Tailoring Morphology and Properties of Tight Utrafiltration Membranes by Two-Dimensional Molybdenum Disulfide for Performance Improvement
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Membrane Preparation
2.3. Characterization of MoS2 and Membranes
2.4. Molecular Weight Cut-off, Pore Size, Porosity, and Filtration Performance of Membranes
3. Results and Discussion
3.1. Characterization of MoS2
3.2. Characterization of MoS2/PES Membrane °
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCloskey, B.D.; Park, H.B.; Ju, H.; Rowe, B.W.; Miller, D.J.; Freeman, B.D. A bioinspired fouling-resistant surface modification for water purification membranes. J. Membr. Sci. 2012, 413, 82–90. [Google Scholar] [CrossRef]
- Yu, W.; Liu, T.; Crawshaw, J.; Liu, T.; Graham, N. Ultrafiltration and nanofiltration membrane fouling by natural organic matter: Mechanisms and mitigation by pre-ozonation and pH. Water Res. 2018, 139, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jeong, S.; Ye, Y.; Chen, V.; Vigneswaran, S.; Leiknes, T.; Liu, Z. Protein fouling in carbon nanotubes enhanced ultrafiltration membrane: Fouling mechanism as a function of pH and ionic strength. Sep. Purif. Technol. 2017, 176, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Winter, J.; Barbeau, B.; Berube, P. Nanofiltration and Tight Ultrafiltration Membranes for Natural Organic Matter Removal-Contribution of Fouling and Concentration Polarization to Filtration Resistance. Membranes 2017, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Lowe, J.; Hossain, M.M. Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination 2008, 218, 343–354. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, Y.; Xie, C.; Sun, X.; Wang, Y.; Liu, P.; Wang, Y.; Liu, C.; Wan, Y.; Pan, W.; et al. High-flux, antifouling and highly hydrophilic tight ultrafiltration membranes based on crosslinked PEEKWC/PEI containing positively charged water channel for dyes removal. Chem. Eng. Res. Des. 2022, 188, 1–14. [Google Scholar] [CrossRef]
- Shang, R.; Verliefde, A.R.D.; Hu, J.; Heijman, S.G.J.; Rietveld, L.C. The impact of EfOM, NOM and cations on phosphate rejection by tight ceramic ultrafiltration. Sep. Purif. Technol. 2014, 132, 289–294. [Google Scholar] [CrossRef]
- Mehta, A.; Zydney, A.L. Permeability and selectivity analysis for ultrafiltration membranes. J. Membr. Sci. 2005, 249, 245–249. [Google Scholar] [CrossRef]
- Lin, C.-E.; Wang, J.; Zhou, M.-Y.; Zhu, B.-K.; Zhu, L.-P.; Gao, C.-J. Poly(m-phenylene isophthalamide) (PMIA): A potential polymer for breaking through the selectivity-permeability trade-off for ultrafiltration membranes. J. Membr. Sci. 2016, 518, 72–78. [Google Scholar] [CrossRef]
- Mochizuki, S.; Zydney, A.L. Theoretical analysis of pore size distribution effects on membrane transport. J. Membr. Sci 1993, 82, 211–227. [Google Scholar] [CrossRef]
- Choi, H.G.; Son, M.; Choi, H. Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer. Chemosphere 2017, 185, 1181–1188. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ma, J.; Wang, Z.; Wen, G.; Jiang, J.; Shi, F.; Sheng, L. Hyperbranched-polymer functionalized multi-walled carbon nanotubes for poly (vinylidene fluoride) membranes: From dispersion to blended fouling-control membrane. Desalination 2012, 303, 29–38. [Google Scholar] [CrossRef]
- Moghadam, F.; Park, H.B. Two-dimensional materials: An emerging platform for gas separation membranes. Curr. Opin. Chem. Eng. 2018, 20, 28–38. [Google Scholar] [CrossRef]
- Mohan, V.B.; Lau, K.-T.; Hui, D.; Bhattacharyya, D. Graphene-based materials and their composites: A review on production, applications and product limitations. Compos. Part B Eng. 2018, 142, 200–220. [Google Scholar] [CrossRef]
- Zhang, M.; Field, R.W.; Zhang, K. Biogenic silver nanocomposite polyethersulfone UF membranes with antifouling properties. J. Membr. Sci. 2014, 471, 274–284. [Google Scholar] [CrossRef]
- Zodrow, K.; Brunet, L.; Mahendra, S.; Li, D.; Zhang, A.; Li, Q.; Alvarez, P.J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009, 43, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.P.; Yang, S.H. Hybrid materials based on polymer nanocomposites for environmental applications. In Polymer-based Nanocomposites for Energy and Environmental Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 507–551. [Google Scholar]
- Goh, P.S.; Ng, B.C.; Lau, W.J.; Ismail, A.F. Inorganic Nanomaterials in Polymeric Ultrafiltration Membranes for Water Treatment. Sep. Purif. Rev. 2014, 44, 216–249. [Google Scholar] [CrossRef]
- Li, H.; Lu, G.; Yin, Z.; He, Q.; Li, H.; Zhang, Q.; Zhang, H. Optical identification of single- and few-layer MoS(2) sheets. Small 2012, 8, 682–686. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, H.; Xia, J.; Zhang, F.; Li, F.; Xia, Y.; Li, Y. Novel GO-blended PVDF ultrafiltration membranes. Desalination 2012, 299, 50–54. [Google Scholar] [CrossRef]
- Ganesh, B.M.; Isloor, A.M.; Ismail, A.F. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination 2013, 313, 199–207. [Google Scholar] [CrossRef]
- Ganatra, R.; Zhang, Q. Few-Layer MoS2 A Promising Layered Semiconductor. ACS Nano 2014, 8, 4074–4099. [Google Scholar] [CrossRef] [PubMed]
- Mallya, D.S.; Yang, G.; Lei, W.; Muthukumaran, S.; Baskaran, K. Functionalized MoS2 nanosheets enabled nanofiltration membrane with enhanced permeance and fouling resistance. Environ. Technol. Innov. 2022, 27, 102719. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Zhang, K.; Van der Bruggen, B. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics. Desalination 2019, 454, 48–58. [Google Scholar] [CrossRef]
- Feng, X.; Wang, X.; Xing, W.; Zhou, K.; Song, L.; Hu, Y. Liquid-exfoliated MoS2 by chitosan and enhanced mechanical and thermal properties of chitosan/MoS2 composites. Compos. Sci. Technol. 2014, 93, 76–82. [Google Scholar] [CrossRef]
- Feng, X.; Xing, W.; Yang, H.; Yuan, B.; Song, L.; Hu, Y.; Liew, K.M. High-Performance Poly(ethylene oxide)/Molybdenum Disulfide Nanocomposite Films: Reinforcement of Properties Based on the Gradient Interface Effect. ACS Appl. Mater. Interfaces 2015, 7, 13164–13173. [Google Scholar] [CrossRef]
- Dai, R.; Han, H.; Wang, T.; Li, X.; Wang, Z. Enhanced removal of hydrophobic endocrine disrupting compounds from wastewater by nanofiltration membranes intercalated with hydrophilic MoS2 nanosheets: Role of surface properties and internal nanochannels. J. Membr. Sci. 2021, 628, 119267. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, Q.; Zheng, S.; Urban, J.J.; Li, S.; Mi, B. Understanding the Aqueous Stability and Filtration Capability of MoS2 Membranes. Nano Lett. 2017, 17, 7289–7298. [Google Scholar] [CrossRef]
- Wang, Z.; Mi, B. Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets. Environ. Sci. Technol. 2017, 51, 8229–8244. [Google Scholar] [CrossRef]
- Guo, B.Y.; Jiang, S.D.; Tang, M.J.; Li, K.; Sun, S.; Chen, P.Y.; Zhang, S. MoS2 Membranes for Organic Solvent Nanofiltration: Stability and Structural Control. J. Phys. Chem. Lett. 2019, 10, 4609–4617. [Google Scholar] [CrossRef]
- Jiang, J.W.; Qi, Z.; Park, H.S.; Rabczuk, T. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): Finite thickness effect. Nanotechnology 2013, 24, 435705. [Google Scholar] [CrossRef]
- Deng, M.; Kwac, K.; Li, M.; Jung, Y.; Park, H.G. Stability, Molecular Sieving, and Ion Diffusion Selectivity of a Lamellar Membrane from Two-Dimensional Molybdenum Disulfide. Nano Lett 2017, 17, 2342–2348. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.-Q.; Zhang, C.; Zhu, C.-Y.; Huang, S.; Yang, J.; Xu, Z.-K. Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance. J. Membr. Sci. 2019, 591, 117316. [Google Scholar] [CrossRef]
- Zhang, H.; Gong, X.-Y.; Li, W.-X.; Ma, X.-H.; Tang, C.Y.; Xu, Z.-L. Thin-film nanocomposite membranes containing tannic acid-Fe3+ modified MoS2 nanosheets with enhanced nanofiltration performance. J. Membr. Sci. 2020, 616, 118605. [Google Scholar] [CrossRef]
- Liang, X.; Wang, P.; Wang, J.; Zhang, Y.; Wu, W.; Liu, J.; Van der Bruggen, B. Zwitterionic functionalized MoS2 nanosheets for a novel composite membrane with effective salt/dye separation performance. J. Membr. Sci. 2019, 573, 270–279. [Google Scholar] [CrossRef]
- Saraswathi, M.S.S.A.; Rana, D.; Vijayakumar, P.; Alwarappan, S.; Nagendran, A. Tailored PVDF nanocomposite membranes using exfoliated MoS2 nanosheets for improved permeation and antifouling performance. New J. Chem. 2017, 41, 14315–14324. [Google Scholar] [CrossRef]
- Tian, H.; Wu, X.; Zhang, K. Mixed matrix polyethersulfone tight ultrafiltration (TUF) membrane with improved dye removal by physical blending of 2D MoS2. Desalination Water Treat. 2020, 204, 93–106. [Google Scholar] [CrossRef]
- Dolar, D.; Kosutic, K.; Strmecky, T. Hybrid processes for treatment of landfill leachate: Coagulation/UF/NF-RO and adsorption/UF/NF-RO. Sep. Purif. Technol. 2016, 168, 39–46. [Google Scholar] [CrossRef]
- Wang, K.; Lin, X.; Jiang, G.; Liu, J.Z.; Jiang, L.; Doherty, C.M.; Hill, A.J.; Xu, T.; Wang, H. Slow hydrophobic hydration induced polymer ultrafiltration membranes with high water flux. J. Membr. Sci. 2014, 471, 27–34. [Google Scholar] [CrossRef]
- Wu, X.; Xie, Z.; Wang, H.; Zhao, C.; Ng, D.; Zhang, K. Improved filtration performance and antifouling properties of polyethersulfone ultrafiltration membranes by blending with carboxylic acid functionalized polysulfone. RSC Adv. 2018, 8, 7774–7784. [Google Scholar] [CrossRef] [Green Version]
- Salimi, E.; Ghaee, A.; Ismail, A.F. Improving Blood Compatibility of Polyethersulfone Hollow Fiber Membranes via Blending with Sulfonated Polyether Ether Ketone. Macromol. Mater. Eng. 2016, 301, 1084–1095. [Google Scholar] [CrossRef]
- Arefi-Oskoui, S.; Khataee, A.; Ucun, O.K.; Kobya, M.; Hanci, T.O.; Arslan-Alaton, I. Toxicity evaluation of bulk and nanosheet MoS2 catalysts using battery bioassays. Chemosphere 2021, 268, 128822. [Google Scholar] [CrossRef] [PubMed]
- Rajendhran, N.; Palanisamy, S.; Periyasamy, P.; Venkatachalam, R. Enhancing of the tribological characteristics of the lubricant oils using Ni-promoted MoS2 nanosheets as nano-additives. Tribol. Int. 2018, 118, 314–328. [Google Scholar] [CrossRef]
- Jia, F.; Sun, K.; Yang, B.; Zhang, X.; Wang, Q.; Song, S. Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water. Desalination 2018, 446, 21–30. [Google Scholar] [CrossRef]
- Yein, W.T.; Wang, Q.; Liu, Y.; Li, Y.; Jian, J.; Wu, X. Piezo-potential induced molecular oxygen activation of defect-rich MoS2 ultrathin nanosheets for organic dye degradation in dark. J. Environ. Chem. Eng. 2020, 8, 103626. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, K.; Wang, K.; Xie, Z.; Ladewig, B.; Wang, H. Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J. Membr. Sci. 2012, 423, 362–370. [Google Scholar] [CrossRef]
- Zhu, L.-J.; Zhu, L.-P.; Jiang, J.-H.; Yi, Z.; Zhao, Y.-F.; Zhu, B.-K.; Xu, Y.-Y. Hydrophilic and anti-fouling polyethersulfone ultrafiltration membranes with poly(2-hydroxyethyl methacrylate) grafted silica nanoparticles as additive. J. Membr. Sci. 2014, 451, 157–168. [Google Scholar] [CrossRef]
- Huang, H.; Yu, J.; Guo, H.; Shen, Y.; Yang, F.; Wang, H.; Liu, R.; Liu, Y. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide. Appl. Surf. Sci. 2018, 427, 38–47. [Google Scholar] [CrossRef]
- Jamshidi Gohari, R.; Halakoo, E.; Nazri, N.A.M.; Lau, W.J.; Matsuura, T.; Ismail, A.F. Improving performance and antifouling capability of PES UF membranes via blending with highly hydrophilic hydrous manganese dioxide nanoparticles. Desalination 2014, 335, 87–95. [Google Scholar] [CrossRef]
- Zheng, J.; Zhang, H.; Dong, S.; Liu, Y.; Nai, C.T.; Shin, H.S.; Jeong, H.Y.; Liu, B.; Loh, K.P. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 2014, 5, 2995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saraswathi, M.; Rana, D.; Nagendran, A.; Alwarappan, S. Custom-made PEI/exfoliated-MoS2 nanocomposite ultrafiltration membranes for separation of bovine serum albumin and humic acid. Mater. Sci. Eng. C 2018, 83, 108–114. [Google Scholar] [CrossRef]
- Cheng, Z.; Xiao, Y.; Wu, W.; Zhang, X.; Fu, Q.; Zhao, Y.; Qu, L. All-pH-Tolerant In-Plane Heterostructures for Efficient Hydrogen Evolution Reaction. ACS Nano 2021, 15, 11417–11427. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Jiang, Z.; Gao, B.; Wang, H.; Wang, M.; He, Z.; Cao, X.; Pan, F. Embedding hydrophobic MoS 2 nanosheets within hydrophilic sodium alginate membrane for enhanced ethanol dehydration. Chem. Eng. Sci. 2018, 185, 231–242. [Google Scholar] [CrossRef]
- Vatanpour, V.; Madaeni, S.S.; Rajabi, L.; Zinadini, S.; Derakhshan, A.A. Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J. Membr. Sci. 2012, 401, 132–143. [Google Scholar] [CrossRef]
- Garcia-Ivars, J.; Iborra-Clar, M.-I.; Alcaina-Miranda, M.-I.; Van der Bruggen, B. Comparison between hydrophilic and hydrophobic metal nanoparticles on the phase separation phenomena during formation of asymmetric polyethersulphone membranes. J. Membr. Sci. 2015, 493, 709–722. [Google Scholar] [CrossRef] [Green Version]
- Maruyama, T.; Katoh, S.; Nakajima, M.; Nabetani, H.; Abbott, T.P.; Shono, A.; Satoh, K. FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes. J. Membr. Sci. 2001, 192, 201–207. [Google Scholar] [CrossRef]
- Jermann, D.; Pronk, W.; Meylan, S.; Boller, M. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production. Water Res. 2007, 41, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Chai, P.V.; Mahmoudi, E.; Teow, Y.H.; Mohammad, A.W. Preparation of novel polysulfone-Fe3O4/GO mixed-matrix membrane for humic acid rejection. J. Water Process Eng. 2017, 15, 83–88. [Google Scholar] [CrossRef]
- Liu, X.; Yuan, H.; Wang, C.; Zhang, S.; Zhang, L.; Liu, X.; Liu, F.; Zhu, X.; Rohani, S.; Ching, C.; et al. A novel PVDF/PFSA-g-GO ultrafiltration membrane with enhanced permeation and antifouling performances. Sep. Purif. Technol. 2020, 233, 116038. [Google Scholar] [CrossRef]
- Chu, K.H.; Huang, Y.; Yu, M.; Heo, J.; Flora, J.R.V.; Jang, A.; Jang, M.; Jung, C.; Park, C.M.; Kim, D.-H.; et al. Evaluation of graphene oxide-coated ultrafiltration membranes for humic acid removal at different pH and conductivity conditions. Sep. Purif. Technol. 2017, 181, 139–147. [Google Scholar] [CrossRef]
- Abdikheibari, S.; Lei, W.; Dumée, L.F.; Milne, N.; Baskaran, K. Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride/polypiperazine amide with enhanced flux and fouling resistance. J. Mater. Chem. A 2018, 6, 12066–12081. [Google Scholar] [CrossRef]
- Song, H.; Shao, J.; He, Y.; Hou, J.; Chao, W. Natural organic matter removal and flux decline with charged ultrafiltration and nanofiltration membranes. J. Membr. Sci. 2011, 376, 179–187. [Google Scholar] [CrossRef]
Membrane | DMAc (wt%) | MoS2 (wt%) | Viscosity (Pa.s) |
---|---|---|---|
M0 | 61.00 | 0.00 | 53.5 ± 0.1 |
M1 | 60.75 | 0.25 | 64.1 ± 1.0 |
M2 | 60.50 | 0.50 | 81.5 ± 0.6 |
M3 | 60.00 | 1.00 | 90.4 ± 0.6 |
M4 | 59.50 | 1.50 | 115.5 ± 2.6 |
Membrane | Porosity(%) | Mean Pore Radius (nm) | Pure Water Flux (Lm−2h−1) |
---|---|---|---|
M0 | 52.44 ± 0.15 | 1.51 | 72.37 ± 0.14 |
M1 | 51.98 ± 0.86 | 1.66 | 91.86 ± 5.79 |
M2 | 53.38 ± 0.31 | 1.71 | 98.48 ± 3.82 |
M3 | 53.50 ± 0.62 | 1.64 | 91.00 ± 6.75 |
M4 | 52.23 ± 0.98 | 1.60 | 80.18 ± 6.01 |
Membrane | Rejection (%) UV254 | Permeation Flux (Lm−2h−1 bar−1) | Pure Water Flux (Lm−2h−1 bar−1) | Membrane Type | Ref |
---|---|---|---|---|---|
PSf/GO-Fe3O4 | 84 ± 2 | 156.99 | - | UF | [58] |
PSf | 89 ± 2 | 51.78 | - | UF | [58] |
PVDF/PFSA-g-GO | 79.6 | 587.4 | UF | [59] | |
PES/GO | 85.3–93.9 | - | ~36–108 | UF | [60] |
PPA-BN-4 | 97.91 | - | 14.24 | NF | [61] |
PES-PPA-OH-MoS2 | 99.20 | - | 14.023 | NF | [23] |
NF270 | 99.4 | - | 16 | NF | [62] |
PES/MoS2 (M2 membrane) | 99.60 | 61.24 | 98.48 | UF | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, H.; Wu, X.; Zhang, K. Tailoring Morphology and Properties of Tight Utrafiltration Membranes by Two-Dimensional Molybdenum Disulfide for Performance Improvement. Membranes 2022, 12, 1071. https://doi.org/10.3390/membranes12111071
Tian H, Wu X, Zhang K. Tailoring Morphology and Properties of Tight Utrafiltration Membranes by Two-Dimensional Molybdenum Disulfide for Performance Improvement. Membranes. 2022; 12(11):1071. https://doi.org/10.3390/membranes12111071
Chicago/Turabian StyleTian, Huali, Xing Wu, and Kaisong Zhang. 2022. "Tailoring Morphology and Properties of Tight Utrafiltration Membranes by Two-Dimensional Molybdenum Disulfide for Performance Improvement" Membranes 12, no. 11: 1071. https://doi.org/10.3390/membranes12111071
APA StyleTian, H., Wu, X., & Zhang, K. (2022). Tailoring Morphology and Properties of Tight Utrafiltration Membranes by Two-Dimensional Molybdenum Disulfide for Performance Improvement. Membranes, 12(11), 1071. https://doi.org/10.3390/membranes12111071