Studying Different Operating Conditions on Reverse Osmosis Performance in the Treatment of Wastewater Containing Nickel (II) Ions
Abstract
:1. Introduction
2. Methods
2.1. Studied Wastewater Samples
2.2. ROM Setup
2.3. Test Method
2.4. Test Calculations
3. Results and Discussion
3.1. Feed Temperature Effect
3.2. Operating Pressure Effect
3.3. Feed Concentration Effect
3.4. Feed Flow Rate Effect
3.5. Factor (TCF) of Temperature Correction
3.6. Mathematical Model
3.6.1. Mathematical Modeling of Collected Permeate Flux
3.6.2. Nickel Rejection Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gautam, P.K.; Gautam, R.K.; Banerjee, S.; Chattopadhyaya, M.C.; Pandey, J.D. Heavy metals in the environment: Fate, transport, toxicity and remediation technologies. Nova Sci. Publ. 2016, 60, 101–130. [Google Scholar]
- Xu, Z. Removal of Heavy Metal Ions from Aqueous Solution by Alkaline Filtration. Ph.D. Thesis, University of Ottawa, Ottawa, ON, Canada, January 2020. [Google Scholar]
- Vidu, R.; Matei, E.; Predescu, A.M.; Alhalaili, B.; Pantilimon, C.; Tarcea, C.; Predescu, C. Removal of heavy metals from wastewaters: A challenge from current treatment methods to nanotechnology applications. Toxics 2020, 8, 101. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Xie, L.; Tang, B.; Wang, Q.; Jiang, S. Application of a novel strategy—Advanced Fenton-chemical precipitation to the treatment of strong stability chelated heavy metal-containing wastewater. Chem. Eng. J. 2012, 189, 283–287. [Google Scholar] [CrossRef]
- Shih, Y.J.; Lin, C.P.; Huang, Y.H. Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater. Sep. Purif. Technol. 2013, 104, 100–105. [Google Scholar] [CrossRef]
- Yuan, X.Z.; Meng, Y.T.; Zeng, G.M.; Fang, Y.Y.; Shi, J.G. Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 256–261. [Google Scholar] [CrossRef]
- Beltrán Heredia, J.; Sánchez Martín, J. Removing heavy metals from polluted surface water with a tannin-based flocculant agent. J. Hazard. Mater. 2009, 165, 1215–1218. [Google Scholar] [CrossRef]
- Assaad, E.; Azzouz, A.; Nistor, D.; Ursu, A.V.; Sajin, T.; Miron, D.N.; Monette, F.; Niquette, P.; Hausler, R. Metal removal through synergic coagulation–flocculation using an optimized chitosan–montmorillonite system. Appl. Clay Sci. 2007, 37, 258–274. [Google Scholar] [CrossRef]
- Shaidan, N.H.; Eldemerdash, U.; Awad, S. Removal of Ni(II) ions from aqueous solutions using fixed-bed ion exchange column technique. J. Taiwan Inst. Chem. Eng. 2012, 1, 40–45. [Google Scholar] [CrossRef]
- Zewail, T.M.; Yousef, N.S. Kinetic study of heavy metal ions removal by ion exchange in batch conical air spouted bed. Alex. Eng. J. 2015, 54, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Konstantinos, D.; Achilleas, C.; Evgenia, V. Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. Int. J. Environ. Sci. 2011, 1, 697–710. [Google Scholar]
- Kabdaşli, I.; Arslan, T.; Ölmez-Hanci, T.; Arslan-Alaton, I.; Tünay, O. Complexing agent and heavy metal removals from metal plating effluent by electrocoagulation with stainless steel electrodes. J. Hazard. Mater. 2009, 165, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Abdel Salam, M. Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: Kinetic and thermodynamic studies. Int. J. Environ. Sci. Technol. 2013, 10, 677–688. [Google Scholar] [CrossRef]
- Jiang, M.q.; Jin, X.y.; Lu, X.Q.; Chen, Z.l. Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination 2010, 252, 33–39. [Google Scholar] [CrossRef]
- Çelebi, H.; Gök, G.; Gök, O. Adsorption capability of brewed tea waste in waters containing toxic lead(II), cadmium (II), nickel (II), and zinc(II) heavy metal ions. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Barakat, M.A.; Schmidt, E. Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 2010, 256, 90–93. [Google Scholar] [CrossRef]
- Molinari, R.; Poerio, T.; Argurio, P. Selective separation of copper(II) and nickel(II) from aqueous media using the complexation—ultrafiltration process. Chemosphere 2008, 70, 341–348. [Google Scholar] [CrossRef]
- Verma, B.; Balomajumder, C.; Sabapathy, M.; Gumfekar, S.P. Pressure-Driven Membrane Process: A Review of Advanced Technique for Heavy Metals Remediation. Processes 2021, 9, 752. [Google Scholar] [CrossRef]
- Murthy, Z.V.P.; Chaudhari, L.B. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 2008, 160, 70–77. [Google Scholar] [CrossRef]
- Basaran, G.; Kavak, D.; Dizge, N.; Asci, Y.; Solener, M.; Ozbey, B. Comparative study of the removal of nickel(II) and chromium(VI) heavy metals from metal plating wastewater by two nanofiltration membranes. Desalination Water Treat. 2016, 57, 21870–21880. [Google Scholar] [CrossRef]
- Algureiri, A.; Abdulmajeed, Y. Removal of Ni(II), Pb(II), and Cu(II) from Industrial Wastewater by Using NF Membrane. Iraqi J. Chem. Pet. Eng. 2017, 18, 87–98. Available online: https://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/195 (accessed on 5 January 2022).
- Chaudhari, L.B.; Murthy, Z.V.P. Separation of Cd and Ni from multi-component aqueous solutions by nanofiltration and characterization of membrane using IT model. J. Hazard. Mater. 2010, 180, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Ipek, U. Removal of Ni(II) and Zn(II) from an aqueous solution by reverse osmosis. Desalination 2005, 174, 161–169. [Google Scholar] [CrossRef]
- Rodrigues Pires da Silva, J.; Merçon, F.; Guimarães Costa, C.M.; Radoman Benjo, D. Application of reverse osmosis process associated with EDTA complexation for nickel and copper removal from wastewater. Desalination Water Treat. 2016, 57, 19466–19474. [Google Scholar] [CrossRef]
- Ozaki, H.; Sharma, K.; Saktaywin, W. Performance of an ultra-low pressure reverse osmosis membrane (ULPROM) for separating heavy metal: Effects of interference parameters. Desalination 2002, 144, 287–294. [Google Scholar] [CrossRef]
- Aljendeel, H.A. Removal of Heavy Metals Using Reverse Osmosis. J. Eng. 2011, 17, 647–658. [Google Scholar]
- Algureiri, A.H.; Abdulmajeed, Y.R. Removal of Heavy Metals from Industrial Wastewater by Using RO Membrane. Iraqi J. Chem. Pet. Eng. 2016, 17, 125–136. [Google Scholar]
- Myzairah, B.H. Low Pressure Reverse Osmosis Membrane for Rejection of Heavy Metals. Ph.D. Thesis, Universiti Teknologi Malaysia, Johor Bahru, Malaysia, 2007. [Google Scholar]
- Algieri, C.; Chakraborty, S.; Candamano, S. A Way to Membrane-Based Environmental Remediation for Heavy Metal Removal. Environments 2021, 8, 52. [Google Scholar] [CrossRef]
- Al-Obaidi, M.A.; Ruiz-García, A.; Hassan, G.; Li, J.P.; Kara-Zaïtri, C.; Nuez, I.; Mujtaba, I.M. Model Based Simulation and Genetic Algorithm Based Optimisation of Spiral Wound Membrane RO Process for Improved Dimethylphenol Rejection from Wastewater. Membranes 2021, 11, 595. [Google Scholar] [CrossRef]
- Ruiz-García, A.; Nuez, I.; Carrascosa-Chisvert, M.D.; Santana, J.J. Simulations of BWRO systems under different feedwater characteristics. Analysis of operation windows and optimal operating points. Desalination 2020, 491, 114582. [Google Scholar] [CrossRef]
- Yang, X.J.; Fane, A.G.; Soldenhoff, K. Comparison of Liquid Membrane Processes for Metal Separations: Permeability, Stability, and Selectivity. Ind. Eng. Chem. Res. 2003, 42, 392–403. [Google Scholar] [CrossRef]
- Patil, A.; Hatch, G. Factors that Influence the Performance of RO Systems. Available online: https://www.lenntech.com/performance-influence-factors.htm (accessed on 10 March 2022).
- Al-Mutaz, I.S.; Al-Ghunaimi, M.A. Performance of Reverse Osmosis Units at High Temperatures. In Proceedings of the Ida World Congress on Desalination and Water Reuse, Manama, Bahrain, 26–31 October 2001; Available online: https://www.researchgate.net/publication/264420571 (accessed on 23 January 2022).
- Harharah, R.H.; Abdalla, G.M.T.; Elkhaleefa, A.; Shigidi, I.; Harharah, H.N. A Study of Copper (II) Ions Removal by Reverse Osmosis under Various Operating Conditions. Separations 2022, 9, 155. [Google Scholar] [CrossRef]
- Goosen, M.F.A.; Sablani, S.S.; Al-Maskari, S.S.; Al-Belushi, R.H.; Wilf, M. Effect of feed temperature on permeate flux and mass transfer coefficient in spiral-wound reverse osmosis systems. Desalination 2002, 144, 367–372. [Google Scholar] [CrossRef]
- Shigidi, I.; Anqi, A.E.; Elkhaleefa, A.; Mohamed, A.; Ali, I.H.; Brima, E.I. Temperature impact on reverse osmosis permeate flux in the remediation of hexavalent chromium. Water 2022, 14, 44. [Google Scholar] [CrossRef]
- Kocurek, P.; Kolomazník, K.; Bařinová, M. Chromium removal from wastewater by reverse osmosis. WSEAS Trans. Environ. Dev. 2014, 10, 358–365. [Google Scholar]
- Mousavi Rad, S.A.; Mirbagheri, S.A.; Mohammadi, T. Using reverse osmosis membrane for chromium removal from aqueous solution. World Acad. Sci. Eng. Technol. 2009, 57, 348–352. [Google Scholar] [CrossRef]
- Çimen, A.; Kılıçel, F.; Arslan, G. Removal of chromium ions from wastewaters using reverse osmosis AG and SWHR membranes. Russ. J. Phys. Chem. A 2014, 88, 845–850. [Google Scholar] [CrossRef]
Membrane Type | Initial Conc. (ppm) | Operating Pres. (bar) | pH | Rejection Efficiency % | References |
---|---|---|---|---|---|
UF | 1000 | 1 | 3–9 | 99.1 | [16] |
UF | 50 | 2 | 3–9 | 94–98 | [17] |
NF | 5–250 | 4–20 | 2–8 | 92–98 | [19] |
NF | 60–130 | 10–30 | 3.5–10 | 99.2 | [20] |
NF | 50–200 | 1–4 | 2–5.5 | 85 | [21] |
NF | 5–250 | 5–20 | 1–9 | 98.90 | [22] |
RO | 44–169 | 11 | 5.5–7 | 99.7 | [23] |
RO | 200–600 | 4–12.5 | 5–5.5 | 99.0 | [24] |
RO | 5–500 | 1–5 | 3–9 | 95 | [25] |
RO | 50–150 | 4–10 | - | 95.7 | [26] |
RO | 50–200 | 1–4 | 2–5.5 | 98.5 | [27] |
Flow Rate (L/min) | Pressure (bar) | TCF | |
---|---|---|---|
35 °C | 45 °C | ||
2.0 | 10 | 1.27 | 1.54 |
20 | 1.18 | 1.30 | |
30 | 1.13 | 1.26 | |
40 | 1.08 | 1.18 | |
3.2 | 10 | 1.28 | 1.52 |
20 | 1.16 | 1.29 | |
30 | 1.12 | 1.24 | |
40 | 1.09 | 1.19 | |
4.4 | 10 | 1.30 | 1.52 |
20 | 1.16 | 1.28 | |
30 | 1.13 | 1.25 | |
40 | 1.10 | 1.19 |
Permeate Flux vs. | Relationship Function | Justification |
---|---|---|
Temperature | Figure 2a shows linear behavior. | |
Pressure | Figure 3a demonstrates linear behavior, but it was not maintained at elevated pressures. Such behavior was balanced by incorporating the term aP2. | |
Concentration | Figure 4a shows nonlinearity, particularly at lower concentrations. Fitting between the concentration and permeate can be achieved by using a parabolic curve. | |
Flow | Figure 5a demonstrates slight differentiation along the permeate flux that can be modeled linearly. |
Constant | Optimal Value |
---|---|
a0 | −36.1488 |
a1 | 1.2078 |
a2 | 6.1149 |
a3 | −0.0681 |
a4 | −0.1867 |
a5 | 0.0007 |
a6 | 1.4248 |
Permeate Flux vs. | Relationship Function | Justification |
---|---|---|
Temperature | Figure 2b demonstrates nonlinear behavior with a similarity to parabolic curves. | |
Pressure | Figure 3b shows maxima and minima. The use of a quadratic equation would be insufficient for the model due to the singularity values of the minima/maxima; thus, it required a higher-order (cubic) function. | |
Concentration | Figure 4b, a plot of Cp vs. concentration, yields a curve with more than one minimum; hence, a cubic fitting equation was adopted. | |
Flow | Figure 5b demonstrates a nonlinear pattern with the flow, with one maximum value; hence, a quadratic model was used. |
Constant | Optimal Value |
---|---|
b0 | 16.7254 |
b1 | −0.1830 |
b2 | 0.0022 |
b3 | −1.6601 |
b4 | 0.0732 |
b5 | −0.0010 |
b6 | 0.1424 |
b7 | −0.0006 |
b8 | 1.1594 × 10−6 |
b9 | −0.6872 |
b10 | 0.0274 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shigidi, I.; Harharah, R.H.; Abdalla, G.M.T.; Elkhaleefa, A.; Alsaiari, N.S.; Harharah, H.N.; Amari, A.; Hassan, M.G. Studying Different Operating Conditions on Reverse Osmosis Performance in the Treatment of Wastewater Containing Nickel (II) Ions. Membranes 2022, 12, 1163. https://doi.org/10.3390/membranes12111163
Shigidi I, Harharah RH, Abdalla GMT, Elkhaleefa A, Alsaiari NS, Harharah HN, Amari A, Hassan MG. Studying Different Operating Conditions on Reverse Osmosis Performance in the Treatment of Wastewater Containing Nickel (II) Ions. Membranes. 2022; 12(11):1163. https://doi.org/10.3390/membranes12111163
Chicago/Turabian StyleShigidi, Ihab, Ramzi H. Harharah, Ghassan M. T. Abdalla, Abubakar Elkhaleefa, Norah S. Alsaiari, Hamed N. Harharah, Abdelfattah Amari, and Mohamed G. Hassan. 2022. "Studying Different Operating Conditions on Reverse Osmosis Performance in the Treatment of Wastewater Containing Nickel (II) Ions" Membranes 12, no. 11: 1163. https://doi.org/10.3390/membranes12111163
APA StyleShigidi, I., Harharah, R. H., Abdalla, G. M. T., Elkhaleefa, A., Alsaiari, N. S., Harharah, H. N., Amari, A., & Hassan, M. G. (2022). Studying Different Operating Conditions on Reverse Osmosis Performance in the Treatment of Wastewater Containing Nickel (II) Ions. Membranes, 12(11), 1163. https://doi.org/10.3390/membranes12111163