Recent Advances in Mixed-Matrix Membranes for Light Hydrocarbon (C1–C3) Separation
Abstract
:1. Introduction
Light Hydrocarbon | Normal Boiling Point (°C) | Normal Melting Point (°C) | Critical Pressure (MPa) | Critical Temperature (°C) | Kinetic Diameter (Å) 1 | Van der Waals Diameter (Å) 1 | Polarizability × 1025 (cm3) | Dipole Moment × 1018 (esu cm) | Quadrupole Moment × 1026 (esu cm2) |
---|---|---|---|---|---|---|---|---|---|
Methane (CH4) | −162 | −183 | 4.6 | −83 | 3.80 | 3.25 | 25.9 | 0 | 0 |
Acetylene (C2H2) | −84 | −81 | 6.2 | −35 | 3.30 | - | 33.3 | 0 | - |
Ethylene (C2H4) | −103 | −169 | 5.1 | 9 | 4.16 | 3.59 | 42.5 | 0 | 1.5 |
Ethane (C2H6) | −89 | −184 | 4.9 | 32 | 4.44 | 3.72 | 44.3 | 0 | 0.7 |
Propylene (C3H6) | −48 | −185 | 4.6 | 91 | 4.68 1 | 4.03 | 62.6 | 0.4 | - |
Propane (C3H8) | −42 | −188 | 4.3 | 97 | 4.30 1 | 4.16 | 62.9 | 0.1 | - |
2. C2 Hydrocarbon Separation
Membrane | Measurement Condition | Gas Permeability (Barrer) | Gas Selectivity | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Polymer/Support | Filler | Loading (wt%) | Pres. (bar) | Temp. (°C) | C2H2 | C2H4 | C2H6 | CH4 | C2H2/C2H4 | C2H4/C2H6 | |
6FDA-DAM | Ni-gallate | 20 | - | - | - | 91 | 25 | - | - | 4.13 | [56] |
6FDA- TMPDA | Co2(dobdc) | 33 | 2 | 35 | - | 276 | 71 | - | - | 3.89 | [42] |
6FDA- TMPDA | Ni2(dobdc) | 25 | 0.75 | 35 | - | 426 | 101 | - | - | 4.22 | [42] |
6FDA- TMPDA | Mg2(dobdc) | 23 | 2 | 35 | - | 1140 | 431 | - | - | 2.65 | [42] |
6FDA- TMPDA | Mn2(dobdc) | 13 | 2 | 35 | - | 433 | 188 | - | - | 2.30 | [42] |
6FDA- TMPDA | HKUST-1 | 20 | 1 | 35 | - | 183 | 76 | - | - | 2.41 | [44] |
α-alumina | Zeolite MFI | - | 9 | 25 | - | - | 37 [1] | 6 [1] | - | - | [57] |
Cellulose Acetate | Silica | 30 | - | - | - | 0.11 | 0.026 | - | - | 4.23 | [38] |
DBzPBI-BuI | ZIF-8 | 30 | 2.7 | 35 | - | 112 | 41 | - | - | 2.73 | [58] |
Matrimid | Silica | 20 | 3 | 30 | - | 0.42 | 0.07 | - | - | 6 | [39] |
Nylon | Boron Nitride [2] | - | 2 | - | - | 160 [1] | 1.9 [1] | - | - | 84.2 | [29] |
ODPA- TMPDA | HKUST-1 | 20 | 1 | 35 | - | 16 | 4.7 | - | - | 3.40 | [44] |
P1–1 [3] | SIFSIX-2-Cu-i | 30 | 1.5 | - | 45 | 2.1 | - | - | 21.4 | - | [45] |
P1–1 [3] | ZRFSIX-2-Ni-i | 30 | 1.5 | - | 15 | 1.3 | - | - | 11.5 | - | [45] |
P84 | HKUST-1 | 20 | 5 | - | - | 0.052 | 0.0075 | - | - | 6.93 | [59] |
P84 | Fe-BTC | 20 | 5 | - | - | 0.03 | 0.0052 | - | - | 5.77 | [40] |
P84 | MIL-53 | 20 | 5 | - | - | 0.096 | 0.027 | - | - | 3.56 | [40] |
Polystyrene | Fullerene | 1 | - | 35 | - | 0.58 | 0.34 | - | - | 1.71 | [60] |
Polyurethane | Zeolite 4A | 10 | 2 | 30 | - | - | 66.6 | 53 | - | - | [51] |
Polyurethane | ZSM-5 | 20 | 2 | 30 | - | - | 71.3 | 32.3 | - | - | [51] |
PPEES | ZIF-8 | 30 | 1 | - | - | 3.2 | 1.0 | - | - | 3.2 | [61] |
PVDF | Ag-Al/NMA | - | 0.1 | 25 | - | 450 | 30 | - | - | 15 | [62] |
3. C3 Hydrocarbon Separation
Membrane | Measurement Condition | Gas Permeability (barrer) | Gas Selectivity | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|
Polymer/ Support | Filler | Loading (wt%) | Pres. (bar) | Temp. (°C) | C3H6 | C3H8 | CH4 | C3H6/C3H8 | |
6FDA- Durene | ZIF-8 | 30 | 2 | 35 | 49 | 2.8 | - | 17.5 | [71] |
6FDA- TMPDA | UiO-66 | 20 | 2 | 35 | 87.4 | 8.9 | - | 9.82 | [82] |
6FDA- TMPDA | UIO-TF36 | 20 | 2 | 35 | 236.5 | 24.5 | - | 9.65 | [82] |
6FDA- TMPDA | ZIF-67 | 20 | 2 | 35 | 47.8 | 3.7 | - | 14.06 | [77] |
6FDA- TMPDA | ZIF-67 | 20 | - | 35 | 34.1 | 1.1 | - | 31.00 | [75] |
6FDA- TMPPDA | ZIF-67/GO (ZGO67) | 20 | 2 | 35 | 43.1 | 3.1 | - | 13.90 | [77] |
6FDA- TMPDA | ZIF-8 | 20 | - | 35 | 27.7 | 1.8 | - | 15.39 | [75] |
6FDA- TMPDA | ZIF-8 | 48 | 2 | 35 | 52 | 2.4 | - | 21.67 | [69] |
6FDA- TMPDA | ZIF-8 | 48 | 2 | 35 | 56.2 | 1.8 | - | 31.22 | [66] |
6FDA- TMPDA | ZIF-8 | 30 | 2 | 35 | 15 | 1 | 21 | 15.00 | [68] |
6FDA- TMPDA | ZIF-8 | 30 | 2 | 35 | 10 [1] | 1.5 [1] | - | 6.67 | [68] |
6FDA- TMPDA | ZIF-8 | 30 | 2 | 35 | 35 | 1.7 | - | 20.59 | [71] |
6FDA- TMPDA | ZIF-8–67 | 21.9 | 2 | 35 | 65 | 3.9 | - | 16.67 | [76] |
6FDA- TMPDA | ZPGO67 | 20 | 2 | 35 | 55.4 | 3.9 | - | 14.21 | [77] |
6FDA- TMPDA | Zr-fum-fcu-MOF | 15 | 1 | 35 | 40.4 | 2.8 | - | 14.43 | [81] |
6FDA- TMPDA (with PDMS) | ZIF-8 | 30 | 2 | 35 | 6 [1] | 0.4 [1] | - | 15.00 | [68] |
α-alumina | Zeolite MFI | - | 9 | 25 | - | 300 | 6 [2] | - | [57] |
Cellulose Acetate | silica | 30 | - | - | 0.092 | 0.018 | - | 5.11 | [38] |
Comb copolymers | AgBF4/MgO nanosheet (3:7) | - | - | - | 11.8 [1] | 0.9 [1] | - | 13.11 | [84] |
DBzPBI-BuI | ZIF-8 | 30 | 2.7 | 35 | 11 | 0.4 | - | 27.50 | [58] |
Ethyl Cellulose | Fullerene | 10 | 1 | - | 10 | 3 | - | 3.33 | [85] |
Matrimid | Silica | 20 | 3 | 30 | 0.16 | 0.008 | - | 20.00 | [39] |
PEBAX® 1657 | ZIF-8 | 30 | 2 | 35 | 195 | 78 | - | 2.50 | [71] |
PEBAX® 2533 | ZIF-8 | 20 | 2 | 35 | 420 | 220 | - | 1.91 | [71] |
PDMS | ACN-N | 10 | 4 | 35 | - | 11,000 | 1000 | - | [86] |
PDMS | ACN-O | 10 | 4 | 35 | - | 13,000 | 1050 | - | [86] |
PDMS | SiO2 | 10 | 5 | 35 | 9800 | - | - | - | [87] |
PDMS | ZIF-8 | 20 | 2 | - | - | 160 [1] | - | - | [70] |
PIM- 6FDA-OH | ZIF-8 | 65 | 2 | 35 | 35 | 1.1 | - | 31.81 | [69] |
Polyurethane | Zeolite 4A | 10 | 2 | 30 | - | 78 | 53 | - | [51] |
Polyurethane | ZSM-5 | 20 | 2 | 30 | - | 71.3 | 32.3 | - | [51] |
PVAc | ZIF-8 | 40 | 2 | 35 | 24 | 2 | - | 12 | [71] |
XLPEO | ZIF-8 | 42 | 2 | 35 | 28 | 1.9 | - | 14.73 | [71] |
XLPEO | ZIF-8-IT | 20 | - | 35 | 11.6 | 1.8 | - | 6.44 | [88] |
XLPEO | ZIF-8-NC | 20 | - | 35 | 13.8 | 1.9 | - | 7.26 | [88] |
XLPEO | ZIF-8-NR | 20 | - | 35 | 16.6 | 1.8 | - | 9.22 | [88] |
XLPEO | ZIF-8-OP | 20 | - | 35 | 12.5 | 2.2 | - | 5.68 | [88] |
XLPEO | ZIF-8-RD | 20 | - | 35 | 10.2 | 1.9 | - | 5.37 | [88] |
4. Comparison of Membrane Performance against the Upper Bound
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sholl, D.S.; Lively, R.P. Seven chemical separations to change the world. Nature 2016, 532, 435. [Google Scholar] [CrossRef]
- Ren, Y.; Liang, X.; Dou, H.; Ye, C.; Guo, Z.; Wang, J.; Pan, Y.; Wu, H.; Guiver, M.D.; Jiang, Z. Membrane-Based Olefin/Paraffin Separations. Adv. Sci. 2020, 7, 2001398. [Google Scholar] [CrossRef] [PubMed]
- Garside, M. Global Production Capacity of Propylene 2018–2030. Available online: https://www.statista.com/statistics/1065879/global-propylene-production-capacity/ (accessed on 3 July 2021).
- Garside, M. Global Production Capacity of Ethylene 2014–2024. Available online: https://www.statista.com/statistics/1067372/global-ethylene-production-capacity/#:~:text=The%20production%20capacity%20of%20ubiquitous,to%20283%20million%20metric%20tons (accessed on 3 July 2021).
- Chen, X.Y.; Xiao, A.; Rodrigue, D. Polymer-based Membranes for Propylene/Propane Separation. Sep. Purif. Rev. 2021, 51, 1–13. [Google Scholar] [CrossRef]
- Lee, J.; Chuah, C.Y.; Kim, J.; Kim, Y.; Ko, N.; Seo, Y.; Kim, K.; Bae, T.H.; Lee, E. Separation of acetylene from carbon dioxide and ethylene by a water-stable microporous metal–organic framework with aligned imidazolium groups inside the channels. Angew. Chem. Int. Ed. 2018, 130, 7995–7999. [Google Scholar] [CrossRef]
- Nitzsche, R.; Budzinski, M.; Gröngröft, A. Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel. Bioresour. Technol. 2016, 200, 928–939. [Google Scholar] [CrossRef]
- Wen, H.-M.; Li, B.; Wang, H.; Krishna, R.; Chen, B. High acetylene/ethylene separation in a microporous zinc (II) metal–organic framework with low binding energy. Chem. Commun. 2016, 52, 1166–1169. [Google Scholar] [CrossRef] [Green Version]
- Drobny, J.G. 4-Fluoroelastomer Monomers. In Fluoroelastomers Handbook, 2nd ed.; Drobny, J.G., Ed.; William Andrew Publishing: Norwich, NY, USA, 2016; pp. 29–40. [Google Scholar] [CrossRef]
- Van Miltenburg, A.; Zhu, W.; Kapteijn, F.; Moulijn, J. Adsorptive separation of light olefin/paraffin mixtures. Chem. Eng. Res. Des. 2006, 84, 350–354. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.; Zhang, Y.; Wang, X.; Wu, Y.; Zhou, X.; Xiao, J.; Li, Y.; Wang, H.; Li, Z. Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene. Chem. Eng. Sci. 2017, 162, 192–202. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, Y.; Bae, T.-H. Potential of adsorbents and membranes for SF6 capture and recovery: A review. Chem. Eng. J. 2020, 404, 126577. [Google Scholar] [CrossRef]
- Alcántara-Avila, J.R.; Gómez-Castro, F.I.; Segovia-Hernández, J.G.; Sotowa, K.-I.; Horikawa, T. Optimal design of cryogenic distillation columns with side heat pumps for the propylene/propane separation. Chem. Eng. Process. Process Intensif. 2014, 82, 112–122. [Google Scholar] [CrossRef]
- Yang, Y.; Chuah, C.Y.; Bae, T.-H. Polyamine-appended porous organic polymers for efficient post-combustion CO2 capture. Chem. Eng. J. 2019, 358, 1227–1234. [Google Scholar] [CrossRef]
- Yang, Y.; Chuah, C.Y.; Bae, T.-H. Highly efficient carbon dioxide capture in diethylenetriamine-appended porous organic polymers: Investigation of structural variations of chloromethyl monomers. J. Ind. Eng. Chem. 2020, 88, 207–214. [Google Scholar] [CrossRef]
- Lin, R.-B.; Li, L.; Zhou, H.-L.; Wu, H.; He, C.; Li, S.; Krishna, R.; Li, J.; Zhou, W.; Chen, B. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 2018, 17, 1128–1133. [Google Scholar] [CrossRef]
- Aguado, S.; Bergeret, G.r.; Daniel, C.; Farrusseng, D. Absolute molecular sieve separation of ethylene/ethane mixtures with silver zeolite A. J. Am. Chem. Soc. 2012, 134, 14635–14637. [Google Scholar] [CrossRef]
- Anson, A.; Wang, Y.; Lin, C.; Kuznicki, T.; Kuznicki, S. Adsorption of ethane and ethylene on modified ETS-10. Chem. Eng. Sci. 2008, 63, 4171–4175. [Google Scholar] [CrossRef]
- Maghsoudi, H. Comparative study of adsorbents performance in ethylene/ethane separation. Adsorption 2016, 22, 985–992. [Google Scholar] [CrossRef]
- Liang, B.; Zhang, X.; Xie, Y.; Lin, R.-B.; Krishna, R.; Cui, H.; Li, Z.; Shi, Y.; Wu, H.; Zhou, W. An ultramicroporous metal–organic framework for high sieving separation of propylene from propane. J. Am. Chem. Soc. 2020, 142, 17795–17801. [Google Scholar] [CrossRef]
- Li, J.; Jiang, L.; Chen, S.; Kirchon, A.; Li, B.; Li, Y.; Zhou, H.-C. Metal–organic framework containing planar metal-binding sites: Efficiently and cost-effectively enhancing the kinetic separation of C2H2/C2H4. J. Am. Chem. Soc. 2019, 141, 3807–3811. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Li, W.; Yang, Y.; Bae, T.-H. Evaluation of porous adsorbents for CO2 capture under humid conditions: The importance of recyclability. Chem. Eng. J. Adv. 2020, 3, 100021. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Goh, K.; Yang, Y.; Gong, H.; Li, W.; Karahan, H.E.; Guiver, M.D.; Wang, R.; Bae, T.-H. Harnessing filler materials for enhancing biogas separation membranes. Chem. Rev. 2018, 118, 8655–8769. [Google Scholar] [CrossRef]
- Gong, H.; Chuah, C.Y.; Yang, Y.; Bae, T.-H. High performance composite membranes comprising Zn(pyrz)2(SiF6) nanocrystals for CO2/CH4 separation. J. Ind. Eng. Chem. 2018, 60, 279–285. [Google Scholar] [CrossRef]
- Karahan, H.E.; Goh, K.; Zhang, C.; Yang, E.; Yıldırım, C.; Chuah, C.Y.; Ahunbay, M.G.; Lee, J.; Tantekin-Ersolmaz, Ş.B.; Chen, Y. MXene materials for designing advanced separation membranes. Adv. Mater. 2020, 32, 1906697. [Google Scholar] [CrossRef] [PubMed]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Samarasinghe, S.; Chuah, C.Y.; Yang, Y.; Bae, T.-H. Tailoring CO2/CH4 separation properties of mixed-matrix membranes via combined use of two-and three-dimensional metal-organic frameworks. J. Membr. Sci. 2018, 557, 30–37. [Google Scholar] [CrossRef]
- Dou, H.; Jiang, B.; Xu, M.; Zhang, Z.; Wen, G.; Peng, F.; Yu, A.; Bai, Z.; Sun, Y.; Zhang, L. Boron nitride membranes with a distinct nanoconfinement effect for efficient ethylene/ethane separation. Angew. Chem. Int. Ed. 2019, 131, 14107–14113. [Google Scholar] [CrossRef]
- Rungta, M.; Xu, L.; Koros, W.J. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation. Carbon 2012, 50, 1488–1502. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, H.; Bae, T.-H. Recent advances of nanoporous adsorbents for light hydrocarbon (C1–C3) separation. Chem. Eng. J. 2022, 430, 132654. [Google Scholar] [CrossRef]
- Najari, S.; Saeidi, S.; Gallucci, F.; Drioli, E. Mixed matrix membranes for hydrocarbons separation and recovery: A critical review. Rev. Chem. Eng. 2019, 37, 363–406. [Google Scholar] [CrossRef]
- Yang, L.; Qian, S.; Wang, X.; Cui, X.; Chen, B.; Xing, H. Energy-efficient separation alternatives: Metal–organic frameworks and membranes for hydrocarbon separation. Chem. Soc. Rev. 2020, 49, 5359–5406. [Google Scholar] [CrossRef] [PubMed]
- Chuah, C.Y.; Jiang, X.; Goh, K.; Wang, R. Recent progress in mixed-matrix membranes for hydrogen separation. Membranes 2021, 11, 666. [Google Scholar] [CrossRef] [PubMed]
- Burns, R.L.; Koros, W.J. Defining the challenges for C3H6/C3H8 separation using polymeric membranes. J. Membr. Sci. 2003, 211, 299–309. [Google Scholar] [CrossRef]
- Rungta, M.; Zhang, C.; Koros, W.J.; Xu, L. Membrane-based ethylene/ethane separation: The upper bound and beyond. AIChE J. 2013, 59, 3475–3489. [Google Scholar] [CrossRef]
- Naghsh, M.; Sadeghi, M.; Moheb, A.; Chenar, M.P.; Mohagheghian, M. Separation of ethylene/ethane and propylene/propane by cellulose acetate–silica nanocomposite membranes. J. Membr. Sci. 2012, 423, 97–106. [Google Scholar] [CrossRef]
- Davoodi, S.M.; Sadeghi, M.; Naghsh, M.; Moheb, A. Olefin–paraffin separation performance of polyimide Matrimid®/silica nanocomposite membranes. RSC Adv. 2016, 6, 23746–23759. [Google Scholar] [CrossRef]
- Ploegmakers, J.; Japip, S.; Nijmeijer, K. Mixed matrix membranes containing MOFs for ethylene/ethane separation Part A: Membrane preparation and characterization. J. Membr. Sci. 2013, 428, 445–453. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Bae, T.-H. Incorporation of Cu3BTC2 nanocrystals to increase the permeability of polymeric membranes in O2/N2 separation. BMC Chem. Eng. 2019, 1, 2. [Google Scholar] [CrossRef]
- Bachman, J.E.; Smith, Z.P.; Li, T.; Xu, T.; Long, J.R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 2016, 15, 845–849. [Google Scholar] [CrossRef]
- Bae, T.-H.; Long, J.R. CO2/N2 separations with mixed-matrix membranes containing Mg2(dobdc) nanocrystals. Energy Environ. Sci. 2013, 6, 3565–3569. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Samarasinghe, S.A.S.C.; Li, W.; Goh, K.; Bae, T.-H. Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation. Membranes 2020, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- Qian, S.; Xia, L.; Yang, L.; Wang, X.; Suo, X.; Cui, X.; Xing, H. Defect-free mixed-matrix membranes consisting of anion-pillared metal-organic frameworks and poly (ionic liquid)s for separation of acetylene from ethylene. J. Membr. Sci. 2020, 611, 118329. [Google Scholar] [CrossRef]
- Tomé, L.C.; Guerreiro, D.C.; Teodoro, R.M.; Alves, V.D.; Marrucho, I.M. Effect of polymer molecular weight on the physical properties and CO2/N2 separation of pyrrolidinium-based poly (ionic liquid) membranes. J. Membr. Sci. 2018, 549, 267–274. [Google Scholar] [CrossRef]
- Cowan, M.G.; Masuda, M.; McDanel, W.M.; Kohno, Y.; Gin, D.L.; Noble, R.D. Phosphonium-based poly (Ionic liquid) membranes: The effect of cation alkyl chain length on light gas separation properties and Ionic conductivity. J. Membr. Sci. 2016, 498, 408–413. [Google Scholar] [CrossRef]
- Ye, L.; Wan, L.; Tang, J.; Li, Y.; Huang, F. Novolac-based poly(1,2,3-triazolium) s with good ionic conductivity and enhanced CO2 permeation. RSC Adv. 2018, 8, 8552–8557. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chuah, C.Y.; Kwon, S.; Goh, K.; Wang, R.; Na, K.; Bae, T.-H. Nanosizing zeolite 5A fillers in mixed-matrix carbon molecular sieve membranes to improve gas separation performance. Chem. Eng. J. Adv. 2020, 2, 100016. [Google Scholar] [CrossRef]
- Li, W.; Chuah, C.Y.; Bae, T.-H. Hierarchical 5A Zeolite-Containing Carbon Molecular Sieve Membranes for O2/N2 Separation. Membr. J. 2020, 30, 260–268. [Google Scholar] [CrossRef]
- Tirouni, I.; Sadeghi, M.; Pakizeh, M. Separation of C3H8 and C2H6 from CH4 in polyurethane–zeolite 4Å and ZSM-5 mixed matrix membranes. Sep. Purif. Technol. 2015, 141, 394–402. [Google Scholar] [CrossRef]
- Li, W.; Goh, K.; Chuah, C.Y.; Bae, T.-H. Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO2 permeability enhancements. J. Membr. Sci. 2019, 588, 117220. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Bao, Y.; Song, J.; Bae, T.-H. High-performance porous carbon-zeolite mixed-matrix membranes for CO2/N2 separation. J. Membr. Sci. 2021, 622, 119031. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Anwar, S.N.B.M.; Weerachanchai, P.; Bae, T.-H.; Goh, K.; Wang, R. Scaling-up defect-free asymmetric hollow fiber membranes to produce oxygen-enriched gas for integration into municipal solid waste gasification process. J. Membr. Sci. 2021, 640, 119787. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Goh, K.; Bae, T.-H. Enhanced performance of carbon molecular sieve membranes incorporating zeolite nanocrystals for air separation. Membranes 2021, 11, 489. [Google Scholar] [CrossRef]
- Chen, G.; Chen, X.; Pan, Y.; Ji, Y.; Liu, G.; Jin, W. M-gallate MOF/6FDA-polyimide mixed-matrix membranes for C2H4/C2H6 separation. J. Membr. Sci. 2021, 620, 118852. [Google Scholar] [CrossRef]
- Min, B.; Yang, S.; Korde, A.; Jones, C.W.; Nair, S. Single-Step Scalable Fabrication of Zeolite MFI Hollow Fiber Membranes for Hydrocarbon Separations. Adv. Mater. Int. 2020, 7, 2000926. [Google Scholar] [CrossRef]
- Kunjattu, S.H.; Ashok, V.; Bhaskar, A.; Pandare, K.; Banerjee, R.; Kharul, U.K. ZIF-8@ DBzPBI-BuI composite membranes for olefin/paraffin separation. J. Membr. Sci. 2018, 549, 38–45. [Google Scholar] [CrossRef]
- Ploegmakers, J.; Japip, S.; Nijmeijer, K. Mixed matrix membranes containing MOFs for ethylene/ethane separation—Part B: Effect of Cu3BTC2 on membrane transport properties. J. Membr. Sci. 2013, 428, 331–340. [Google Scholar] [CrossRef]
- Higuchi, A.; Agatsuma, T.; Uemiya, S.; Kojima, T.; Mizoguchi, K.; Pinnau, I.; Nagai, K.; Freeman, B.D. Preparation and gas permeation of immobilized fullerene membranes. J. Appl. Polym. Sci. 2000, 77, 529–537. [Google Scholar] [CrossRef]
- Díaz, K.; López-González, M.; del Castillo, L.F.; Riande, E. Effect of zeolitic imidazolate frameworks on the gas transport performance of ZIF8-poly(1,4-phenylene ether-ether-sulfone) hybrid membranes. J. Membr. Sci. 2011, 383, 206–213. [Google Scholar] [CrossRef]
- Jiang, B.; Zhou, J.; Xu, M.; Dou, H.; Zhang, H.; Yang, N.; Zhang, L. Multifunctional ternary deep eutectic solvent-based membranes for the cost-effective ethylene/ethane separation. J. Membr. Sci. 2020, 610, 118243. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Lively, R.P.; Zhang, K.; Johnson, J.R.; Karvan, O.; Koros, W.J. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 2012, 3, 2130–2134. [Google Scholar] [CrossRef] [PubMed]
- Vinh-Thang, H.; Kaliaguine, S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 2013, 113, 4980–5028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dai, Y.; Johnson, J.R.; Karvan, O.; Koros, W.J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 2012, 389, 34–42. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Goh, K.; Bae, T.-H. Hierarchically structured HKUST-1 nanocrystals for enhanced SF6 capture and recovery. J. Phys. Chem. C 2017, 121, 6748–6755. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, K.; Xu, L.; Labreche, Y.; Kraftschik, B.; Koros, W.J. Highly scalable ZIF-based mixed-matrix hollow fiber membranes for advanced hydrocarbon separations. AIChE J. 2014, 60, 2625–2635. [Google Scholar] [CrossRef]
- Ma, X.; Swaidan, R.J.; Wang, Y.; Hsiung, C.-e.; Han, Y.; Pinnau, I. Highly compatible hydroxyl-functionalized microporous polyimide-ZIF-8 mixed matrix membranes for energy efficient propylene/propane separation. ACS Appl. Nano Mater. 2018, 1, 3541–3547. [Google Scholar] [CrossRef]
- Fang, M.; Wu, C.; Yang, Z.; Wang, T.; Xia, Y.; Li, J. ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation. J. Membr. Sci. 2015, 474, 103–113. [Google Scholar] [CrossRef]
- Liu, D.; Xiang, L.; Chang, H.; Chen, K.; Wang, C.; Pan, Y.; Li, Y.; Jiang, Z. Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation. Chem. Eng. Sci. 2019, 204, 151–160. [Google Scholar] [CrossRef]
- Kwon, H.T.; Jeong, H.-K.; Lee, A.S.; An, H.S.; Lee, J.S. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 2015, 137, 12304–12311. [Google Scholar] [CrossRef]
- Pimentel, B.R.; Parulkar, A.; Zhou, E.k.; Brunelli, N.A.; Lively, R.P. Zeolitic imidazolate frameworks: Next-generation materials for energy-efficient gas separations. ChemSusChem 2014, 7, 3202–3240. [Google Scholar] [CrossRef]
- Krokidas, P.; Castier, M.; Moncho, S.; Sredojevic, D.N.; Brothers, E.N.; Kwon, H.T.; Jeong, H.-K.; Lee, J.S.; Economou, I.G. ZIF-67 framework: A promising new candidate for propylene/propane separation. experimental data and molecular simulations. J. Phys. Chem. C 2016, 120, 8116–8124. [Google Scholar] [CrossRef]
- An, H.; Park, S.; Kwon, H.T.; Jeong, H.-K.; Lee, J.S. A new superior competitor for exceptional propylene/propane separations: ZIF-67 containing mixed matrix membranes. J. Membr. Sci. 2017, 526, 367–376. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.W.; Cho, K.Y.; Kan, M.-Y.; Yu, H.J.; Kang, D.-Y.; Lee, J.S. High-flux mixed matrix membranes containing bimetallic zeolitic imidazole framework-8 for C3H6/C3H8 separation. J. Membr. Sci. 2020, 596, 117735. [Google Scholar] [CrossRef]
- Moghadam, F.; Lee, T.H.; Park, I.; Park, H.B. Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/propane selectivity. J. Membr. Sci. 2020, 603, 118019. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Bae, T.-H. Graphene-based Membranes for H2 Separation: Recent Progress and Future Perspective. Membranes 2020, 10, 336. [Google Scholar] [CrossRef]
- Li, W.; Chuah, C.Y.; Yang, Y.; Bae, T.-H. Nanocomposites formed by in situ growth of NiDOBDC nanoparticles on graphene oxide sheets for enhanced CO2 and H2 storage. Micropor. Mesopor. Mater. 2018, 265, 35–42. [Google Scholar] [CrossRef]
- Li, W.; Chuah, C.Y.; Nie, L.; Bae, T.-H. Enhanced CO2/CH4 selectivity and mechanical strength of mixed-matrix membrane incorporated with NiDOBDC/GO composite. J. Ind. Eng. Chem. 2019, 74, 118–125. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.; Liu, G.; Belmabkhout, Y.; Adil, K.; Eddaoudi, M.; Koros, W. Conformation-controlled molecular sieving effects for membrane-based propylene/propane separation. Adv. Mater. 2019, 31, 1807513. [Google Scholar] [CrossRef]
- Lee, T.H.; Jung, J.G.; Kim, Y.J.; Roh, J.S.; Yoon, H.W.; Ghanem, B.S.; Kim, H.W.; Cho, Y.H.; Pinnau, I.; Park, H.B. Defect Engineering in Metal–Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angew. Chem. Int. Ed. 2021, 133, 13191–13198. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Lee, J.; Song, J.; Bae, T.-H. CO2/N2 separation properties of polyimide-based mixed-matrix membranes comprising UiO-66 with various functionalities. Membranes 2020, 10, 154. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, J.H.; Jung, J.P.; Kim, J.H. Mixed matrix membranes based on dual-functional MgO nanosheets for olefin/paraffin separation. J. Membr. Sci. 2017, 533, 48–56. [Google Scholar] [CrossRef]
- Sun, H.; Ma, C.; Wang, T.; Xu, Y.; Yuan, B.; Li, P.; Kong, Y. Preparation and characterization of C60-filled ethyl cellulose mixed-matrix membranes for gas separation of propylene/propane. Chem. Eng. Technol. 2014, 37, 611–619. [Google Scholar] [CrossRef]
- Heidari, M.; Hosseini, S.S.; Nasrin, M.O.; Ghadimi, A. Synthesis and fabrication of adsorptive carbon nanoparticles (ACNs)/PDMS mixed matrix membranes for efficient CO2/CH4 and C3H8/CH4 separation. Sep. Purif. Technol. 2019, 209, 503–515. [Google Scholar] [CrossRef]
- Beltran, A.B.; Nisola, G.M.; Cho, E.; Lee, E.E.D.; Chung, W.-J. Organosilane modified silica/polydimethylsiloxane mixed matrix membranes for enhanced propylene/nitrogen separation. Appl. Surf. Sci. 2011, 258, 337–345. [Google Scholar] [CrossRef]
- Yang, F.; Mu, H.; Wang, C.; Xiang, L.; Yao, K.X.; Liu, L.; Yang, Y.; Han, Y.; Li, Y.; Pan, Y. Morphological map of ZIF-8 crystals with five distinctive shapes: Feature of filler in mixed-matrix membranes on C3H6/C3H8 separation. Chem. Mater. 2018, 30, 3467–3473. [Google Scholar] [CrossRef]
- Jeong, S.; Kang, S.W. Effect of Ag2O nanoparticles on long-term stable polymer/AgBF4/Al(NO3)3 complex membranes for olefin/paraffin separation. Chem. Eng. J. 2017, 327, 500–504. [Google Scholar] [CrossRef]
- Yoon, K.W.; Kang, Y.S.; Kang, S.W. Activated Ag ions and enhanced gas transport by incorporation of KIT-6 for facilitated olefin transport membranes. J. Membr. Sci. 2016, 513, 95–100. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Li, W.; Samarasinghe, S.; Sethunga, G.; Bae, T.-H. Enhancing the CO2 separation performance of polymer membranes via the incorporation of amine-functionalized HKUST-1 nanocrystals. Micropor. Mesopor. Mater. 2019, 290, 109680. [Google Scholar] [CrossRef]
- Li, P.; Chung, T.-S.; Paul, D. Gas sorption and permeation in PIM-1. J. Membr. Sci. 2013, 432, 50–57. [Google Scholar] [CrossRef]
- Luque-Alled, J.M.; Ameen, A.W.; Alberto, M.; Tamaddondar, M.; Foster, A.B.; Budd, P.M.; Vijayaraghavan, A.; Gorgojo, P. Gas separation performance of MMMs containing (PIM-1)-functionalized GO derivatives. J. Membr. Sci. 2021, 623, 118902. [Google Scholar] [CrossRef]
Upper Bound Curve | 2003 (2013) [1] | |
---|---|---|
λ[2] | β[2] | |
C2H4/C2H6 | 0.14 | 7.3 |
C3H6/C3H8 | 0.17 | 20.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuah, C.Y.; Bae, T.-H. Recent Advances in Mixed-Matrix Membranes for Light Hydrocarbon (C1–C3) Separation. Membranes 2022, 12, 201. https://doi.org/10.3390/membranes12020201
Chuah CY, Bae T-H. Recent Advances in Mixed-Matrix Membranes for Light Hydrocarbon (C1–C3) Separation. Membranes. 2022; 12(2):201. https://doi.org/10.3390/membranes12020201
Chicago/Turabian StyleChuah, Chong Yang, and Tae-Hyun Bae. 2022. "Recent Advances in Mixed-Matrix Membranes for Light Hydrocarbon (C1–C3) Separation" Membranes 12, no. 2: 201. https://doi.org/10.3390/membranes12020201
APA StyleChuah, C. Y., & Bae, T. -H. (2022). Recent Advances in Mixed-Matrix Membranes for Light Hydrocarbon (C1–C3) Separation. Membranes, 12(2), 201. https://doi.org/10.3390/membranes12020201