Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations
Abstract
:1. Introduction
2. Functional Attributes of Enzymes
3. Quantifying Immobilized Enzyme Performance
3.1. Retained Activity after Immobilization
3.2. Enzyme Activity over Extended Periods
3.3. Mass Transfer and Surface Property Considerations
4. Immobilization Chemistry
5. Non-Fibrous Immobilization Supports
6. Fibrous Membrane Immobilization Supports
6.1. Post-Immobilization on Fibrous Membranes: Enzyme Immobilization after Fiber Formation
6.2. Incoporation in Fibrous Membranes: Enzyme Immobilization during Material Formation
6.3. Hybrid Methods for Fibrous Membranes: Biocatalytic Coatings on Structrual Supports
6.4. Polymer Selection in Fibrous Membrane Supports for Enzyme Immobilization
7. Characterization of Enzyme-Immobilized Fibrous Materials
7.1. Fibrous Support Materials
7.2. Immobilization Effectiveness and the Performance of the Immobilized Enzymes
7.3. Enzyme–Support Interactions and Structural Changes
7.4. Enzyme Distribution and Orientation
8. Concluding Remarks and Future Direction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Buchholz, K.; Kasche, V.; Bornscheuer, U.T. Biocatalysts and Enzyme Technology, 2nd ed.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012; ISBN 9783527672004. [Google Scholar]
- Cao, L. Carrier-Bound Immobilized Enzymes: Principles, Application and Design; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; ISBN 9783527312320. [Google Scholar]
- Cao, L.; van Langen, L.; Sheldon, R.A. Immobilised Enzymes: Carrier-Bound or Carrier-Free? Curr. Opin. Biotechnol. 2003, 14, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. Cross-Linked Enzyme Aggregates (CLEA®s): Stable and Recyclable Biocatalysts. Biochem. Soc. Trans. 2007, 35, 1583–1587. [Google Scholar] [CrossRef]
- Velasco-Lozano, S.; López-Gallego, F.; Mateos-Díaz, J.C.; Favela-Torres, E. Cross-Linked Enzyme Aggregates (CLEA) in Enzyme Improvement—A review. Biocatalysis 2016, 1, 166–177. [Google Scholar] [CrossRef]
- Sheldon, R.A. Enzyme Immobilization: The Quest for Optimum Performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Pialis, P.; Saville, B.A. Production of l-DOPA from Tyrosinase Immobilized on Nylon 6,6: Enzyme Stability and Scaleup. Enzym. Microb. Technol. 1998, 22, 261–268. [Google Scholar] [CrossRef]
- Gupta, R.; Chaudhury, N. Entrapment of Biomolecules in Sol–Gel Matrix for Applications in Biosensors: Problems and Future Prospects. Biosens. Bioelectron. 2007, 22, 2387–2399. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, J. Oriented Immobilization of Proteins on Solid Supports for Use in Biosensors and Biochips: A Review. Microchim. Acta 2016, 183, 1–19. [Google Scholar] [CrossRef]
- Asakura, T.; Kitaguchi, M.; Demura, M.; Sakai, H.; Komatsu, K. Immobilization of Glucose Oxidase on Nonwoven Fabrics with Bombyx Mori Silk Fibroin Gel. J. Appl. Polym. Sci. 1992, 46, 49–53. [Google Scholar] [CrossRef]
- Baliyan, A.; Sital, S.; Tiwari, U.; Gupta, R.; Sharma, E.K. Long Period Fiber Grating Based Sensor for the Detection of Triacylglycerides. Biosens. Bioelectron. 2016, 79, 693–700. [Google Scholar] [CrossRef]
- Kimmel, J.D.; Arazawa, D.T.; Ye, S.-H.; Shankarraman, V.; Wagner, W.; Federspiel, W.J. Carbonic Anhydrase Immobilized on Hollow Fiber Membranes Using Glutaraldehyde Activated Chitosan for Artificial Lung Applications. J. Mater. Sci. Mater. Med. 2013, 24, 2611–2621. [Google Scholar] [CrossRef]
- Arazawa, D.T.; Oh, H.-I.; Ye, S.-H.; Johnson, C.A.; Woolley, J.R.; Wagner, W.; Federspiel, W.J. Immobilized Carbonic Anhydrase on Hollow Fiber Membranes Accelerates CO2 Removal from Blood. J. Membr. Sci. 2012, 403–404, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Babadi, A.A.; Bagheri, S.; Hamid, S.B.A. Progress on Implantable Biofuel Cell: Nano-Carbon Functionalization for Enzyme Immobilization Enhancement. Biosens. Bioelectron. 2016, 79, 850–860. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in Carbon Dioxide Separation and Capture: A Review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.B.; Lima, M.J.; Sampaio, M.J.; Neves, M.C.; Faria, J.L.; Morales-Torres, S.; Tavares, A.P.; Silva, C.G. Enhanced Biocatalytic Sustainability of Laccase by Immobilization on Functionalized Carbon Nanotubes/Polysulfone Membranes. Chem. Eng. J. 2018, 355, 974–985. [Google Scholar] [CrossRef]
- Braham, S.A.; Hussain, F.; Morellon-Sterling, R.; Kamal, S.; Kornecki, J.F.; Barbosa, O.; Kati, D.E.; Fernandez-Lafuente, R. Cooperativity of Covalent Attachment and Ion Exchange on Alcalase Immobilization Using Glutaraldehyde Chemistry: Enzyme Stabilization and Improved Proteolytic Activity. Biotechnol. Prog. 2018, 35, e2768. [Google Scholar] [CrossRef]
- Bagheri, M.; Rodríguez, H.; Swatloski, R.P.; Spear, S.K.; Daly, D.T.; Rogers, R.D. Ionic Liquid-Based Preparation of Cellulose−Dendrimer Films as Solid Supports for Enzyme Immobilization. Biomacromolecules 2007, 9, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, I.M.; Turoverov, K.K.; Uversky, V.N. What Macromolecular Crowding Can Do to a Protein. Int. J. Mol. Sci. 2014, 15, 23090–23140. [Google Scholar] [CrossRef]
- McDonald, A.G.; Tipton, K.F. Fifty-Five Years of Enzyme Classification: Advances and Difficulties. FEBS J. 2013, 281, 583–592. [Google Scholar] [CrossRef]
- Asad, A.; Sameoto, D.; Sadrzadeh, M. Overview of Membrane Technology. In Nanocomposite Membranes for Water and Gas Separation; Sadrzadeh, M., Mohammadi, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–28. ISBN 978-0-12-816710-6. [Google Scholar]
- Bayne, L.; Ulijn, R.V.; Halling, P.J. Effect of Pore Size on the Performance of Immobilised Enzymes. Chem. Soc. Rev. 2013, 42, 9000–9010. [Google Scholar] [CrossRef]
- Shiohara, A.; Prieto-Simon, B.; Voelcker, N.H. Porous Polymeric Membranes: Fabrication Techniques and Biomedical Applications. J. Mater. Chem. B 2020, 9, 2129–2154. [Google Scholar] [CrossRef]
- Crossland, E.J.W.; Cunha, P.; Scroggins, S.; Moratti, S.; Yurchenko, O.; Steiner, U.; Hillmyer, M.; Ludwigs, S. Soft-Etch Mesoporous Hole-Conducting Block Copolymer Templates. ACS Nano 2010, 4, 962–966. [Google Scholar] [CrossRef] [PubMed]
- Gopinadhan, M.; Deshmukh, P.; Choo, Y.; Majewski, P.W.; Bakajin, O.; Elimelech, M.; Kasi, R.M.; Osuji, C.O. Thermally Switchable Aligned Nanopores by Magnetic-Field Directed Self-Assembly of Block Copolymers. Adv. Mater. 2014, 26, 5148–5154. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.Y.; Yang, J.A.; Kim, E.S.; Jeon, G.; Oh, E.J.; Choi, K.Y.; Hahn, S.K.; Kim, J.K. Single-File Diffusion of Protein Drugs through Cylindrical Nanochannels. ACS Nano 2010, 4, 3817–3822. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Choi, S.-O.; Kim, J. Analysis of Contact Area between Water and Irregular Fibrous Surface for Prediction of Wettability. RSC Adv. 2016, 6, 73313–73322. [Google Scholar] [CrossRef]
- Krajewska, B. Application of Chitin- and Chitosan-Based Materials for Enzyme Immobilizations: A Review. Enzym. Microb. Technol. 2004, 35, 126–139. [Google Scholar] [CrossRef]
- Grigoras, A.G. Catalase Immobilization—A Review. Biochem. Eng. J. 2016, 117, 1–20. [Google Scholar] [CrossRef]
- Zdarta, J.; Meyer, A.S.; Jesionowski, T.; Pinelo, M. A General Overview of Support Materials for Enzyme Immobilization: Characteristics, Properties, Practical Utility. Catalysts 2018, 8, 92. [Google Scholar] [CrossRef]
- González, J.M.; Fisher, S.Z. Carbonic Anhydrases in Industrial Applications. In Sub-Cellular Biochemistry; Frost, S.C., McKenna, R., Eds.; Carbonic Anhydrase: Mechanism, Regulation, Links to Disease, and Industrial Applications; Springer: Berlin/Heidelberg, Germany, 2014; Volume 75, pp. 405–426. [Google Scholar]
- Adeel, M.; Bilal, M.; Rasheed, T.; Sharma, A.; Iqbal, H.M. Graphene and Graphene Oxide: Functionalization and Nano-Bio-Catalytic System for Enzyme Immobilization and Biotechnological Perspective. Int. J. Biol. Macromol. 2018, 120, 1430–1440. [Google Scholar] [CrossRef]
- Engel, P. Enzymes: A Very Short Introduction; Oxford University Press: Oxford, UK, 2020; ISBN 9780198824985. [Google Scholar]
- Wolfenden, R.; Snider, M.J. The Depth of Chemical Time and the Power of Enzymes as Catalysts. Accounts Chem. Res. 2001, 34, 938–945. [Google Scholar] [CrossRef]
- Roux, P.; Delepierre, M.; Goldberg, M.E.; Chaffotte, A.-F. Kinetics of Secondary Structure Recovery during the Refolding of Reduced Hen Egg White Lysozyme. J. Biol. Chem. 1997, 272, 24843–24849. [Google Scholar] [CrossRef]
- Grisham, D.R.; Nanda, V. Hydrodynamic Radius Coincides with the Slip Plane Position in the Electrokinetic Behavior of Lysozyme. Proteins: Struct. Funct. Bioinform. 2018, 86, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Janin, J.; Miller, S.; Chothia, C. Surface, Subunit Interfaces and Interior of Oligomeric Proteins. J. Mol. Biol. 1988, 204, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Erickson, H.P. Size and Shape of Protein Molecules at the Nanometer Level Determined by Sedimentation, Gel Filtration, and Electron Microscopy. Biol. Proced. Online 2009, 11, 32–51. [Google Scholar] [CrossRef] [PubMed]
- Richards, F.M. Areas, volumes, packing, and protein structure. Annu. Rev. Biophys. Bioeng. 1977, 6, 151–176. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Janin, J.; Lesk, A.; Chothia, C. Interior and Surface of Monomeric Proteins. J. Mol. Biol. 1987, 196, 641–656. [Google Scholar] [CrossRef]
- Rubinson, K.A. Why Proteins are Big: Length Scale Effects on Equilibria and Kinetics. Protein J. 2019, 38, 95–119. [Google Scholar] [CrossRef]
- Krishnamurthy, V.M.; Kaufman, G.K.; Urbach, A.R.; Gitlin, I.; Gudiksen, K.L.; Weibel, D.B.; Whitesides, G.M. Carbonic Anhydrase as a Model for Biophysical and Physical-Organic Studies of Proteins and Protein−Ligand Binding. Chem. Rev. 2008, 108, 946–1051. [Google Scholar] [CrossRef]
- Kirkman, H.N.; Gaetani, G.F. Mammalian Catalase: A Venerable Enzyme with New Mysteries. Trends Biochem. Sci. 2007, 32, 44–50. [Google Scholar] [CrossRef]
- Siddiqui, K.S. Defying the Activity-Stability Trade-off in Enzymes: Taking Advantage of Entropy to Enhance Activity and Thermostability. Crit. Rev. Biotechnol. 2016, 37, 309–322. [Google Scholar] [CrossRef]
- Wang, S.-C.; Lee, J.C.T. Enhanced Enzymatic Activity through Photoreversible Conformational Changes. Biochemistry 2007, 46, 14557–14566. [Google Scholar] [CrossRef]
- Hosseinkhani, S.; Nemat-Gorgani, M. Partial Unfolding of Carbonic Anhydrase Provides a Method for its Immobilization on Hydrophobic Adsorbents and Protects it Against Irreversible Thermoinactivation. Enzym. Microb. Technol. 2003, 33, 179–184. [Google Scholar] [CrossRef]
- Madhu, A.; Chakraborty, J. Developments in Application of Enzymes for Textile Processing. J. Clean. Prod. 2017, 145, 114–133. [Google Scholar] [CrossRef]
- Migneault, I.; Dartiguenave, C.; Bertrand, M.J.; Waldron, K.C. Glutaraldehyde: Behavior in Aqueous Solution, Reaction with Proteins, and Application to Enzyme Crosslinking. Biotechniques 2004, 37, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Asaduzzaman, F.; Salmon, S. Enzyme Immobilization: Polymer–Solvent–Enzyme Compatibility. Mol. Syst. Des. Eng. 2022, 7, 1385–1414. [Google Scholar] [CrossRef]
- Liszka, M.J.; Clark, M.E.; Schneider, E.; Clark, D.S. Nature Versus Nurture: Developing Enzymes That Function Under Extreme Conditions. Annu. Rev. Chem. Biomol. Eng. 2012, 3, 77–102. [Google Scholar] [CrossRef]
- Bao, X.; Huang, X.; Lu, X.; Li, J.-J. Improvement of Hydrogen Peroxide Stability of Pleurotus Eryngii Versatile Ligninolytic Peroxidase by Rational Protein Engineering. Enzym. Microb. Technol. 2014, 54, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Z.; Wang, T.-L.; Huang, M.-T.; Song, H.-Y.; Weng, L.-P.; Ji, L.-N. Increased Thermal and Organic Solvent Tolerance of Modified Horseradish Peroxidase. Protein Eng. Des. Sel. 2006, 19, 169–173. [Google Scholar] [CrossRef]
- Pour, R.R.; Ehibhatiomhan, A.; Huang, Y.; Ashley, B.; Rashid, G.M.; Williams, S.; Bugg, T.D. Protein Engineering of Pseudomonas Fluorescens Peroxidase Dyp1B for Oxidation of Phenolic and Polymeric Lignin Substrates. Enzym. Microb. Technol. 2019, 123, 21–29. [Google Scholar] [CrossRef]
- Yu, X.-W.; Tan, N.-J.; Xiao, R.; Xu, Y. Engineering a Disulfide Bond in the Lid Hinge Region of Rhizopus chinensis Lipase: Increased Thermostability and Altered Acyl Chain Length Specificity. PLoS ONE 2012, 7, e46388. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Z.; Huang, H.; Zhang, H.; Yao, B.; Xiong, H.; Turunen, O. Improved Thermal Performance of Thermomyces Lanuginosus GH11 Xylanase by Engineering of an N-Terminal Disulfide Bridge. Bioresour. Technol. 2012, 112, 275–279. [Google Scholar] [CrossRef]
- Mansfeld, J.; Vriend, G.; Dijkstra, B.W.; Veltman, O.R.; Burg, B.V.D.; Venema, G.; Ulbrich-Hofmann, R.; Eijsink, V.G. Extreme Stabilization of a Thermolysin-Like Protease by an Engineered Disulfide Bond. J. Biol. Chem. 1997, 272, 11152–11156. [Google Scholar] [CrossRef] [PubMed]
- Razzaghi, M.; Homaei, A.; Vianello, F.; Azad, T.; Sharma, T.; Nadda, A.K.; Stevanato, R.; Bilal, M.; Iqbal, H.M.N. Industrial Applications of Immobilized Nano-Biocatalysts. Bioprocess Biosyst. Eng. 2021, 45, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; van Pelt, S. Enzyme Immobilisation in Biocatalysis: Why, What and How. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Snajdrova, R.; Moore, J.C.; Baldenius, K.; Bornscheuer, U.T. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew. Chem. Int. Ed. 2020, 60, 88–119. [Google Scholar] [CrossRef]
- Tufvesson, P.; Lima-Ramos, J.; Nordblad, M.; Woodley, J.M. Guidelines and Cost Analysis for Catalyst Production in Biocatalytic Processes. Org. Process. Res. Dev. 2011, 15, 266–274. [Google Scholar] [CrossRef]
- Huang, H.; Hu, N.; Zeng, Y.; Zhou, G. Electrochemistry and Electrocatalysis with Heme Proteins in Chitosan Biopolymer Films. Anal. Biochem. 2002, 308, 141–151. [Google Scholar] [CrossRef]
- Altinkaynak, C.; Tavlasoglu, S.; Ÿzdemir, N.; Ocsoy, I. A New Generation Approach in Enzyme Immobilization: Organic-Inorganic Hybrid Nanoflowers with Enhanced Catalytic Activity and Stability. Enzym. Microb. Technol. 2016, 93–94, 105–112. [Google Scholar] [CrossRef]
- Akgöl, S.; Kaçar, Y.; Özkara, S.; Yavuz, H.; Denizli, A.; Arica, M. Immobilization of Catalase via Adsorption onto L-Histidine Grafted Functional pHEMA Based Membrane. J. Mol. Catal. B: Enzym. 2001, 15, 197–206. [Google Scholar] [CrossRef]
- Arola, S.; Tammelin, T.; Setälä, H.; Tullila, A.; Linder, M.B. Immobilization–Stabilization of Proteins on Nanofibrillated Cellulose Derivatives and Their Bioactive Film Formation. Biomacromolecules 2012, 13, 594–603. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, K.; Park, J.-W.; Min, B.-R.; Haam, S.; Ahn, I.-S.; Jung, J.-K. Stability Analysis of Bacillus Stearothermophilus L1 Lipase Immobilized on Surface-Modified Silica Gels. Biochem. Eng. J. 2004, 17, 85–90. [Google Scholar] [CrossRef]
- Abdelrahim, M.Y.M.; Martins, C.F.; Neves, L.; Capasso, C.; Supuran, C.T.; Coelhoso, I.M.; Crespo, J.G.; Barboiu, M. Supported Ionic Liquid Membranes Immobilized with Carbonic Anhydrases for CO2 Transport at High Temperatures. J. Membr. Sci. 2017, 528, 225–230. [Google Scholar] [CrossRef]
- Bankeeree, W.; Prasongsuk, S.; Lotrakul, P.; Punnapayak, H.; Imai, T. A Novel Xylan-Polyvinyl Alcohol Hydrogel Bead with Laccase Entrapment for Decolorization of Reactive Black 5. Bioresources 2016, 11. [Google Scholar] [CrossRef]
- Qi, G.; Liu, K.; House, A.; Salmon, S.; Ambedkar, B.; Frimpong, R.A.; Remias, J.E.; Liu, K. Laboratory to Bench-Scale Evaluation of an Integrated CO2 Capture System Using a Thermostable Carbonic Anhydrase Promoted K2CO3 Solvent with Low Temperature Vacuum Stripping. Appl. Energy 2018, 209, 180–189. [Google Scholar] [CrossRef]
- Messing, R.A.; Filbert, A.M. An Immobilized Glucose Isomerase for the Continuous Conversion ofGlucose to Fructose. J. Agric. Food Chem. 1975, 23, 920–923. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Sandig, B.; Buchmeiser, M.R.; Haumann, M. Supported Ionic Liquid Phase (SILP) Facilitated Gas-Phase Enzyme Catalysis—CALB Catalyzed Transesterification of Vinyl Propionate. Catal. Sci. Technol. 2018, 8, 2460–2466. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, Y.; Salmon, S. Durable and Versatile Immobilized Carbonic Anhydrase on Textile Structured Packing for CO2 Capture. Catalysts 2022, 12, 1108. [Google Scholar] [CrossRef]
- Al-Qodah, Z.; Al-Shannag, M.; Al-Busoul, M.; Penchev, I.; Orfali, W. Immobilized Enzymes Bioreactors Utilizing a Magnetic Field: A review. Biochem. Eng. J. 2017, 121, 94–106. [Google Scholar] [CrossRef]
- Klaewkla, R.; Arend, M.; Hoelderich, W.F. A Review of Mass Transfer Controlling the Reaction Rate in Heterogeneous Catalytic Systems. In Mass Transfer—Advanced Aspects; Nakajima, H., Ed.; InTech: Rijeka, Croatia, 2011; Chapter 29. [Google Scholar]
- Liese, A.; Hilterhaus, L. Evaluation of Immobilized Enzymes for Industrial Applications. Chem. Soc. Rev. 2013, 42, 6236–6249. [Google Scholar] [CrossRef]
- Liu, J.; Iranshahi, A.; Lou, Y.; Lipscomb, G. Static Mixing Spacers for Spiral Wound Modules. J. Membr. Sci. 2013, 442, 140–148. [Google Scholar] [CrossRef]
- Goldstein, L. [29] Kinetic Behavior of Immobilized Enzyme Systems. Methods Enzymol. 1976, 44, 397–443. [Google Scholar] [CrossRef]
- Illanes, A.; Wilson, L. Parameters for the Evaluation of Immobilized Enzymes Under Process Conditions. In Immobilization of Enzymes and Cells: Fourth Edition; Humana Press: Totowa, NJ, USA, 2020; pp. 65–81. ISBN 9781071602140. [Google Scholar]
- Rovito, B.J.; Kittrell, J.R. Film and pore diffusion studies with immobilized glucose oxidase. Biotechnol. Bioeng. 1973, 15, 143–161. [Google Scholar] [CrossRef]
- Murzin, D.Y.; Salmi, T. Mass Transfer and Catalytic Reactions. In Catalytic Kinetics; Elsevier: Amsterdam, The Netherlands, 2016; pp. 589–664. ISBN 9780444637536. [Google Scholar]
- Rivero, J.R.; Panagakos, G.; Lieber, A.; Hornbostel, K. Hollow Fiber Membrane Contactors for Post-Combustion Carbon Capture: A Review of Modeling Approaches. Membranes 2020, 10, 382. [Google Scholar] [CrossRef]
- Valencia, P.; Ibañez, F. Estimation of the Effectiveness Factor for Immobilized Enzyme Catalysts through a Simple Conversion Assay. Catalysts 2019, 9, 930. [Google Scholar] [CrossRef]
- Marrazzo, W.N.; Merson, R.L.; McCoy, B.J. Enzyme Immobilized in a Packed-Bed Reactor: Kinetic Parameters and Mass Transfer Effects. Biotechnol. Bioeng. 1975, 17, 1515–1528. [Google Scholar] [CrossRef]
- Regan, D.L.; Lilly, M.D.; Dunnill, P. Influence of Intraparticle Diffuisional Limitation on the Observed Kinetics of Immobilized Enzymes and on Catalyst Design. Biotechnol. Bioeng. 1974, 16, 1081–1093. [Google Scholar] [CrossRef]
- Sigurdardóttir, S.B.; Lehmann, J.; Ovtar, S.; Grivel, J.; Della Negra, M.; Kaiser, A.; Pinelo, M. Enzyme Immobilization on Inorganic Surfaces for Membrane Reactor Applications: Mass Transfer Challenges, Enzyme Leakage and Reuse of Materials. Adv. Synth. Catal. 2018, 360, 2578–2607. [Google Scholar] [CrossRef]
- Fritzmann, C.; Wiese, M.; Melin, T.; Wessling, M. Helically Microstructured Spacers Improve Mass Transfer and Fractionation Selectivity in Ultrafiltration. J. Membr. Sci. 2014, 463, 41–48. [Google Scholar] [CrossRef]
- Diamanti, E.; Santiago-Arcos, J.; Grajales-Hernández, D.; Czarnievicz, N.; Comino, N.; Llarena, I.; Di Silvio, D.; Cortajarena, A.L.; López-Gallego, F. Intraparticle Kinetics Unveil Crowding and Enzyme Distribution Effects on the Performance of Cofactor-Dependent Heterogeneous Biocatalysts. ACS Catal. 2021, 11, 15051–15067. [Google Scholar] [CrossRef]
- Dittmeyer, R.; Emig, G. Simultaneous Heat and Mass Transfer and Chemical Reaction. Handb. Heterog. Catal. 2008, 1727–1784. [Google Scholar] [CrossRef]
- Al-Muftah, A.E.; Abu-Reesh, I.M. Effects of Internal Mass Transfer and Product Inhibition on a Simulated Immobilized Enzyme-Catalyzed Reactor for Lactose Hydrolysis. Biochem. Eng. J. 2005, 23, 139–153. [Google Scholar] [CrossRef]
- Godjevargova, T.; Gabrovska, K. Influence of Matrix on External Mass Transfer Resistance in Immobilized Urease Membranes. Enzym. Microb. Technol. 2006, 38, 338–342. [Google Scholar] [CrossRef]
- Comite, A.; Bottino, A.; Capannelli, G.; Costa, C.; Di Felice, R. Multi-Phase Catalytic Membrane Reactors. In Woodhead Publishing Series in Energy; Basile, A., Ed.; Woodhead Publishing Limited: Soston, UK, 2013; Volume 2, ISBN 9780857097347. [Google Scholar]
- Shen, J.; Zhang, S.; Fang, X.; Salmon, S. Advances in 3D Gel Printing for Enzyme Immobilization. Gels 2022, 8, 460. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, N.R.; Che Marzuki, N.H.; Buang, N.A.; Huyop, F.; Wahab, R.A. An Overview of Technologies for Immobilization of Enzymes and Surface Analysis Techniques for Immobilized Enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Talbert, J.N.; Goddard, J.M. Enzymes on Material Surfaces. Colloids Surfaces B Biointerfaces 2012, 93, 8–19. [Google Scholar] [CrossRef]
- Hajba, L.; Guttman, A.; Information, R. Continuous-Flow Biochemical Reactors: Biocatalysis, Bioconversion, and Bioanalytical Applications Utilizing Immobilized Microfluidic Enzyme Reactors. J. Flow Chem. 2016, 6, 8–12. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M. Chemical, Physical, and Biological Coordination: An Interplay between Materials and Enzymes as Potential Platforms for Immobilization. Co-ord. Chem. Rev. 2019, 388, 1–23. [Google Scholar] [CrossRef]
- Hoarau, M.; Badieyan, S.; Marsh, E.N.G. Immobilized Enzymes: Understanding Enzyme-Surface Interactions at the Molecular Level. Org. Biomol. Chem. 2017, 15, 9539–9551. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Silva, M.J.A.; Klein, M.; Feddern, V.; Feltes, M.M.C.; Oliveira, J.V.; Ninow, J.L.; de Oliveira, D. Current Status and Trends in Enzymatic Nanoimmobilization. J. Mol. Catal. B Enzym. 2014, 99, 56–67. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Wan, L.-S.; Liu, Z.-M.; Huang, X.-J.; Xu, Z.-K. Enzyme Immobilization on Electrospun Polymer Nanofibers: An Overview. J. Mol. Catal. B Enzym. 2009, 56, 189–195. [Google Scholar] [CrossRef]
- Sulaiman, S.; Mokhtar, M.N.; Naim, M.N.; Baharuddin, A.S.; Sulaiman, A. A Review: Potential Usage of Cellulose Nanofibers (CNF) for Enzyme Immobilization via Covalent Interactions. Appl. Biochem. Biotechnol. 2014, 175, 1817–1842. [Google Scholar] [CrossRef] [PubMed]
- Minteer, S.D. (Ed.) Enzyme Stabilization and Immobilization—Methods and Protocols, 2nd ed.; Humana Press: New York, NY, USA, 2017; Volume 1504, ISBN 978-1-60761-894-2. [Google Scholar]
- Bosio, V.E.; Islan, G.A.; Martinez, Y.; Durán, N.; Castro, G. Nanodevices for the Immobilization of Therapeutic Enzymes. Crit. Rev. Biotechnol. 2015, 36, 1–18. [Google Scholar] [CrossRef]
- Laurent, N.; Haddoub, R.; Flitsch, S.L. Enzyme Catalysis on Solid Surfaces. Trends Biotechnol. 2008, 26, 328–337. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, C.S.; Lemos, C.M.G.D.F.; de Sousa, M.; Gonçalves, L.R.B. Enzyme Immobilization onto Renewable Polymeric Matrixes: Past, Present, and Future Trends. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Bulmuş, V.; Ayhan, H.; Pişkin, E. Modified PMMA Monosize Microbeads for Glucose Oxidase Immobilization. Chem. Eng. J. 1997, 65, 71–76. [Google Scholar] [CrossRef]
- Dessouki, A.M.; Issa, G.I.; Atia, K.S. Pullulanase Immobilization on Natural and Synthetic Polymers. J. Chem. Technol. Biotechnol. 2001, 76, 700–706. [Google Scholar] [CrossRef]
- Kim, J.; Ii, T.J.K.; Manimala, J.C.; Nauman, E.B.; Dordick, J.S. Preparation of Enzyme-in-Polymer Composites with High Activity and Stability. AIChE J. 2001, 47, 240–244. [Google Scholar] [CrossRef]
- Zimmermann, J.L.; Nicolaus, T.; Neuert, G.; Blank, K.G. Thiol-Based, Site-Specific and Covalent Immobilization of Biomolecules for Single-Molecule Experiments. Nat. Protoc. 2010, 5, 975–985. [Google Scholar] [CrossRef] [PubMed]
- Shuai, W.; Das, R.K.; Naghdi, M.; Brar, S.K.; Verma, M. A Review on the Important Aspects of Lipase Immobilization on Nanomaterials. Biotechnol. Appl. Biochem. 2016, 64, 496–508. [Google Scholar] [CrossRef]
- Schöffer, J.D.N.; Matte, C.R.; Charqueiro, D.S.; de Menezes, E.W.; Costa, T.M.H.; Benvenutti, E.V.; Rodrigues, R.C.; Hertz, P.F. Directed Immobilization of CGTase: The Effect of the Enzyme Orientation on the Enzyme Activity and its Use in Packed-Bed Reactor for Continuous Production of Cyclodextrins. Process. Biochem. 2017, 58, 120–127. [Google Scholar] [CrossRef]
- Imam, H.T.; Marr, P.C.; Marr, A.C. Enzyme Entrapment, Biocatalyst Immobilization without Covalent Attachment. Green Chem. 2021, 23, 4980–5005. [Google Scholar] [CrossRef]
- Lee, S.H.; Yeo, S.Y.; Cools, P.; Morent, R. Plasma Polymerization onto Nonwoven Polyethylene/Polypropylene Fibers for Laccase Immobilization as Dye Decolorization Filter Media. Text. Res. J. 2018, 89, 3578–3590. [Google Scholar] [CrossRef]
- Cao, L. Immobilised Enzymes: Science or Art? Curr. Opin. Chem. Biol. 2005, 9, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hsieh, Y.-L. Enzyme Immobilization to Ultra-Fine Cellulose Fibers via Amphiphilic Polyethylene Glycol Spacers. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 4289–4299. [Google Scholar] [CrossRef]
- Silva, C.; Silva, C.J.; Zille, A.; Guebitz, G.M.; Cavaco-Paulo, A. Laccase Immobilization on Enzymatically Functionalized Polyamide 6,6 Fibres. Enzyme Microb. Technol. 2007, 41, 867–875. [Google Scholar] [CrossRef]
- Tong, X.; Trivedi, A.; Jia, H.; Zhang, M.; Wang, P. Enzymic Thin Film Coatings for Bioactive Materials. Biotechnol. Prog. 2008, 24, 714–719. [Google Scholar] [CrossRef]
- Kecskemeti, A.; Gaspar, A. Particle-Based Immobilized Enzymatic Reactors in Microfluidic Chips. Talanta 2018, 180, 211–228. [Google Scholar] [CrossRef]
- Ximenes, I.A.T.; de Oliveira, P.C.O.; Wegermann, C.A.; de Moraes, M.C. Magnetic Particles for Enzyme Immobilization: A Versatile Support for Ligand Screening. J. Pharm. Biomed. Anal. 2021, 204, 114286. [Google Scholar] [CrossRef]
- Ansari, S.A.; Husain, Q. Potential Applications of Enzymes Immobilized on/in Nano Materials: A Review. Biotechnol. Adv. 2012, 30, 512–523. [Google Scholar] [CrossRef]
- Basso, A.; Serban, S. Industrial Applications of Immobilized Enzymes—A Review. Mol. Catal. 2019, 479, 110607. [Google Scholar] [CrossRef]
- Shikha, S.; Thakur, K.G.; Bhattacharyya, M.S. Facile Fabrication of Lipase to Amine Functionalized Gold Nanoparticles to Enhance Stability and Activity. RSC Adv. 2017, 7, 42845–42855. [Google Scholar] [CrossRef]
- Vinoba, M.; Bhagiyalakshmi, M.; Jeong, S.K.; Nam, S.C.; Yoon, Y. Carbonic Anhydrase Immobilized on Encapsulated Magnetic Nanoparticles for CO2 Sequestration. Chem.-A Eur. J. 2012, 18, 12028–12034. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Li, D.; Li, G.; Huang, F.; Wei, Q. Carboxymethyl Cellulose Assisted Immobilization of Silver Nanoparticles onto Cellulose Nanofibers for the Detection of Catechol. J. Electroanal. Chem. 2015, 738, 92–99. [Google Scholar] [CrossRef]
- Liu, F.; Wang, L.; Wang, H.; Yuan, L.; Li, J.; Brash, J.L.; Chen, H. Modulating the Activity of Protein Conjugated to Gold Nanoparticles by Site-Directed Orientation and Surface Density of Bound Protein. ACS Appl. Mater. Interfaces 2015, 7, 3717–3724. [Google Scholar] [CrossRef]
- Ispas, C.; Sokolov, I.; Andreescu, S. Enzyme-Functionalized Mesoporous Silica for Bioanalytical Applications. Anal. Bioanal. Chem. 2009, 393, 543–554. [Google Scholar] [CrossRef]
- Vinoba, M.; Lim, K.S.; Lee, S.H.; Jeong, S.K.; Alagar, M. Immobilization of Human Carbonic Anhydrase on Gold Nanoparticles Assembled onto Amine/Thiol-Functionalized Mesoporous SBA-15 for Biomimetic Sequestration of CO2. Langmuir 2011, 27, 6227–6234. [Google Scholar] [CrossRef]
- Volokitina, M.V.; Nikitina, A.V.; Tennikova, T.B.; Korzhikova-Vlakh, E.G. Immobilized Enzyme Reactors Based on Monoliths: Effect of Pore Size and Enzyme Loading on Biocatalytic Process. Electrophoresis 2017, 38, 2931–2939. [Google Scholar] [CrossRef]
- Cui, J.; Feng, Y.; Jia, S. Silica Encapsulated Catalase@metal-Organic Framework Composite: A Highly Stable and Recyclable Biocatalyst. Chem. Eng. J. 2018, 351, 506–514. [Google Scholar] [CrossRef]
- Lundqvist, M.; Sethson, I.; Jonsson, B.-H. Protein Adsorption onto Silica Nanoparticles: Conformational Changes Depend on the Particles’ Curvature and the Protein Stability. Langmuir 2004, 20, 10639–10647. [Google Scholar] [CrossRef]
- Crosley, M.S.; Yip, W.T. Silica Sol–Gel Optical Biosensors: Ultrahigh Enzyme Loading Capacity on Thin Films via Kinetic Doping. J. Phys. Chem. B 2017, 121, 2121–2126. [Google Scholar] [CrossRef]
- Yong, J.K.J.; Cui, J.; Cho, K.L.; Stevens, G.W.; Caruso, F.; Kentish, S.E. Surface Engineering of Polypropylene Membranes with Carbonic Anhydrase-Loaded Mesoporous Silica Nanoparticles for Improved Carbon Dioxide Hydration. Langmuir 2015, 31, 6211–6219. [Google Scholar] [CrossRef]
- Chao, C.; Zhang, B.; Zhai, R.; Xiang, X.; Liu, J.; Chen, R. Natural Nanotube-Based Biomimetic Porous Microspheres for Significantly Enhanced Biomolecule Immobilization. ACS Sustain. Chem. Eng. 2014, 2, 396–403. [Google Scholar] [CrossRef]
- Chen, B.; Hu, J.; Miller, E.M.; Xie, W.; Cai, M.; Gross, R.A. Candida Antarctica Lipase B Chemically Immobilized on Epoxy-Activated Micro- and Nanobeads: Catalysts for Polyester Synthesis. Biomacromolecules 2008, 9, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Giovagnoli, S.; Blasi, P.; Ricci, M.; Rossi, C. Biodegradable Microspheres as Carriers for Native Superoxide Dismutase and Catalase Delivery. AAPS PharmSciTech 2004, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Akkuş Çetinus, Ş.; Nursevin Öztop, H. Immobilization of Catalase into Chemically Crosslinked Chitosan Beads. Enzyme Microb. Technol. 2003, 32, 889–894. [Google Scholar] [CrossRef]
- Tang, Z.X.; Qian, J.Q.; Shi, L.E. Preparation of Chitosan Nanoparticles as Carrier for Immobilized Enzyme. Appl. Biochem. Biotechnol. 2007, 136, 77–96. [Google Scholar] [CrossRef]
- Yadav, R.R.; Mudliar, S.N.; Shekh, A.Y.; Fulke, A.B.; Devi, S.S.; Krishnamurthi, K.; Juwarkar, A.; Chakrabarti, T. Immobilization of Carbonic Anhydrase in Alginate and Its Influence on Transformation of CO2 to Calcite. Process Biochem. 2012, 47, 585–590. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N.; Hu, H.; Wang, W.; Zhang, X. Enhanced Bio-Catalytic Performance and Dye Degradation Potential of Chitosan-Encapsulated Horseradish Peroxidase in a Packed Bed Reactor System. Sci. Total Environ. 2017, 575, 1352–1360. [Google Scholar] [CrossRef]
- Simsek-Ege, F.A.; Bond, G.M.; Stringer, J. Matrix Molecular Weight Cut-off for Encapsulation of Carbonic Anhydrase in Polyelectrolyte Beads. J. Biomater. Sci. Polym. Ed. 2002, 13, 1175–1187. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, S.; Kim, H.; Kim, H.J.; Yang, Y.-H.; Kim, Y.H.; Jung, S.-K.; Kan, E.; Lee, S.H. Alginate/Bacterial Cellulose Nanocomposite Beads Prepared Using Gluconacetobacter Xylinus and Their Application in Lipase Immobilization. Carbohydr. Polym. 2017, 157, 137–145. [Google Scholar] [CrossRef]
- Arana-Peña, S.; Lokha, Y.; Fernández-Lafuente, R. Immobilization on Octyl-Agarose Beads and Some Catalytic Features of Commercial Preparations of Lipase a from Candida Antarctica (Novocor ADL): Comparison with Immobilized Lipase B from Candida Antarctica. Biotechnol. Prog. 2019, 35, e2735. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.H.; Won, K.; Choi, J.W.; Kim, Y.H.; Kim, H.J.; Yang, Y.-H.; Lee, S.H. Wood Mimetic Hydrogel Beads for Enzyme Immobilization. Carbohydr. Polym. 2015, 115, 223–229. [Google Scholar] [CrossRef]
- Rueda, N.; dos Santos, C.S.; Rodriguez, M.D.; Albuquerque, T.L.; Barbosa, O.; Torres, R.; Ortiz, C.; Fernandez-Lafuente, R. Reversible Immobilization of Lipases on Octyl-Glutamic Agarose Beads: A Mixed Adsorption That Reinforces Enzyme Immobilization. J. Mol. Catal. B Enzym. 2016, 128, 10–18. [Google Scholar] [CrossRef]
- Gong, A.; Zhu, C.-T.; Xu, Y.; Wang, F.-Q.; Tsabing, D.K.; Wu, F.-A.; Wang, J. Moving and Unsinkable Graphene Sheets Immobilized Enzyme for Microfluidic Biocatalysis. Sci. Rep. 2017, 7, 4309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, C.; Guo, S.; Zhang, J. Interactions of Graphene and Graphene Oxide with Proteins and Peptides. Nanotechnol. Rev. 2013, 2, 27–45. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Zhang, F.; Yang, H.; Huang, X.; Liu, H.; Guo, S. Graphene Oxide as a Matrix for Enzyme Immobilization. Langmuir 2010, 26, 6083–6085. [Google Scholar] [CrossRef]
- Li, H.; Hou, J.; Duan, L.; Ji, C.; Zhang, Y.; Chen, V. Graphene Oxide-Enzyme Hybrid Nanoflowers for Efficient Water Soluble Dye Removal. J. Hazard. Mater. 2017, 338, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Hermanová, S.; Zarevúcká, M.; Bouša, D.; Pumera, M.; Sofer, Z. Graphene Oxide Immobilized Enzymes Show High Thermal and Solvent Stability. Nanoscale 2015, 7, 5852–5858. [Google Scholar] [CrossRef] [PubMed]
- Dedania, S.R.; Patel, M.J.; Patel, D.M.; Akhani, R.C.; Patel, D.H. Immobilization on Graphene Oxide Improves the Thermal Stability and Bioconversion Efficiency of D-Psicose 3-Epimerase for Rare Sugar Production. Enzyme Microb. Technol. 2017, 107, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Akkuş Çetinus, Ş.; Öztop, H.N. Immobilization of Catalase on Chitosan Film. Enzyme Microb. Technol. 2000, 26, 497–501. [Google Scholar] [CrossRef]
- Lu, S.; Wang, X.; Lu, Q.; Hu, X.; Uppal, N.; Omenetto, F.G.; Kaplan, D.L. Stabilization of Enzymes in Silk Films. Biomacromolecules 2009, 10, 1032–1042. [Google Scholar] [CrossRef]
- Wang, Y.; Hsieh, Y.-L. Immobilization of Lipase Enzyme in Polyvinyl Alcohol (PVA) Nanofibrous Membranes. J. Memb. Sci. 2008, 309, 73–81. [Google Scholar] [CrossRef]
- Fazel, R.; Torabi, S.-F.; Naseri-Nosar, P.; Ghasempur, S.; Ranaei-Siadat, S.-O.; Khajeh, K. Electrospun Polyvinyl Alcohol/Bovine Serum Albumin Biocomposite Membranes for Horseradish Peroxidase Immobilization. Enzyme Microb. Technol. 2016, 93–94, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Fang, Y.; Yang, X.; Li, Y.; Wang, C. Electrospun Epoxy-Based Nanofibrous Membrane Containing Biocompatible Feather Polypeptide for Highly Stable and Active Covalent Immobilization of Lipase. Colloids Surf. B Biointerfaces 2018, 166, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, S.; Cieh, N.L.; Mokhtar, M.N.; Naim, M.N.; Kamal, S.M.M. Covalent Immobilization of Cyclodextrin Glucanotransferase on Kenaf Cellulose Nanofiber and Its Application in Ultrafiltration Membrane System. Process Biochem. 2017, 55, 85–95. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, Y.; Chew, N.G.P.; Malde, C.; Wang, R. Biocatalytic PVDF Composite Hollow Fiber Membranes for CO2 Removal in Gas-Liquid Membrane Contactor. J. Memb. Sci. 2019, 572, 532–544. [Google Scholar] [CrossRef]
- Li, S.-F.; Chen, J.-P.; Wu, W.-T. Electrospun Polyacrylonitrile Nanofibrous Membranes for Lipase Immobilization. J. Mol. Catal. B Enzym. 2007, 47, 117–124. [Google Scholar] [CrossRef]
- Arazawa, D.T.; Kimmel, J.D.; Finn, M.C.; Federspiel, W.J. Acidic Sweep Gas with Carbonic Anhydrase Coated Hollow Fiber Membranes Synergistically Accelerates CO2 Removal from Blood. Acta Biomater. 2015, 25, 143–149. [Google Scholar] [CrossRef]
- Zhang, Y.-T.; Zhang, L.; Chen, H.-L.; Zhang, H.-M. Selective Separation of Low Concentration CO2 Using Hydrogel Immobilized CA Enzyme Based Hollow Fiber Membrane Reactors. Chem. Eng. Sci. 2010, 65, 3199–3207. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhi, T.T.; Zhang, L.; Huang, H.; Chen, H.L. Immobilization of Carbonic Anhydrase by Embedding and Covalent Coupling into Nanocomposite Hydrogel Containing Hydrotalcite. Polymer 2009, 50, 5693–5700. [Google Scholar] [CrossRef]
- Gill, I.; Ballesteros, A. Bioencapsulation within Synthetic Polymers (Part 1): Sol–Gel Encapsulated Biologicals. Trends Biotechnol. 2000, 18, 282–296. [Google Scholar] [CrossRef]
- Gill, I.; Ballesteros, A. Bioencapsulation within Synthetic Polymers (Part 2): Non-Sol–Gel Protein–Polymer Biocomposites. Trends Biotechnol. 2000, 18, 469–479. [Google Scholar] [CrossRef]
- Sassolas, A.; Hayat, A.; Marty, J.-L. Enzyme Immobilization by Entrapment within a Gel Network. In Immobilization of Enzymes and Cells; Guisan, J.M., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2013; pp. 229–239. ISBN 978-1-62703-549-1. [Google Scholar]
- Hou, J.; Dong, G.; Xiao, B.; Malassigne, C.; Chen, V. Preparation of Titania Based Biocatalytic Nanoparticles and Membranes for CO2 Conversion. J. Mater. Chem. A 2015, 3, 3332–3342. [Google Scholar] [CrossRef]
- Chiou, S.-H.; Wu, W.-T. Immobilization of Candida Rugosa Lipase on Chitosan with Activation of the Hydroxyl Groups. Biomaterials 2004, 25, 197–204. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Wang, J.-Q.; Xu, Z.-K. Immobilization of Lipase from Candida Rugosa on Electrospun Polysulfone Nanofibrous Membranes by Adsorption. J. Mol. Catal. B Enzym. 2006, 42, 45–51. [Google Scholar] [CrossRef]
- He, S.; Song, D.; Chen, M.; Cheng, H. Immobilization of Lipases on Magnetic Collagen Fibers and Its Applications for Short-Chain Ester Synthesis. Catalysts 2017, 7, 178. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, G. Lipase Immobilization on Glutaraldehyde-Activated Nanofibrous Membranes for Improved Enzyme Stabilities and Activities. React. Funct. Polym. 2012, 72, 839–845. [Google Scholar] [CrossRef]
- Shen, J.; Salmon, S. Biocatalytic Membranes for Carbon Capture and Utilization. Membranes 2023, 13, 367. [Google Scholar] [CrossRef] [PubMed]
- Debeche, T.; Marmet, C.; Kiwi-Minsker, L.; Renken, A.; Juillerat, M.-A. Structured Fiber Supports for Gas Phase Biocatalysis. Enzym. Microb. Technol. 2005, 36, 911–916. [Google Scholar] [CrossRef]
- Tang, C.; Saquing, C.D.; Morton, S.W.; Glatz, B.N.; Kelly, R.M.; Khan, S.A. Cross-Linked Polymer Nanofibers for Hyperthermophilic Enzyme Immobilization: Approaches to Improve Enzyme Performance. ACS Appl. Mater. Interfaces 2014, 6, 11899–11906. [Google Scholar] [CrossRef] [PubMed]
- Doğaç, Y.I.; Deveci, I.; Mercimek, B.; Teke, M. A Comparative Study for Lipase Immobilization onto Alginate Based Composite Electrospun Nanofibers with Effective and Enhanced Stability. Int. J. Biol. Macromol. 2017, 96, 302–311. [Google Scholar] [CrossRef]
- Weiser, D.; Sóti, P.L.; Bánóczi, G.; Bódai, V.; Kiss, B.; Gellért, B.; Nagy, Z.K.; Koczka, B.; Szilágyi, A.; Marosi, G.; et al. Bioimprinted lipases in PVA Nanofibers as Efficient Immobilized Biocatalysts. Tetrahedron 2016, 72, 7335–7342. [Google Scholar] [CrossRef]
- Li, D.; Wang, Q.; Huang, F.; Wei, Q. Electrospun Nanofibers for Enzyme Immobilization. In Electrospinning: Nanofabrication and Applications; Electrospinning: Nanofabrication and Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 765–781. [Google Scholar]
- Han, D.; Filocamo, S.; Kirby, R.; Steckl, A.J. Deactivating Chemical Agents Using Enzyme-Coated Nanofibers Formed by Electrospinning. ACS Appl. Mater. Interfaces 2011, 3, 4633–4639. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.R.; de Souza, J.C.; Iost, R.M.; Sales, F.C.; Crespilho, F.N. Application of Carbon Fibers to Flexible Enzyme Electrodes. J. Electroanal. Chem. 2016, 780, 396–406. [Google Scholar] [CrossRef]
- de Ruijter, C.; Mendes, E.; Boerstoel, H.; Picken, S. Orientational Order and Mechanical Properties of Poly(Amide-Block-Aramid) Alternating Block Copolymer Films and Fibers. Polymer 2006, 47, 8517–8526. [Google Scholar] [CrossRef]
- Wang, Q.; Li, C.X.; Fan, X.; Wang, P.; Cui, L. Immobilization of Catalase on Cotton Fabric Oxidized by Sodium Periodate. Biocatal. Biotransformation 2008, 26, 437–443. [Google Scholar] [CrossRef]
- Shim, E.J.; Lee, S.H.; Song, W.S.; Kim, H.R. Development of an Enzyme-Immobilized Support Using a Polyester Woven Fabric. Text. Res. J. 2016, 87, 3–14. [Google Scholar] [CrossRef]
- Cacciotti, I.; Pallotto, F.; Scognamiglio, V.; Moscone, D.; Arduini, F. Reusable Optical Multi-Plate Sensing System for Pesticide Detection by Using Electrospun Membranes as Smart Support for Acetylcholinesterase Immobilisation. Mater. Sci. Eng. C 2020, 111, 110744. [Google Scholar] [CrossRef]
- Tang, C.; Saquing, C.D.; Sarin, P.K.; Kelly, R.M.; Khan, S.A. Nanofibrous Membranes for Single-Step Immobilization of Hyperthermophilic Enzymes. J. Membr. Sci. 2014, 472, 251–260. [Google Scholar] [CrossRef]
- Pialis, P.; Jimenez Hamann, M.C.; Seville, B.A. L-DOPA Production from Tyrosinase Immobilized on Nylon 6,6. Biotechnol. Bioeng. 1996, 51, 141–147. [Google Scholar] [CrossRef]
- Soares, R.M.; Siqueira, N.M.; Prabhakaram, M.P.; Ramakrishna, S. Electrospinning and Electrospray of Bio-Based and Natural Polymers for Biomaterials Development. Mater. Sci. Eng. C 2018, 92, 969–982. [Google Scholar] [CrossRef]
- Li, J.; Chen, X.; Xu, D.; Pan, K. Immobilization of Horseradish Peroxidase on Electrospun Magnetic Nanofibers for Phenol Removal. Ecotoxicol. Environ. Saf. 2018, 170, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Daneshfar, A.; Matsuura, T.; Emadzadeh, D.; Pahlevani, Z.; Ismail, A.F. Urease-Carrying Electrospun Polyacrylonitrile Mat for Urea Hydrolysis. React. Funct. Polym. 2015, 87, 37–45. [Google Scholar] [CrossRef]
- Oktay, B.; Demir, S.; Kayaman-Apohan, N. Immobilization of α-Amylase onto Poly(Glycidyl Methacrylate) Grafted Electrospun Fibers by ATRP. Mater. Sci. Eng. C 2015, 50, 386–393. [Google Scholar] [CrossRef]
- Sun, Y.; Cheng, S.; Lu, W.; Wang, Y.; Zhang, P.; Yao, Q. Electrospun Fibers and Their Application in Drug Controlled Release, Biological Dressings, Tissue Repair, and Enzyme Immobilization. RSC Adv. 2019, 9, 25712–25729. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Miletić, N.; Loos, K.; Elbahri, M.; Abetz, V. Electrospinning of Poly[acrylonitrile-co- (glycidyl methacrylate)] Nanofibrous Mats for the Immobilization of Candida Antarctica Lipase B. Macromol. Chem. Phys. 2010, 212, 319–327. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, X.; Hu, Y.; Yuan, J.; Cui, L.; Wang, P. Antibacterial Functionalization of Wool Fabric via Immobilizing Lysozymes. Bioprocess Biosyst. Eng. 2008, 32, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Song, J.E.; Song, W.S.; Yeo, S.Y.; Kim, H.R.; Lee, S.H. Covalent Immobilization of Enzyme on Aminated Woven Poly (Lactic Acid) via Ammonia Plasma: Evaluation of the Optimum Immobilization Conditions. Text. Res. J. 2016, 87, 1177–1191. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Schweizer, T.; Rathlef, M.; Pleij, T.; Walde, P. Immobilization of Carbonic Anhydrase in Glass Micropipettes and Glass Fiber Filters for Flow-Through Reactor Applications. ACS Omega 2018, 3, 10391–10405. [Google Scholar] [CrossRef]
- Karimpil, J.J.; Melo, J.; D’Souza, S. Immobilization of Lipase on Cotton Cloth Using the Layer-by-Layer Self-Assembly Technique. Int. J. Biol. Macromol. 2012, 50, 300–302. [Google Scholar] [CrossRef]
- Kim, B.C.; Nair, S.; Kim, J.; Kwak, J.H.; Grate, J.W.; Kim, S.H.; Gu, M.B. Preparation of Biocatalytic Nanofibres with High Activity and Stability via Enzyme Aggregate Coating on Polymer Nanofibres. Nanotechnology 2005, 16, S382–S388. [Google Scholar] [CrossRef]
- Shinde, P.; Musameh, M.; Gao, Y.; Robinson, A.J.; Kyratzis, I. Immobilization and Stabilization of Alcohol Dehydrogenase on Polyvinyl Alcohol Fibre. Biotechnol. Rep. 2018, 19, e00260. [Google Scholar] [CrossRef]
- Opwis, K.; Knittel, D.; Bahners, T.; Schollmeyer, E. Photochemical Enzyme Immobilization on Textile Carrier Materials. Eng. Life Sci. 2005, 5, 63–67. [Google Scholar] [CrossRef]
- Porto, M.D.A.; dos Santos, J.P.; Hackbart, H.; Bruni, G.P.; Fonseca, L.M.; da Rosa Zavareze, E.; Dias, A.R.G. Immobilization of α-Amylase in Ultrafine Polyvinyl Alcohol (PVA) Fibers via Electrospinning and Their Stability on Different Substrates. Int. J. Biol. Macromol. 2019, 126, 834–841. [Google Scholar] [CrossRef]
- Hosseini, A.; Ramezani, S.; Tabibiazar, M.; Mohammadi, M.; Golchinfar, Z.; Mahmoudzadeh, M.; Jahanban-Esfahlan, A. Immobilization of α-Amylase in Ethylcellulose Electrospun Fibers Using Emulsion-Electrospinning Method. Carbohydr. Polym. 2021, 278, 118919. [Google Scholar] [CrossRef]
- Canbolat, M.F.; Savas, H.B.; Gultekin, F. Enzymatic Behavior of Laccase Following Interaction with γ-CD and Immobilization Into PCL Nanofibers. Anal. Biochem. 2017, 528, 13–18. [Google Scholar] [CrossRef]
- Yang, Y.; Asiri, A.M.; Du, D.; Lin, Y. Acetylcholinesterase Biosensor Based on a Gold Nanoparticle-Polypyrrole-Reduced Graphene Oxide Nanocomposite Modified Electrode for the Amperometric Detection of Organophosphorus Pesticides. Anal. 2014, 139, 3055–3060. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, C.; Zhang, Y.; Zhang, B.; Liu, J. Facile Fabrication of Flowerlike Natural Nanotube/Layered Double Hydroxide Composites as Effective Carrier for Lysozyme Immobilization. ACS Sustain. Chem. Eng. 2015, 3, 1183–1189. [Google Scholar] [CrossRef]
- Edwards, J.V.; Prevost, N.T.; Condon, B.; French, A. Covalent 1ttachment of Lysozyme to Cotton/Cellulose Materials: Protein Verses Solid Support Activation. Cellulose 2011, 18, 1239–1249. [Google Scholar] [CrossRef]
- Costa, S.; Azevedo, H.; Reis, R.L. Enzyme Immobilization in Biodegradable Polymers for Biomedical Applications. 2004. [Google Scholar] [CrossRef]
- Sampaio, L.M.; Padrão, J.; Faria, J.; Silva, J.P.; Silva, C.J.; Dourado, F.; Zille, A. Laccase Immobilization on Bacterial Nanocellulose Membranes: Antimicrobial, Kinetic and Stability Properties. Carbohydr. Polym. 2016, 145, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Ji, C.; Dong, G.; Xiao, B.; Ye, Y.; Chen, V. Biocatalytic Janus Membranes for CO2 Removal Utilizing Carbonic Anhydrase. J. Mater. Chem. A 2015, 3, 17032–17041. [Google Scholar] [CrossRef]
- Yong, J.K.; Stevens, G.W.; Caruso, F.; Kentish, S.E. In Situ Layer-by-Layer Assembled Carbonic Anhydrase-Coated Hollow Fiber Membrane Contactor for Rapid CO2 Absorption. J. Membr. Sci. 2016, 514, 556–565. [Google Scholar] [CrossRef]
- Zdarta, J.; Staszak, M.; Jankowska, K.; Kaźmierczak, K.; Degórska, O.; Nguyen, L.N.; Kijeńska-Gawrońska, E.; Pinelo, M.; Jesionowski, T. The Response Surface Methodology for Optimization of Tyrosinase Immobilization onto Electrospun Polycaprolactone–Chitosan Fibers for Use in Bisphenol A Removal. Int. J. Biol. Macromol. 2020, 165, 2049–2059. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, Y.; Salmon, S. Carbonic Anhydrase Immobilized on Textile Structured Packing Using Chitosan Entrapment for CO2 Capture. ACS Sustain. Chem. Eng. 2022, 10, 7772–7785. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, Y.; Bilheux, H.; Salmon, S. Biocatalytic Yarn for Peroxide Decomposition with Controlled Liquid Transport. Adv. Mater. Interfaces 2021, 8, 2002104. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Fan, X.R.; Sun, X.J.; Huang, P.H. Layer-by-Layer Self-Assembly Immobilization of Catalases on Wool Fabrics. Appl. Biochem. Biotechnol. 2013, 169, 2212–2222. [Google Scholar] [CrossRef] [PubMed]
- Jus, S.; Kokol, V.; Guebitz, G.M. Tyrosinase-Catalysed Coating of Wool Fibres with Different Protein-Based Biomaterials. J. Biomater. Sci. Polym. Ed. 2009, 20, 253–269. [Google Scholar] [CrossRef]
- Zhu, C.; Richardson, R.M.; Potter, K.D.; Koutsomitopoulou, A.F.; Van Duijneveldt, J.S.; Vincent, S.R.; Wanasekara, N.D.; Eichhorn, S.J.; Rahatekar, S.S. High Modulus Regenerated Cellulose Fibers Spun from a Low Molecular Weight Microcrystalline Cellulose Solution. ACS Sustain. Chem. Eng. 2016, 4, 4545–4553. [Google Scholar] [CrossRef]
- Böhm, A.; Trosien, S.; Avrutina, O.; Kolmar, H.; Biesalski, M. Covalent Attachment of Enzymes to Paper Fibers for Paper-Based Analytical Devices. Front. Chem. 2018, 6, 214. [Google Scholar] [CrossRef]
- Magne, V.; Amounas, M.; Innocent, C.; Dejean, E.; Seta, P. Enzyme Textile for Removal of Urea with Coupling Process: Enzymatic Reaction and Electrodialysis. Desalination 2002, 144, 163–166. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, S.; Fang, X.; Salmon, S. Carbonic Anhydrase Enhanced UV-Crosslinked PEG-DA/PEO Extruded Hydrogel Flexible Filaments and Durable Grids for CO2 Capture. Gels 2023, 9, 341. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Ohya, T.; Yokoi, N. Enzyme-Entrapping Behaviors in Alginate Fibers and Their Papers. Biotechnol. Bioeng. 1987, 30, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.B.; Spear, S.K.; Holbrey, J.D.; Daly, D.T.; Rogers, R.D. Ionic Liquid-Reconstituted Cellulose Composites as Solid Support Matrices for Biocatalyst Immobilization. Biomacromolecules 2005, 6, 2497–2502. [Google Scholar] [CrossRef]
- Nemestóthy, N.; Bakonyi, P.; Németh, Z.; Bélafi-Bakó, K. Evaluation of Pectin-Reinforced Supported Liquid Membranes Containing Carbonic Anhydrase: The Role of Ionic Liquid on Enzyme Stability and CO2 Separation Performance. J. CO2 Util. 2018, 24, 59–63. [Google Scholar] [CrossRef]
- Pinkert, A.; Marsh, K.N.; Pang, S.; Staiger, M.P. Ionic Liquids and Their Interaction with Cellulose. Chem. Rev. 2009, 109, 6712–6728. [Google Scholar] [CrossRef]
- Li, L.; Yuan, B.; Liu, S.; Yu, S.; Xie, C.; Liu, F.; Guo, X.; Pei, L.; Zhang, B. Preparation of High Strength Chitosan Fibers by Using Ionic Liquid as Spinning Solution. J. Mater. Chem. 2012, 22, 8585–8593. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Zavgorodnya, O.; Berton, P.; Chhotaray, P.K.; Choudhary, H.; Rogers, R.D. Ionic Liquid Platform for Spinning Composite Chitin–Poly (Lactic Acid) Fibers. ACS Sustain. Chem. Eng. 2018, 6, 10241–10251. [Google Scholar] [CrossRef]
- Park, S.; Daeschel, M.A.; Zhao, Y. Functional Properties of Antimicrobial Lysozyme-Chitosan Composite Films. J. Food Sci. 2004, 69, M215–M221. [Google Scholar] [CrossRef]
- Shoseyov, O.; Shani, Z.; Levy, I. Carbohydrate Binding Modules: Biochemical Properties and Novel Applications. Microbiol. Mol. Biol. Rev. 2006, 70, 283–295. [Google Scholar] [CrossRef]
- Zhu, G.; Zhang, M.; Lu, L.; Lou, X.; Dong, M.; Zhu, L. Metal-Organic Framework/Enzyme Coated Optical Fibers as Waveguide-Based Biosensors. Sensors Actuators B Chem. 2019, 288, 12–19. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Sun, H.; Wang, L.; Zhang, J.; Huang, X.; Deng, L.; Xi, J.; Ma, T. A New Type of Optical Fiber Glucose Biosensor with Enzyme Immobilized by Electrospinning. IEEE Sens. J. 2021, 21, 16078–16085. [Google Scholar] [CrossRef]
- Buschle-Diller, G.; Yang, X.D.; Yamamoto, R. Enzymatic Bleaching of Cotton Fabric with Glucose Oxidase. Text. Res. J. 2001, 71, 388–394. [Google Scholar] [CrossRef]
- Abadulla, E.; Tzanov, T.; Costa, S.; Robra, K.-H.; Cavaco-Paulo, A.; Gubitz, G.M. Decolorization and Detoxification of Textile Dyes with a Laccase from Trametes Hirsuta. Appl. Environ. Microbiol. 2000, 66, 3357–3362. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Khan, S.B.; Kamal, T.; Alamry, K.A.; Asiri, A.M.; Sobahi, T.R.A. Chitosan Coated Cotton Cloth Supported Zero-Valent Nanoparticles: Simple but Economically Viable, Efficient and Easily Retrievable Catalysts. Sci. Rep. 2017, 7, 16957. [Google Scholar] [CrossRef]
- Wehrschütz-Sigl, E.; Hasmann, A.; Guebitz, G.M. Smart Textiles and Biomaterials Containing Enzymes or Enzyme Substrates. In Advances in Textile Biotechnology; Advances in Textile Biotechnology; Elsevier: Amsterdam, The Netherlands, 2010; pp. 56–74. [Google Scholar]
- Jia, H.; Zhu, G.; Vugrinovich, B.; Kataphinan, W.; Reneker, D.H.; Wang, P. Enzyme-carrying Polymeric Nanofibers Prepared via Electrospinning for Use as Unique Biocatalysts. Biotechnol. Prog. 2002, 18, 1027–1032. [Google Scholar] [CrossRef]
- An, H.; Jin, B.; Dai, S. Fabricating Polystyrene Fiber-Dehydrogenase Assemble as a Functional Biocatalyst. Enzym. Microb. Technol. 2015, 68, 15–22. [Google Scholar] [CrossRef]
- Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, A.; Barbosa, O.; Rodrigues, R.C.; Fernandez-Lafuente, R. Polyethylenimine: A Very Useful Ionic Polymer in the Design of Immobilized Enzyme Biocatalysts. J. Mater. Chem. B 2017, 5, 7461–7490. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, C.; Huang, Q.; Liu, H.; Zhao, J. Progress on Polymeric Hollow Fiber Membrane Preparation Technique from the Perspective of Green and Sustainable Development. Chem. Eng. J. 2020, 403, 126295. [Google Scholar] [CrossRef]
- Peng, N.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M.M.; Lipscomb, G.G.; Chung, T.-S.; Lai, J.-Y. Evolution of Polymeric Hollow Fibers as Sustainable Technologies: Past, Present, and Future. Prog. Polym. Sci. 2012, 37, 1401–1424. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.Y. Enzyme Immobilization on Cellulose Matrixes. J. Bioact. Compat. Polym. 2016, 31, 553–567. [Google Scholar] [CrossRef]
- Zucca, P.; Fernandez-Lafuente, R.; Sanjust, E. Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 2016, 21, 1577. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, W.; Sun, G.; Tang, Q.; Bian, H. Enzymatic Properties of Immobilized Carbonic Anhydrase and the Biocatalyst for Promoting CO2 Capture in Vertical Reactor. Int. J. Greenh. Gas Control 2016, 49, 290–296. [Google Scholar] [CrossRef]
- Lacerda, M.F.A.R.; Lopes, F.M.; Sartoratto, A.; Ponezi, A.N.; Thomaz, D.V.; Schimidt, F.; Santiago, M.F. Stability of Immobilized Laccase on Luffa Cylindrica Fibers and Assessment of Synthetic Hormone Degradation. Prep. Biochem. Biotechnol. 2018, 49, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Girelli, A.M.; Astolfi, M.L.; Scuto, F.R. Agro-Industrial Wastes as Potential Carriers for Enzyme Immobilization: A Review. Chemosphere 2020, 244, 125368. [Google Scholar] [CrossRef]
- Winartasaputra, H.; Kuan, S.S.; Guilbault, G.G. Amperometric Enzymic Determination of Triglycerides in Serum. Anal. Chem. 1982, 54, 1987–1990. [Google Scholar] [CrossRef]
- Sahoo, P.C.; Sambudi, N.S.; Park, S.B.; Lee, J.H.; Han, J.-I. Immobilization of Carbonic Anhydrase on Modified Electrospun Poly(Lactic Acid) Membranes: Quest for Optimum Biocatalytic Performance. Catal. Letters 2015, 145, 519–526. [Google Scholar] [CrossRef]
- Demirkan, E.; Avci, T.; Aykut, Y. Protease Immobilization on Cellulose Monoacetate/Chitosan-Blended Nanofibers. J. Ind. Text. 2018, 47, 2092–2111. [Google Scholar] [CrossRef]
- de Melo Brites, M.; Cerón, A.A.; Costa, S.M.; Oliveira, R.C.; Ferraz, H.G.; Catalani, L.H.; Costa, S.A. Bromelain Immobilization in Cellulose Triacetate Nanofiber Membranes from Sugarcane Bagasse by Electrospinning Technique. Enzyme Microb. Technol. 2020, 132, 109384. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Zhou, D.; Wang, G. Preparation of Immobilized Enzymes on Pulp Fiber with the Layer-by-Layer Self-Assembly Technique and Its Application in Whitewater Treatment. BioResources 2018, 13, 8455–8463. [Google Scholar] [CrossRef]
- Kim, H.; Lee, I.; Kwon, Y.; Kim, B.C.; Ha, S.; Lee, J.H.; Kim, J. Immobilization of Glucose Oxidase into Polyaniline Nanofiber Matrix for Biofuel Cell Applications. Biosens. Bioelectron. 2011, 26, 3908–3913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Song, M.; Wang, X.; Wu, J.; Yang, Z.; Cao, J.; Chen, Y.; Wei, Q. Preparation of a Cellulose Acetate/Organic Montmorillonite Composite Porous Ultrafine Fiber Membrane for Enzyme Immobilization. J. Appl. Polym. Sci. 2016, 133, 43818. [Google Scholar] [CrossRef]
- Yeon, K.-H.; Lueptow, R.M. Urease Immobilization on an Ion-Exchange Textile for Urea Hydrolysis. J. Chem. Technol. Biotechnol. 2006, 81, 940–950. [Google Scholar] [CrossRef]
- Vanangamudi, A.; Saeki, D.; Dumée, L.F.; Duke, M.; Vasiljevic, T.; Matsuyama, H.; Yang, X. Surface-Engineered Biocatalytic Composite Membranes for Reduced Protein Fouling and Self-Cleaning. ACS Appl. Mater. Interfaces 2018, 10, 27477–27487. [Google Scholar] [CrossRef] [PubMed]
- Tavares, A.P.M.; Silva, C.G.; Dražić, G.; Silva, A.M.T.; Loureiro, J.M.; Faria, J.L. Laccase Immobilization over Multi-Walled Carbon Nanotubes: Kinetic, Thermodynamic and Stability Studies. J. Colloid Interface Sci. 2015, 454, 52–60. [Google Scholar] [CrossRef]
- Solas, M.T.; Vicente, C.; Xavier, L.; Legaz, M.E. Ionic Adsorption of Catalase on Bioskin: Kinetic and Ultrastructural Studies. J. Biotechnol. 1994, 33, 63–70. [Google Scholar] [CrossRef]
- Ye, P.; Xu, Z.K.; Wu, J.; Innocent, C.; Seta, P. Nanofibrous Poly(Acrylonitrile-Co-Maleic Acid) Membranes Functionalized with Gelatin and Chitosan for Lipase Immobilization. Biomaterials 2006, 27, 4169–4176. [Google Scholar] [CrossRef]
- Nair, S.; Kim, J.; Crawford, B.; Kim, S.H. Improving Biocatalytic Activity of Enzyme-Loaded Nanofibers by Dispersing Entangled Nanofiber Structure. Biomacromolecules 2007, 8, 1266–1270. [Google Scholar] [CrossRef] [PubMed]
- Opwis, K.; Knittel, D.; Schollmeyer, E. Quantitative Analysis of Immobilized Metalloenzymes by Atomic Absorption Spectroscopy. Anal. Bioanal. Chem. 2004, 380, 937–941. [Google Scholar] [CrossRef]
- Wunschik, D.S.; Ingenbosch, K.N.; Süss, P.; Liebelt, U.; Quint, S.; Dyllick-Brenzinger, M.; Zuhse, R.; Menyes, U.; Hoffmann-Jacobsen, K.; Opwis, K.; et al. Enzymatic Epoxidation of Cyclohexene by Peroxidase Immobilization on a Textile and an Adapted Reactor Design. Enzyme Microb. Technol. 2020, 136, 109512. [Google Scholar] [CrossRef]
- Mohamad, N.; Buang, N.A.; Mahat, N.A.; Jamalis, J.; Huyop, F.; Aboul-Enein, H.Y.; Wahab, R.A. Simple Adsorption of Candida Rugosa Lipase onto Multi-Walled Carbon Nanotubes for Sustainable Production of the Flavor Ester Geranyl Propionate. J. Ind. Eng. Chem. 2015, 32, 99–108. [Google Scholar] [CrossRef]
- Edwards, J.V.; Sethumadhavan, K.; Ullah, A.H.J. Conjugation and Modeled Structure/Function Analysis of Lysozyme on Glycine Esterified Cotton Cellulose-Fibers. Bioconjug. Chem. 2000, 11, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.; Aly, A.S.; Mohamed, T.M.; Salah, H.A. Immobilization of Horseradish Peroxidase on Nonwoven Polyester Fabric Coated with Chitosan. Appl. Biochem. Biotechnol. 2008, 144, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Chaganti, S.R.; Prakasham, R.S. Polyaniline Nanofiber as a Novel Immobilization Matrix for the Anti-Leukemia Enzyme l-Asparaginase. J. Mol. Catal. B Enzym. 2012, 74, 132–137. [Google Scholar] [CrossRef]
- Tran, D.N.; Yang, D.J.; Balkus, K.J. Fabrication of Cellulase Protein Fibers through Concentric Electrospinning. J. Mol. Catal. B Enzym. 2011, 72, 1–5. [Google Scholar] [CrossRef]
- Ibrahim, N.A.; Gouda, M.; El-shafei, A.M.; Abdel-Fatah, O.M. Antimicrobial Activity of Cotton Fabrics Containing Immobilized Enzymes. J. Appl. Polym. Sci. 2007, 104, 1754–1761. [Google Scholar] [CrossRef]
- Coradi, M.; Zanetti, M.; Valério, A.; de Oliveira, D.; da Silva, A.; Maria de Arruda Guelli Ulson de Souza, S.; Ulson de Souza, A.A. Production of Antimicrobial Textiles by Cotton Fabric Functionalization and Pectinolytic Enzyme Immobilization. Mater. Chem. Phys. 2018, 208, 28–34. [Google Scholar] [CrossRef]
- Park, J.-M.; Kim, M.; Park, H.-S.; Jang, A.; Min, J.; Kim, Y.-H. Immobilization of Lysozyme-CLEA onto Electrospun Chitosan Nanofiber for Effective Antibacterial Applications. Int. J. Biol. Macromol. 2013, 54, 37–43. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y.; Wang, P. Peptide-Induced Affinity Binding of Carbonic Anhydrase to Carbon Nanotubes. Langmuir 2015, 31, 397–403. [Google Scholar] [CrossRef]
- Wheeler, K.E.; Nocek, J.M.; Hoffman, B.M. NMR Spectroscopy Can Characterize Proteins Encapsulated in a Sol-Gel Matrix. J. Am. Chem. Soc. 2006, 128, 14782–14783. [Google Scholar] [CrossRef]
- Fauré, N.E.; Halling, P.J.; Wimperis, S. A Solid-State NMR Study of the Immobilization of α-Chymotrypsin on Mesoporous Silica. J. Phys. Chem. C 2014, 118, 1042–1048. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, H.; Leite, W.; Zhang, Q.; Bonnesen, P.V.; Labbé, J.L.; Weiss, K.L.; Pingali, S.V.; Hong, K.; Urban, V.S.; et al. Biosynthesis and Characterization of Deuterated Chitosan in Filamentous Fungus and Yeast. Carbohydr. Polym. 2021, 257, 117637. [Google Scholar] [CrossRef]
- Luo, G.; Zhang, Q.; Del Castillo, A.R.; Urban, V.; O’Neill, H. Characterization of Sol−Gel-Encapsulated Proteins Using Small-Angle Neutron Scattering. ACS Appl. Mater. Interfaces 2009, 1, 2262–2268. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.; Paradiso, M.; Wallacher, D.; Brandt, A.; Hartmann, M. Formation of Cross-Linked Chloroperoxidase Aggregates in the Pores of Mesocellular Foams: Characterization by SANS and Catalytic Properties. ChemSusChem Chem. Sustain. Energy Mater. 2009, 2, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Groll, J.; Amirgoulova, E.V.; Ameringer, T.; Heyes, C.D.; Röcker, C.; Nienhaus, G.U.; Möller, M. Biofunctionalized, Ultrathin Coatings of Cross-Linked Star-Shaped Poly(Ethylene Oxide) Allow Reversible Folding of Immobilized Proteins. J. Am. Chem. Soc. 2004, 126, 4234–4239. [Google Scholar] [CrossRef] [PubMed]
- Baio, J.E.; Cheng, F.; Ratner, D.M.; Stayton, P.S.; Castner, D.G. Probing Orientation of Immobilized Humanized Anti-Lysozyme Variable Fragment by Time-of-Flight Secondary-Ion Mass Spectrometry. J. Biomed. Mater. Res. -Part A 2011, 97A, 1–7. [Google Scholar] [CrossRef]
- Tyler, B.J.; Bruening, C.; Rangaranjan, S.; Arlinghaus, H.F. TOF-SIMS Imaging of Adsorbed Proteins on Topographically Complex Surfaces with Bi3+ Primary Ions. Biointerphases 2011, 6, 135–141. [Google Scholar] [CrossRef]
- Asaduzzaman, F.; Salmon, S. Protease Immobilization in Solution-Blown Poly(Ethylene Oxide) Nanofibrous Nonwoven Webs. ACS Appl. Eng. Mater. 2023, 1, 447–457. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, D.; Sinniah, K.; Clarke, C.; Birch, L.; Li, H.; Rayment, T.; Abell, C. Electrostatic Orientation of Enzymes on Surfaces for Ligand Screening Probed by Force Spectroscopy. Langmuir 2006, 22, 887–892. [Google Scholar] [CrossRef]
- Park, J.W.; Cho, I.H.; Moon, D.W.; Paek, S.H.; Lee, T.G. ToF-SIMS and PCA of Surface-Immobilized Antibodies with Different Orientations. Surf. Interface Anal. 2011, 43, 285–289. [Google Scholar] [CrossRef]
Class | Name | Catalyzed Reaction |
---|---|---|
1 | Oxidoreductases | AH2 + B = A + BH2 or AH2 + B+ = A + BH + H+ |
2 | Transferases | AX + B = A + BX |
3 | Hydrolases | A-B + H2O = AH + BOH |
4 | Lyases | A = 1 B + X-Y = X-A-B-Y |
5 | Isomerases | A = B |
6 | Ligases | A + B + NTP = A-B + NDP + P or A + B + NTP = A-B + NMP + PP |
Metric | Reference |
---|---|
Common knowledge | |
Common knowledge | |
[49] | |
[49] | |
[58] | |
[59] | |
[59] | |
Inspired by [60] |
Enzyme | Immobilization Approach | Metrics and Outcomes | Reference |
---|---|---|---|
Pseudomonas cepaciae lipase | Physically adsorbed enzymes on carbon fiber or glass fiber woven fabrics |
| [169] |
Candida antarctica Lipase B | Covalently immobilized onto polymeric electrospun membrane |
| [187] |
Candida antarctica lipase B | Covalently immobilized onto polymeric electrospun membrane |
| [153] |
Candida rugosa lipase | Covalently immobilized onto collagen fibers containing magnetic particles |
| [166] |
Candida rugosa lipase | Covalently immobilized onto regenerated cellulosic electrospun fibers |
| [113] |
Lysozyme | Covalently immobilized onto activated wool fabrics |
| [188] |
Trypsin | Covalently immobilized onto woven PLA |
| [189] |
Bovine carbonic anhydrase | Covalently conjugated enzyme adsorbed onto glass fiber surface |
| [190] |
Thermomyces lanuginosus lipase | Layer-by-layer self-assembly on cotton cloth |
| [191] |
α-chymotrypsin | Covalently immobilized onto polystyrene and co-polymer electrospun nanofibers with/without the presence of glutaraldehyde |
| [192] |
Yeast alcohol dehydrogenase | Covalently immobilized onto modified polyvinyl alcohol-knitted fabrics with glutaraldehyde as the spacer |
| [193] |
Catalase | Covalently immobilized to PET and nylon fabrics by photochemical treatment |
| [194] |
Glucose oxidase | Entrapped in silk fibroin gel then applied to non-woven fabrics |
| [10] |
Candida rugosa lipase | Entrapped in water-soluble electrospun fibers followed by crosslinking |
| [151] |
Vairous microbial lipases | Entrapped in electrospun poly(vinyl alcohol) (PVA) nanofibers |
| [172] |
α-amylase | Entrapped in electrospun poly(vinyl alcohol) (PVA) nanofibers |
| [195] |
α-amylase | Entrapped in ethyl cellulose electrospun fibers |
| [196] |
Laccase | Entrapped in γ-cyclodextrin then electrospun into poly(ε-caprolactone) (PCL) fibers |
| [197] |
Hyper-thermophilic α-galactosidase and β-glucosidase | Entrapped in PVA electrospun nanofibers through the presence of HCl as the cross-linking initiator |
| [170] |
Parameters | Methods | Units |
---|---|---|
Fabric weight | Area and mass | g/m2 |
Yarn linear density | Length and mass | Tex (g/km) Denier (g/9000 m) |
Yarns per inch | Length and counting | numbers of yarns/inch in each direction |
Fabric thickness | Length under pressure | mm |
Fiber diameter | Length from microscope (optical or electron) | µm or nm |
Surface area | Nitrogen adsorption-desorption | m2/g |
Pore volume | Nitrogen adsorption-desorption | cm3/g |
Pore size | Nitrogen adsorption-desorption, capillary flow porometer (through pores) | µm or nm |
Material | Physical Structure | Specific Surface Area (m2 g−1) | Ref. |
---|---|---|---|
Glass or carbon fibers | Woven fabrics | 2 | [169] |
Multi-walled carbon nanotubes (MWCNTs) | MWCNTs with 10–20 nm diameters and 5–15 μm length | 73 | [247] |
Cellulose acetate microfibers | Electrospun non-porous and porous fibers, with or without montmorillonite | 1.94–11.87 | [244] |
Polyaniline nanofibers | Nanofibers | 58.4 | [243] |
Regenerated cellulose | Nanofiber membrane | 5.3 | [113] |
Poly(acrylic acid)-coated polypropylene fibers | Non-woven fabric | 0.395 | [245] |
Collagen composite fibers | Porous collagen composite fibers with magnetic Fe3O4 particles | 11.59 | [166] |
Cellulose fibers | Commercial filter paper | ~1 | [211] |
Technique | Sample Requirement | Detection Limit | Principle |
---|---|---|---|
AAS | Metalloenzymes | ppb | Absorption of lights at characteristic wavelengths of the free metal ions |
ICP-OES (ICP-AES) | Metalloenzymes | ppb | Emission of lights at characteristic wavelengths of the excited atoms and ions |
TGA | High enzyme loading and thermal stable support | % | Difference in thermal decomposition temperatures of the enzyme and support |
Technique | Information Provided | Depth | Type of Analysis | Detection Limit |
---|---|---|---|---|
TOF-SIMS | Chemical bonding and elemental | ~1–2 nm | Mostly qualitative, or semi-quantitative, standard difficult to prepare | 0.01–0.1 at % atomic concentration |
XPS | Chemical bonding, oxidation state, and elemental | ~5 nm | Quantitative | 0.1–1.0 at % atomic concentration |
EDX | Elemental | 1–2 µm | Mostly qualitative, or semi-quantitative, requires standard for quantitative analysis | 0.05 wt.% |
FTIR-ATR | Chemical bonds, interactions in the solid state | 0.5–2 µm depending on wavelength of the light | Mostly qualitative, requires calibration with a second technique for quantitative analysis | 0.1 wt.% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, Y.; Shen, J.; Salmon, S. Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations. Membranes 2023, 13, 532. https://doi.org/10.3390/membranes13050532
Yuan Y, Shen J, Salmon S. Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations. Membranes. 2023; 13(5):532. https://doi.org/10.3390/membranes13050532
Chicago/Turabian StyleYuan, Yue, Jialong Shen, and Sonja Salmon. 2023. "Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations" Membranes 13, no. 5: 532. https://doi.org/10.3390/membranes13050532
APA StyleYuan, Y., Shen, J., & Salmon, S. (2023). Developing Enzyme Immobilization with Fibrous Membranes: Longevity and Characterization Considerations. Membranes, 13(5), 532. https://doi.org/10.3390/membranes13050532