Dehydrogenation Coupling of Methane Using Catalyst-Loaded Proton-Conducting Perovskite Hollow Fiber Membranes
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of the Perovskite Powders and Hollow Fiber Membranes
2.2. Catalyst Modification of the Hollow Fiber Membranes
2.3. Hydrogen Permeation and DCM Reaction in the Hollow Fiber Membranes
2.4. Characterization
3. Results and Discussion
3.1. Crystalline Phase Structure of the Powders and the Membrane
3.2. Morphology of the Hollow Fiber Membranes
3.3. Hydrogen Permeation in the Uncoated BCTCo Hollow Fiber Membrane
3.4. DCM Reaction in the Catalyst Loaded BCTCo Hollow Fiber Membranes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jašo, S.; Godini, H.R.; Arellano-Garcia, H.; Omidkhah, M.; Wozny, G. Analysis of attainable reactor performance for the oxidative methane coupling process. Chem. Eng. Sci. 2010, 65, 6341–6352. [Google Scholar] [CrossRef]
- Tan, X.; Li, K. Inorganic Membrane Reactors: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Chiang, P.-H.; Eng, D.; Stoukides, M. Electrocatalytic nonoxidative dimerization of methane over Ag electrodes. Solid State Ion. 1993, 61, 99–103. [Google Scholar] [CrossRef]
- Chiang, P.-H.; Eng, D.; Tsiakaras, P.; Stoukides, M. Ion transport and polarization studies in a proton conducting solid electrolyte cell. Solid State Ion. 1995, 77, 305–310. [Google Scholar] [CrossRef]
- Hamakawa, S.; Hibino, T.; Iwahara, H. Electrochemical methane coupling using protonic conductors. J. Electrochem. Soc. 1993, 140, 459–462. [Google Scholar] [CrossRef]
- Liu, Y.T.; Tan, X.Y.; Li, K. Nonoxidative methane coupling in a SrCe0.95Yb0.05O3-α (SCYb) hollow fiber membrane reactor. Ind. Eng. Chem. Res. 2006, 45, 3782–3790. [Google Scholar] [CrossRef]
- Akin, F.T.; Lin, Y.S. Oxidative coupling of methane in dense ceramic membrane reactor with high yields. AIChE J. 2002, 48, 2298–2306. [Google Scholar] [CrossRef]
- Wang, W.; Lin, Y.S. Analysis of oxidative coupling of methane in dense oxide membrane reactors. J. Membr. Sci. 1995, 103, 219–233. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Li, K. Preparation of La0.6Sr0.4Co0.2Fe0.8O3-δ hollow fiber membranes for oxygen production by a phase-inversion/sintering technique. Ind. Eng. Chem. Res. 2005, 44, 61–66. [Google Scholar] [CrossRef]
- Tan, X.; Liu, Y.; Li, K. Mixed conducting ceramic hollow fiber membranes for air separation. AIChE J 2005, 51, 1991–2000. [Google Scholar] [CrossRef]
- Li, K.; Tan, X.; Liu, Y. Single-step fabrication of ceramic hollow fibers for oxygen permeation. J. Membr. Sci. 2006, 272, 1–5. [Google Scholar] [CrossRef]
- Liu, H.; Tan, X.; Pang, Z.; Diniz da Costa, J.C.; Lu, G.Q.; Liu, S. Novel dual structured mixed conducting ceramic hollow fibre membranes. Sep. Purif. Technol. 2008, 63, 243–247. [Google Scholar] [CrossRef]
- Molenda, J.; Ojczyk, W.; Marzec, J. Electrical conductivity and reaction with lithium of LiFe1−yMnyPO4 olivine-type cathode materials. J. Power Sources 2007, 174, 689–694. [Google Scholar] [CrossRef]
- Zeng, Y.; Lin, Y.S. Oxidative coupling of methane on improved bismuth oxide membrane reactors. AIChE J. 2001, 47, 436–444. [Google Scholar] [CrossRef]
- Zeng, Y. Oxygen permeation and oxidative coupling of methane in yttria doped bismuth oxide membrane reactor. J. Catal. 2000, 193, 58–64. [Google Scholar] [CrossRef]
- Borry, R.W.; Lu, E.C.; Kim, Y.-H.; Iglesia, E. Non-oxidative catalytic conversion of methane with continuous hydrogen removal. Stud. Surf. Sci. Catal. 1998, 119, 403–410. [Google Scholar]
- Rakass, S.; Oudghiri-Hassani, H.; Rowntree, P.; Abatzoglou, N. Steam reforming of methane over unsupported nickel catalysts. J. Power Sources 2006, 158, 485–496. [Google Scholar] [CrossRef]
- Hibino, T.; Sato, T.; Ushiki, K.; Kuwahara, Y. Membrane reactor for oxidative coupling of CH4 with anoxide ion-electron hole mixed conductor. J. Chem. Soc. Faraday Trans. 1995, 91, 4419–4422. [Google Scholar] [CrossRef]
- Othman, N.H.; Wu, Z.; Li, K. Micro-structured Bi1.5Y0.3Sm0.2O3−δ catalysts for oxidative coupling of methane. AIChE J. 2015, 61, 3451–3458. [Google Scholar] [CrossRef]
- Song, J.; Li, L.; Tan, X.; Li, K. BaCe0.85Tb0.05Co0.1O3−δ perovskite hollow fibre membranes for hydrogen/oxygen permeation. Int. J. Hydrog. Energy 2013, 38, 7904–7912. [Google Scholar] [CrossRef]
- Liu, S.; Tan, X.; Li, K.; Hughes, R. Preparation and characterisation of SrCe0.95Yb0.05O2.975 hollow fibre membranes. J. Membr. Sci. 2001, 193, 249–260. [Google Scholar] [CrossRef]
- Liu, S.; Tan, X.; Li, K.; Hughes, R. Synthesis of strontium cerates-based perovskite ceramics via water-soluble complex precursor routes. Ceram. Int. 2002, 28, 327–335. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Dixon, A.G.; Ma, Y.H.; Moser, W.R.; Pascucci, M.R. Dense perovskite, La1−xAxFe1−yCoyO3−δ (A = Ba, Sr, Ca), membrane synthesis, applications, and characterization. J. Am. Ceram. Soc. 1998, 81, 1437–1444. [Google Scholar] [CrossRef]
- Andersen, A.; Dahl, I.M.; Jens, K.-J.; Rytter, E.; Slagtern, Å.; Solbakken, Å. Hydrogen acceptor and membrane concepts for direct methane conversion. Catal. Today 1989, 4, 389–397. [Google Scholar] [CrossRef]
- Chiang, P.H.; Eng, D.; Stoukides, M. Electrocatalytic methane dimerization with a Yb-doped SrCeO3 solid electrolyte. J. Electrochem. Soc. 1991, 138, L11–L12. [Google Scholar] [CrossRef]
- Chiang, P.-H.; Eng, D.; Stoukides, M. Electrocatalytic conversion of methane to C2 hydrocarbons in O2− and H+ solid electrolytic cells: Electrokinetics and mass transport limitations. Solid State Ion. 1994, 67, 179–182. [Google Scholar] [CrossRef]
- Hamakawa, S.; Hibino, T.; Iwahara, H. Electrochemical hydrogen permeation in a proton-hole mixed conductor and its application to a membrane reactor. J. Electrochem. Soc. 1994, 141, 1720–1725. [Google Scholar] [CrossRef]
- White, J.H.; Schwartz, M.; Sammells, A.F. Solid State Proton and Electron Mediating Membrane and Use in Catalytic Membrane Reactors; Eltron Research, Inc.: Boulder, CO, USA, 1998. [Google Scholar]
- Chiang, P.; Eng, D.; Stoukides, M. Solid electrolyte aided direct coupling of methane. J. Catal. 1993, 139, 683–687. [Google Scholar] [CrossRef]
- Langguth, J.; Dittmeyer, R.; Hofmann, H.; Tomandl, G. Studies on oxidative coupling of methane using high-temperature proton-conducting membranes. Appl. Catal. A Gen. 1997, 158, 287–305. [Google Scholar] [CrossRef]
- Iwahara, H.; Uchida, H.; Morimoto, K.; Hosogi, S. High-temperature C1-gas fuel cells using proton-conducting solid electrolytes. J. Appl. Electrochem. 1989, 19, 448–452. [Google Scholar] [CrossRef]
- Zeng, Y.; Akin, F.T.; Lin, Y.S. Oxidative coupling of methane on fluorite-structured samarium–yttrium–bismuth oxide. Appl. Catal. A Gen. 2001, 213, 33–45. [Google Scholar] [CrossRef]
- Long, R.Q.; Wan, H.L. Oxidative coupling of methane over SrF2-Y2O3 catalyst. Appl. Catal. A Gen. 1997, 159, 45–58. [Google Scholar] [CrossRef]
- Akin, F.T.; Lin, Y.S.; Zeng, Y. Comparative study on oxygen permeation and oxidative coupling of methane on disk-shaped and tubular dense ceramic membrane reactors. Ind. Eng. Chem. Res. 2001, 40, 5908–5916. [Google Scholar] [CrossRef]
- Oklany, J.S.; Hou, K.; Hughes, R. A simulative comparison of dense and microporous membrane reactors for the steam reforming of methane. Appl. Catal. A Gen. 1998, 170, 13–22. [Google Scholar] [CrossRef]
- Hou, K.; Hughes, R. The kinetics of methane steam reforming over a Ni/α-Al2O catalyst. Chem. Eng. J. 2001, 82, 311–328. [Google Scholar] [CrossRef]
- Pietruszka, B.; Heintze, M. Methane conversion at low temperature: The combined application of catalysis and non-equilibrium plasma. Catal. Today 2004, 90, 151–158. [Google Scholar] [CrossRef]
- Aiello, R.; Fiscus, J.E.; zur Loye, H.-C.; Amiridis, M.D. Hydrogen production via the direct cracking of methane over Ni/SiO2: Catalyst deactivation and regeneration. Appl. Catal. A Gen. 2000, 192, 227–234. [Google Scholar] [CrossRef]
- Villacampa, J.I.; Royo, C.; Romeo, E.; Montoya, J.A.; Del Angel, P.; Monzon, A. Catalytic decomposition of methane over Ni-Al2O3 coprecipitated catalysts: Reaction and regeneration studies. Appl. Catal. A Gen. 2003, 252, 363–383. [Google Scholar] [CrossRef]
- Ma, H.; Kojima, R.; Kikuchi, S.; Ichikawa, M. Effective coke removal in methane to benzene (MTB) reaction on Mo/HZSM-5 catalyst by H2 and H2O co-addition to methane. Catal. Lett. 2005, 104, 63–66. [Google Scholar] [CrossRef]
- Pinilla, J.; Suelves, I.; Utrilla, R.; Gálvez, M.; Lázaro, M.; Moliner, R. Hydrogen production by thermo-catalytic decomposition of methane: Regeneration of active carbons using CO2. J. Power Sources 2007, 169, 103–109. [Google Scholar] [CrossRef]
Membrane (Material, Type and Thickness) | Catalyst | Reaction Temperature (°C) | Max. C2 Yield (%) | Study TYPE a | Notes | Ref. |
---|---|---|---|---|---|---|
SCYb, disk, 1 mm | Ag | 900 | 0.15 | I | Smax: 100% | [3,5] |
SCYb, disk, 1 mm | Ag | 900 | 0.54 | I and III | Smax: 100% | [5] |
SCYb, hollow fiber | 950 | 13.4 | III | Smax: 21% | [6] | |
SCYb, disk, 0.75 mm | Ag | 750 | 0.17 | I | C2 yield could increase as much as 8 times compared to the open-circuit mode | [25,29] |
SCYb, disk, 1 mm | Ag | 900 | 0.06 | III | Smax: 100%; Ymax: 1.33 µmol·min−1·cm−2 | [27] |
BCM, cylindrical, 1 mm | N/A | 950 | - | III | Smax: 100%; Ymax: 8.9 µmol·min−1·cm−2 | [28] |
SCYb, disk, 1.5mm | Ag | 750 | 0.55 | I | Smax: 64% | [30] |
SCYb, disk, 0.5 mm | Pt | 1000 | - | II | Trace of C2 product observed with electric current range from 20 to 240 mA | [31] |
BCTCo, hollow fiber, 224 µm | SCYb | 1000 | 2.61 | III | Smax: 81.13%; Ymax: 19.66 µmol·min−1·cm−2 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Hei, Y.; Li, C.; Yang, N.; Meng, B.; Tan, X.; Sunarso, J.; Liu, S. Dehydrogenation Coupling of Methane Using Catalyst-Loaded Proton-Conducting Perovskite Hollow Fiber Membranes. Membranes 2022, 12, 191. https://doi.org/10.3390/membranes12020191
Song J, Hei Y, Li C, Yang N, Meng B, Tan X, Sunarso J, Liu S. Dehydrogenation Coupling of Methane Using Catalyst-Loaded Proton-Conducting Perovskite Hollow Fiber Membranes. Membranes. 2022; 12(2):191. https://doi.org/10.3390/membranes12020191
Chicago/Turabian StyleSong, Jian, Yuepeng Hei, Claudia Li, Naitao Yang, Bo Meng, Xiaoyao Tan, Jaka Sunarso, and Shaomin Liu. 2022. "Dehydrogenation Coupling of Methane Using Catalyst-Loaded Proton-Conducting Perovskite Hollow Fiber Membranes" Membranes 12, no. 2: 191. https://doi.org/10.3390/membranes12020191
APA StyleSong, J., Hei, Y., Li, C., Yang, N., Meng, B., Tan, X., Sunarso, J., & Liu, S. (2022). Dehydrogenation Coupling of Methane Using Catalyst-Loaded Proton-Conducting Perovskite Hollow Fiber Membranes. Membranes, 12(2), 191. https://doi.org/10.3390/membranes12020191