf protein from alfalfa juice: Optimization of operation conditions. Sep. Purif. Technol. 2017, 175, 365–375. [Google Scholar] [CrossRef]
- Mondal, M.; Biswas, P.P.; De, S. Clarification and storage study of bottle gourd (Lagenaria siceraria) juice by hollow fiber ultrafiltration. Food Bioprod. Process. 2016, 100, 1–15. [Google Scholar] [CrossRef]
- Zhu, Z.; Luo, X.; Yin, F.; Li, S.; He, J. Clarification of Jerusalem Artichoke Extract Using Ultra-filtration: Effect of Membrane Pore Size and Operation Conditions. Food Bioprocess Technol. 2018, 11, 864–873. [Google Scholar] [CrossRef]
- Ilame, S.A.; Singh, S.V. Physico-chemical properties of ultrafiltered kinnow (mandarin) fruit juice. J. Food Sci. Technol. 2018, 55, 2189–2196. [Google Scholar] [CrossRef]
- Panigrahi, C.; Karmakar, S.; Mondal, M.; Mishra, H.N.; De, S. Modeling of permeate flux decline and permeation of sucrose during microfiltration of sugarcane juice using a hollow-fiber membrane module. Innov. Food Sci. Emerg. Technol. 2018, 49, 92–105. [Google Scholar] [CrossRef]
- Nourbakhsh, H.; Alemi, A.; Emam-Djomeh, Z.; Mirsaeedghazi, H. Effect of processing parameters on fouling resistances during microfiltration of red plum and watermelon juices: A comparative study. J. Food Sci. Technol. 2014, 51, 168–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira Henriques, J.D.; Pedrassani, M.W.; Klitzke, W.; Mariano, A.B.; Vargas, J.V.C.; Vieira, R.B. Thermal treatment of clay-based ceramic membranes for microfiltration of Acutodesmus obliquus. Appl. Clay Sci. 2017, 150, 217–224. [Google Scholar] [CrossRef]
- Mai, H.C. Application of cross-flow filtration technique in purification and concentration of juice from Vietnamese fruits. Beverages 2017, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Campos, P.R.F.; Módenes, A.N.; Espinoza-Quiñones, F.R.; Trigueros, D.E.G.; Barros, S.T.D.; Pereira, N.C. Improvement on the concentrated grape juice physico-chemical characteristics by an enzymatic treatment and membrane separation processes. An. Acad. Bras. Sci. 2016, 88, 423–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Ling, G.; Lei, F.; Li, N.; Peng, W.; Li, K.; Lu, H.; Hang, F.; Zhang, Y. Ceramic membrane fouling and cleaning during ultrafiltration of limed sugarcane juice. Sep. Purif. Technol. 2018, 190, 9–24. [Google Scholar] [CrossRef]
- Zhao, D.; Lau, E.; Padilla-Zakour, O.I.; Moraru, C.I. Role of pectin and haze particles in membrane fouling during cold microfiltration of apple cider. J. Food Eng. 2017, 200, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Yousefnezhad, B.; Mirsaeedghazi, H.; Arabhosseini, A. Pretreatment of Pomegranate and Red Beet Juices by Centrifugation Before Membrane Clarification: A Comparative Study. J. Food Process. Preserv. 2017, 41, e12765. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Nguyen, T.K.T.; Mai, H.C. Concentration of lycopene from watermelon juice using cross-flow filtration assisted with diafiltration. Food Res. 2022, 6, 259–266. [Google Scholar] [CrossRef]
- Mirsaeedghazi, H.; Emam-Djomeh, Z. Clarification of Bitter Orange (Citrus Aurantium) Juice Using Microfiltration with Mixed Cellulose Esters Membrane. J. Food Process. Preserv. 2017, 41, e12738. [Google Scholar] [CrossRef]
- Katibi, K.K.; Yunos, K.F.; Man, H.C.; Aris, A.Z.; Zuhair, M.; Nor, M.; Azis, R.S.; Umar, A.M. Contemporary Techniques for Remediating Endocrine-Disrupting Compounds in Various Water Sources: Advances in Treatment Methods and Their Limitations. Polymers 2021, 13, 3229. [Google Scholar] [CrossRef]
- Gokulakrishnan, S.A.; Arthanareeswaran, G.; László, Z.; Veréb, G.; Kertész, S.; Kweon, J. Recent development of photocatalytic nanomaterials in mixed matrix membrane for emerging pollutants and fouling control, membrane cleaning process. Chemosphere 2021, 281, 130891. [Google Scholar] [CrossRef] [PubMed]
- Saki, S.; Uzal, N. Preparation and characterization of PSF/PEI/CaCO3 nanocomposite membranes for oil/water separation. Environ. Sci. Pollut. Res. 2018, 25, 25315–25326. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Wang, S.; Li, Y.; Zhao, X.; Zhou, Y.; Gao, C. A facile preparation of positively charged composite nanofiltration membrane with high selectivity and permeability. J. Memb. Sci. 2019, 581, 214–223. [Google Scholar] [CrossRef]
- Reis, R.; Dumée, L.F.; Tardy, B.L.; Dagastine, R.; Orbell, J.D.; Schutz, J.A.; Duke, M.C. Towards Enhanced Performance Thin-film Composite Membranes via Surface Plasma Modification. Sci. Rep. 2016, 6, 29206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juang, R.S.; Huang, C.; Hsieh, C.L. Surface modification of PVDF ultrafiltration membranes by remote argon/methane gas mixture plasma for fouling reduction. J. Taiwan Inst. Chem. Eng. 2014, 45, 2176–2186. [Google Scholar] [CrossRef]
- Conidi, C.; Drioli, E.; Cassano, A. Perspective of membrane technology in pomegranate juice processing: A review. Foods 2020, 9, 889. [Google Scholar] [CrossRef]
- Asadi Tashvigh, A.; Chung, T.S. Facile fabrication of solvent resistant thin film composite membranes by interfacial crosslinking reaction between polyethylenimine and dibromo-p-xylene on polybenzimidazole substrates. J. Memb. Sci. 2018, 560, 115–124. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, Z.; Yang, N.; Zhang, L.; Jiang, B.; Sun, Y.; Ma, J. Nanofiltration membrane via EGCG-PEI co-deposition followed by cross-linking on microporous PTFE substrates for desalination. Sep. Purif. Technol. 2020, 232, 115964. [Google Scholar] [CrossRef]
- Madhura, L.; Kanchi, S.; Sabela, M.I.; Singh, S.; Bisetty, K. Inamuddin Membrane technology for water purification. Environ. Chem. Lett. 2018, 16, 343–365. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Rana, D.; Lan, C.Q.; Matsuura, T. Effects of Inorganic Nano-Additives on Properties and Performance of Polymeric Membranes in Water Treatment. Sep. Purif. Rev. 2016, 45, 141–167. [Google Scholar] [CrossRef]
- Yuan, S.; Li, X.; Zhu, J.; Zhang, G.; Van Puyvelde, P.; Van Der Bruggen, B. Covalent organic frameworks for membrane separation. Chem. Soc. Rev. 2019, 48, 2665–2681. [Google Scholar] [CrossRef]
- Al-Jumaili, A.; Alancherry, S.; Grant, D.; Kumar, A.; Bazaka, K.; Jacob, M.V. Plasma Treatment of Polymeric Membranes; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128131527. [Google Scholar]
- Lee, A.; Libera, J.A.; Waldman, R.Z.; Ahmed, A.; Avila, J.R.; Elam, J.W.; Darling, S.B. Conformal Nitrogen-Doped TiO2 Photocatalytic Coatings for Sunlight-Activated Membranes. Adv. Sustain. Syst. 2017, 1, 1600041. [Google Scholar] [CrossRef] [Green Version]
- Duan, K.; Wang, J.; Zhang, Y.; Liu, J. Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J. Memb. Sci. 2019, 572, 588–595. [Google Scholar] [CrossRef]
- Xu, X.; Hartanto, Y.; Zheng, J.; Luis, P. Recent Advances in Continuous MOF Membranes for Gas Separation and Pervaporation. Membranes 2022, 12, 1205. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.R.; Aktij, S.A.; Dabaghian, Z.; Firouzjaei, M.D.; Rahimpour, A.; Eke, J.; Escobar, I.C.; Abolhassani, M.; Greenlee, L.F.; Esfahani, A.R.; et al. Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Sep. Purif. Technol. 2019, 213, 465–499. [Google Scholar] [CrossRef]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Liu, X.; Tian, C.; Zhao, Y.; Xu, W.; Dong, D.; Shih, K.; Yan, T.; Song, W. Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control. Front. Environ. Sci. Eng. 2022, 16, 110. [Google Scholar] [CrossRef]
- Kim, D.I.; Gwak, G.; Zhan, M.; Hong, S. Sustainable dewatering of grapefruit juice through forward osmosis: Improving membrane performance, fouling control, and product quality. J. Memb. Sci. 2019, 578, 53–60. [Google Scholar] [CrossRef]
- Aghdam, M.A.; Mirsaeedghazi, H.; Aboonajmi, M.; Kianmehr, M.H. Difference between efficiency of ultrasound treatments above and below the membrane surface in membrane clarification of pomegranate juice. J. Food Bioprocess Eng. J. 2018, 1, 133–136. [Google Scholar]
- Hemmati, A.; Mirsaeedghazi, H.; Aboonajmi, M. The effect of ultrasound on permeation flux and changes in blocking mechanisms during dead-end microfiltration of carrot juice. Int. J. Nutr. Food Eng. 2017, 11, 594–598. [Google Scholar]
- Qasim, M.; Darwish, N.N.; Mhiyo, S.; Darwish, N.A.; Hilal, N. The use of ultrasound to mitigate membrane fouling in desalination and water treatment. Desalination 2018, 443, 143–164. [Google Scholar] [CrossRef] [Green Version]
- Córdova, A.; Astudillo-Castro, C.; Ruby-Figueroa, R.; Valencia, P.; Soto, C. Recent advances and perspectives of ultrasound assisted membrane food processing. Food Res. Int. 2020, 133, 109163. [Google Scholar] [CrossRef] [PubMed]
- Bamasag, A.; Daghooghi-Mobarakeh, H.; Alqahtani, T.; Phelan, P. Performance enhancement of a submerged vacuum membrane distillation (S-VMD) system using low-power ultrasound. J. Memb. Sci. 2021, 621, 119004. [Google Scholar] [CrossRef]
- Gao, P.; Zhou, X.; Cheng, B.; Zhang, D.; Zhou, G. Study on heat and mass transfer of droplet cooling in ultrasound wave. Int. J. Heat Mass Transf. 2017, 107, 916–924. [Google Scholar] [CrossRef]
- Hou, D.; Dai, G.; Fan, H.; Huang, H.; Wang, J. An ultrasonic assisted direct contact membrane distillation hybrid process for desalination. J. Memb. Sci. 2015, 476, 59–67. [Google Scholar] [CrossRef]
- Cho, H.; Choi, J.; Choi, Y.; Lee, S. Ultrasonic-assisted removal of inorganic scales in high-salinity wastewater treatment using membrane distillation. Desalin. Water Treat. 2019, 157, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Agi, A.; Junin, R.; Yahya, A.; Gbadamosi, A.; Abbas, A. Comparative study of continuous and intermittent ultrasonic ultrafiltration membrane for treatment of synthetic produced water containing emulsion. Chem. Eng. Process. Intensif. 2018, 132, 137–147. [Google Scholar] [CrossRef]
- Du, X.; Wang, Y.; Leslie, G.; Li, G.; Liang, H. Shear stress in a pressure-driven membrane system and its impact on membrane fouling from a hydrodynamic condition perspective: A review. J. Chem. Technol. Biotechnol. 2017, 92, 463–478. [Google Scholar] [CrossRef]
- Xie, F.; Ge, H.; Liu, J.; Chen, W.; Song, H. CFD and experimental studies the effect of micro-channel turbulence promoter installation on the hydrodynamic performance of submerged flat-sheet membrane bioreactor. Chem. Eng. Process. Process Intensif. 2018, 127, 28–35. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Huang, A.; Soesanto, J.F.; Luo, Y.L.; Hsu, T.Y.; Chen, C.H.; Hwang, K.J.; Ho, C.D.; Tung, K.L. 3D printing design of turbulence promoters in a cross-flow microfiltration system for fine particles removal. J. Memb. Sci. 2019, 573, 647–656. [Google Scholar] [CrossRef]
- Dattabanik, S.; Banik, I.; Sasmal, H.; Rana, K.; Das, S.; Sarkar, D. Application of turbulence promoter in protein recovery from food wastewater by dynamic shear enhanced ultrafiltration. J. Water Process Eng. 2022, 48, 102877. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, S.; Hu, Y.; Sun, S. Membrane technology in wastewater treatment enhanced by functional nanomaterials. J. Clean. Prod. 2018, 197, 339–348. [Google Scholar] [CrossRef]
- Meng, F.; Chae, S.R.; Shin, H.S.; Yang, F.; Zhou, Z. Recent advances in membrane bioreactors: Configuration development, pollutant elimination, and Sludge Reduction. Environ. Eng. Sci. 2012, 29, 139–160. [Google Scholar] [CrossRef]
- Padaki, M.; Surya Murali, R.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.A.; Hilal, N.; Ismail, A.F. Membrane technology enhancement in oil-water separation. A review. Desalination 2015, 357, 197–207. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katibi, K.K.; Mohd Nor, M.Z.; Yunos, K.F.M.; Jaafar, J.; Show, P.L. Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review. Membranes 2023, 13, 679. https://doi.org/10.3390/membranes13070679
Katibi KK, Mohd Nor MZ, Yunos KFM, Jaafar J, Show PL. Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review. Membranes. 2023; 13(7):679. https://doi.org/10.3390/membranes13070679
Chicago/Turabian StyleKatibi, Kamil Kayode, Mohd Zuhair Mohd Nor, Khairul Faezah Md. Yunos, Juhana Jaafar, and Pau Loke Show. 2023. "Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review" Membranes 13, no. 7: 679. https://doi.org/10.3390/membranes13070679
APA StyleKatibi, K. K., Mohd Nor, M. Z., Yunos, K. F. M., Jaafar, J., & Show, P. L. (2023). Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review. Membranes, 13(7), 679. https://doi.org/10.3390/membranes13070679