Separation and Concentration of Nitrogen and Phosphorus in a Bipolar Membrane Electrodialysis System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Agents
2.2. Experimental Setup
2.3. Calculation Methods
2.4. Analysis of Reaction Kinetic Process
3. Results and Discussion
3.1. Influence of Electrolyte Concentration on Cell Voltage
3.2. Effect of Current Density on Ions Separation and Concentration
3.2.1. Effect of Current Density on the Separation of NH4+, PO43−, and NO3−
3.2.2. Concentration Rate of NH4+, PO43−, and NO3−
3.2.3. Effect of Current Density on Cell Voltage and Energy Consumption
3.2.4. Effect of Current Density on the pH in AWC and NAC
3.3. Effect of Organic Matter Concentration
3.4. Analysis of Concentration Performance
3.5. Kinetics and Migration Rate Analysis
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Li, B.; Boiarkina, I.; Young, B.; Yu, W. Substance flow analysis of phosphorus within New Zealand and comparison with other countries. Sci. Total Environ. 2015, 527–528, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Boiarkina, I.; Yu, W.; Huang, H.M.; Munir, T.; Wang, G.Q.; Young, B.R. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Cordell, D.; Rosemarin, A.; Schröder, J.J.; Smit, A.L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 2011, 84, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, N. Environment: The disappearing nutrient. Nature 2009, 461, 716–718. [Google Scholar] [CrossRef] [Green Version]
- Reijnders, L. Phosphorus resources, their depletion and conservation, a review. Resour. Conserv. Recycl. 2014, 93, 32–49. [Google Scholar] [CrossRef]
- Li, B.; Boiarkina, I.; Young, B.; Yu, W.; Singhal, N. Prediction of future phosphate rock: A demand based model. J. Environ. Inform. 2018, 1, 41–53. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Salleh, M.A.M.; Rashid, U.; Ahsan, A.; Hossain, M.M.; Ra, C.S. Production of slow release crystal fertilizer from wastewaters through struvite crystallization—A review. Arab. J. Chem. 2014, 7, 139–155. [Google Scholar] [CrossRef] [Green Version]
- Elser, J.J.; Elser, T.J.; Carpenter, S.R.; Brock, W.A. Regime shift in fertilizer commodities indicates more turbulence ahead for food security. PLoS ONE 2014, 9, e93998. [Google Scholar] [CrossRef] [Green Version]
- Cifuentes, G.; Germain, I.; Garrido, B.; Cifuentes-Cabezas, M.; Orrego, P.; Gentico, I.; Pino, E.; Calderón, C. Tetra-uranium fluoride electrowinning by electro-electrodialysis cell (EED). Sep. Purif. Technol. 2022, 281, 119833. [Google Scholar] [CrossRef]
- Huang, C.; Xu, T. Electrodialysis with bipolar membranes for sustainable development. Environ. Sci. Technol. 2006, 40, 5233–5243. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Jiang, C.; Lin, X.; Xu, T. Bipolar membrane electrodialysis in aqua–ethanol medium: Production of salicylic acid. J. Membr. Sci. 2015, 482, 76–82. [Google Scholar] [CrossRef]
- Li, Y.; Shi, S.; Cao, H.; Wu, X.; Zhao, Z.; Wang, L. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Water Res. 2016, 89, 201–209. [Google Scholar] [CrossRef] [PubMed]
- van Linden, N.; Bandinu, G.L.; Vermaas, D.A.; Spanjers, H.; van Lier, J.B. Bipolar membrane electrodialysis for energetically competitive ammonium removal and dissolved ammonia production. J. Clean. Prod. 2020, 259, 120788. [Google Scholar] [CrossRef]
- Li, X.; Shen, S.; Xu, Y.; Guo, T.; Dai, H.; Lu, X. Application of membrane separation processes in phosphorus recovery: A review. Sci. Total Environ. 2021, 767, 144346. [Google Scholar] [CrossRef]
- Tran, A.T.K.; Zhang, Y.; De Corte, D.; Hannes, J.-B.; Ye, W.; Mondal, P.; Jullok, N.; Meesschaert, B.; Pinoy, L.; Van der Bruggen, B. P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process. J. Clean. Prod. 2014, 77, 140–151. [Google Scholar] [CrossRef]
- Liu, Y.; Ke, X.; Zhu, H.; Chen, R.; Chen, X.; Zheng, X.; Jin, Y.; Van der Bruggen, B. Treatment of raffinate generated via copper ore hydrometallurgical processing using a bipolar membrane electrodialysis system. Chem. Eng. J. 2020, 382, 122956. [Google Scholar] [CrossRef]
- State Environmental Protection Administration of China. Monitoring and Analysis Methods of Water and Wastewater, 4th ed.; China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Liu, Y.; Zhu, H.; Zhang, M.; Chen, R.; Chen, X.; Zheng, X.; Jin, Y. Cr(VI) recovery from chromite ore processing residual using an enhanced electrokinetic process by bipolar membranes. J. Membr. Sci. 2018, 566, 190–196. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, W.; Liu, Y.; Jia, H.; Zhou, J.; Wei, P.; Zhou, H. Bioleaching of dewatered electroplating sludge for the extraction of base metals using an adapted microbial consortium: Process optimization and kinetics. Hydrometallurgy 2020, 191, 105227. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Cai, Z.; Chen, R.; Sun, Q.; Sun, M. Removal of copper and nickel from municipal sludge using an improved electrokinetic process. Chem. Eng. J. 2017, 307, 1008–1016. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, J.; Zhu, H.; Wu, X.; Dai, L.; Chen, R.; Van der Bruggen, B. Recovery of trivalent and hexavalent chromium from chromium slag using a bipolar membrane system combined with oxidation. J. Colloid Interface Sci. 2022, 619, 280–288. [Google Scholar] [CrossRef]
- Berkessa, Y.W.; Lang, Q.; Yan, B.; Kuang, S.; Mao, D.; Shu, L.; Zhang, Y. Anion exchange membrane organic fouling and mitigation in salt valorization process from high salinity textile wastewater by bipolar membrane electrodialysis. Desalination 2019, 465, 94–103. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, H.; Liu, Y.; Chen, R.; Qian, Q.; Van der Bruggen, B. Cr(III) recovery in form of Na2CrO4 from aqueous solution using improved bipolar membrane electrodialysis. J. Membr. Sci. 2020, 604, 118097. [Google Scholar] [CrossRef]
- Rotta, E.H.; Bitencourt, C.S.; Marder, L.; Bernardes, A.M. Phosphorus recovery from low phosphate-containing solution by electrodialysis. J. Membr. Sci. 2019, 573, 293–300. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.Q.; Wang, Q.; Xu, T.; Kentish, S.E. Transforming salty whey into cleaning chemicals using electrodialysis with bipolar membranes. Desalination 2020, 492, 114598. [Google Scholar] [CrossRef]
Type of Ions | Type of Dynamics | Coefficient of Kinetics k and R2 | Current Density (mA/cm2) | ||||
---|---|---|---|---|---|---|---|
0.5 | 1.0 | 2.0 | 3.0 | 4.0 | |||
NH4+ | Zero-order | k0 (mg/L/min) | 1.159 | 1.804 | 2.628 | 3.666 | 4.698 |
R2 | 0.913 | 0.944 | 0.966 | 0.994 | 0.969 | ||
First-order e | k1 (min−1) | 0.026 | 0.026 | 0.043 | 0.049 | 0.080 | |
R2 | 0.885 | 0.951 | 0.914 | 0.904 | 0.876 | ||
Second-order | k2 (L/mg/min) | 0.002 | 0.000 | 0.001 | 0.001 | 0.003 | |
R2 | 0.438 | 0.676 | 0.588 | 0.644 | 0.592 | ||
PO43− | Zero-order | k0 (mg/L/min) | 0.407 | 0.676 | 1.114 | 1.612 | 1.735 |
R2 | 0.918 | 0.980 | 0.989 | 0.994 | 0.989 | ||
First-order | k1 (min−1) | 0.007 | 0.014 | 0.023 | 0.032 | 0.030 | |
R2 | 0.773 | 0.881 | 0.963 | 0.968 | 0.973 | ||
Second-order | k2 (L/mg/min) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
R2 | 0.567 | 0.680 | 0.830 | 0.851 | 0.885 | ||
NO3− | Zero-order | k0 (mg/L/min) | 0.185 | 0.263 | 0.277 | 0.382 | 0.457 |
R2 | 0.958 | 0.980 | 0.970 | 0.951 | 0.939 | ||
First-order | k1 (min−1) | 0.028 | 0.027 | 0.063 | 0.078 | 0.066 | |
R2 | 0.952 | 0.965 | 0.759 | 0.875 | 0.977 | ||
Second-order | k2 (L/mg/min) | 0.007 | 0.003 | 0.107 | 0.057 | 0.016 | |
R2 | 0.681 | 0.844 | 0.364 | 0.514 | 0.760 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Cai, W.; Fu, Y.; Liu, Y.; Ye, X.; Qian, Q.; Van der Bruggen, B. Separation and Concentration of Nitrogen and Phosphorus in a Bipolar Membrane Electrodialysis System. Membranes 2022, 12, 1116. https://doi.org/10.3390/membranes12111116
Wu X, Cai W, Fu Y, Liu Y, Ye X, Qian Q, Van der Bruggen B. Separation and Concentration of Nitrogen and Phosphorus in a Bipolar Membrane Electrodialysis System. Membranes. 2022; 12(11):1116. https://doi.org/10.3390/membranes12111116
Chicago/Turabian StyleWu, Xiaoyun, Wanling Cai, Yuying Fu, Yaoxing Liu, Xin Ye, Qingrong Qian, and Bart Van der Bruggen. 2022. "Separation and Concentration of Nitrogen and Phosphorus in a Bipolar Membrane Electrodialysis System" Membranes 12, no. 11: 1116. https://doi.org/10.3390/membranes12111116
APA StyleWu, X., Cai, W., Fu, Y., Liu, Y., Ye, X., Qian, Q., & Van der Bruggen, B. (2022). Separation and Concentration of Nitrogen and Phosphorus in a Bipolar Membrane Electrodialysis System. Membranes, 12(11), 1116. https://doi.org/10.3390/membranes12111116