Dual Optimized Sulfonated Polyethersulfone and Functionalized Multiwall Carbon Tube Based Composites High Fouling Resistance Membrane for Protein Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acid Treatment MWCNT, NCs and Membrane Formation
2.2. Characterizations
2.2.1. FTIR, XRD and FESEM
2.2.2. Hydrophilicity
2.2.3. Surface Roughness Parameters via AFM
2.2.4. Surface Profiles via Grain Analysis
2.2.5. Porosity, Flux Rate and Flux Recovery
2.2.6. Anti-Fouling and Membrane Resistances
2.2.7. Protein Adsorption Studies
2.2.8. Protein Transmission
3. Results and Discussion
3.1. MWCNT Functionalization
3.2. Nanocomposite and Corresponding Sulfonated Membranes (FTIR)
3.3. FESEM Analysis
3.4. Hydrophilicity and Elution Ratio
3.5. AFM Studies
3.5.1. Surface Roughness Parameters
3.5.2. Grain Analysis (Surface Profile)
3.6. Porosity and Flux Rate
3.7. Antifouling Properties of Membranes
3.8. Protein Separation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Saraswat, M.; Musante, L.; Ravidá, A.; Shortt, B.; Byrne, B.; Holthofer, H. Preparative Purification of Recombinant Proteins: Current Status and Future Trends. BioMed Res. Int. 2013, 2013, 312709. [Google Scholar] [CrossRef] [PubMed]
- Naz, G.; Anjum, M.N.; Irfan, M.; Irfan, M.; Arshad, M.; Bajwa, S.Z.; Khan, W.S. Quats stabilized gold nanospheres for efficient ligand exchange procedure. Results Mater. 2020, 5, 100065. [Google Scholar]
- Saleh, T.A.; Parthasarathy, P.; Irfan, M. Advanced functional polymer nanocomposites and their use in water ultra-purification. Trends Environ. Anal. Chem. 2019, 24, e00067. [Google Scholar] [CrossRef]
- Irfan, M.; Idris, A.; Khairuddin, N.F.M. Removal of heavy metal ions from its low concentrated lake water via LiBr/PES hollow fiber membrane module system. Desalination Water Treat. 2016, 57, 20388–20400. [Google Scholar] [CrossRef]
- Galier, S.; Balmann, H.R.-d. The electrophoretic membrane contactor: A mass-transfer-based methodology applied to the separation of whey proteins. Sep. Purif. Technol. 2011, 77, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Basri, H.; Irfan, M.; Lau, W.-J. An acid functionalized MWCNT/PVP nanocomposite as a new additive for fabrication of an ultrafiltration membrane with improved anti-fouling resistance. RSC Adv. 2015, 5, 95421–95432. [Google Scholar] [CrossRef] [Green Version]
- Irfan, M.; Idris, A.; Yusof, N.M.; Khairuddin, N.F.M.; Akhmal, H. Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. J. Membr. Sci. 2014, 467, 73–84. [Google Scholar] [CrossRef]
- Chan, K.H.; Wong, E.T.; Khan, M.I.; Idris, A.; Yusof, N.M. Fabrication of polyvinylidene difluoride nano-hybrid dialysis membranes using functionalized multiwall carbon nanotube for polyethylene glycol (hydrophilic additive) retention. J. Ind. Eng. Chem. 2014, 20, 3744–3753. [Google Scholar] [CrossRef]
- Idris, A.; Ahmed, I.; Misran, M. Novel high performance hollow fiber ultrafiltration membranes spun from LiBr doped solutions. Desalination 2009, 249, 541–548. [Google Scholar] [CrossRef]
- Rafiq, S.; Muhammad, N.; Rehman, F.; Irfan, M.; Zaman, S.U.; Jamil, F.; Saqib, S.; Mukhtar, A.; Khoo, K.S.; Mubashir, M. Surface tuning of silica by deep eutectic solvent to synthesize biomass derived based membranes for gas separation to enhance the circular bioeconomy. Fuel 2022, 310, 122355. [Google Scholar]
- Zaman, S.U.; Zaman, M.K.U.; Irfan, M.; Rafiq, S.; Irfan, M.; Muhammad, N.; Saif-ur-Rehman; Wajeeh, S.; Naz, G. Biocompatible chicken bone extracted dahllite/hydroxyapatite/collagen filler based polysulfone membrane for dialysis. Int. J. Artif. Organs 2021, 45. [Google Scholar] [CrossRef]
- Irfan, M.; Irfan, M.; Shah, S.M.; Baig, N.; Saleh, T.A.; Ahmed, M.; Naz, G.; Akhtar, N.; Muhammad, N. Idris, Hemodialysis performance and anticoagulant activities of PVP-k25 and carboxylic-multiwall nanotube composite blended Polyethersulfone membrane. Mater. Sci. Eng. C 2019, 103, 109769. [Google Scholar] [CrossRef] [PubMed]
- Zaman, S.U.; Zaman, M.K.U.; Rafiq, S.; Arshad, A.; Khurram, M.S.; Irfan, M.; Saqib, S.; Muhammad, N.; Irfan, M.; Sharif, F. Fabrication and performance evaluation of polymeric membrane using blood compatible hydroxyapatite for artificial kidney application. Artif. Organs 2021, 45, 1377–1390. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Idris, A. Overview of PES biocompatible/hemodialysis membranes: PES–blood interactions and modification techniques. Mater. Sci. Eng. C 2015, 56, 574–592. [Google Scholar] [CrossRef] [PubMed]
- Irfan, M.; Idris, A.; Nasiri, R.; Almaki, J.H. Fabrication and evaluation of polymeric membranes for blood dialysis treatments using functionalized MWCNT based nanocomposite and sulphonated-PES. RSC Adv. 2016, 6, 101513–101525. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, S.; Li, J.; Han, W.; Sun, X.; Li, N.; Hu, Z.; Wang, L. Sulfonated carbon nano-onion incorporated polyethersulfone nanocomposite ultrafiltration membranes with improved permeability and antifouling property. Sep. Purif. Technol. 2021, 256, 117825. [Google Scholar] [CrossRef]
- Saini, B.; Sinha, M.K. Synergetic effects of organic and inorganic additives on improvement in hydrophilicity and performance of PVDF antifouling ultrafiltration membrane for removal of natural organic material from water. J. Appl. Polym. Sci. 2021, 138, 50568. [Google Scholar] [CrossRef]
- Li, Y.-X.; Li, P.; Wu, Y.-Z.; Xu, Z.-L.; Huang, M.-L. Preparation and antifouling performance of thin inorganic ultrafiltration membrane via assisted sol-gel method with different composition of dual additives. Ceram. Int. 2021, 47, 2180–2186. [Google Scholar] [CrossRef]
- Irfan, M.; Irfan, M.; Idris, A.; Baig, N.; Saleh, T.A.; Nasiri, R.; Iqbal, Y.; Muhammad, N.; Rehman, F.; Khalid, H. Fabrication and performance evaluation of blood compatible hemodialysis membrane using carboxylic multiwall carbon nanotubes and low molecular weight polyvinylpyrrolidone based nanocomposites. J. Biomed. Mater. Res. Part A 2019, 107, 513–525. [Google Scholar] [CrossRef]
- Basri, H.; Irfan, M.; Irfan, M.; Lau, W.J.; Kartohardjono, S. Quantitative analysis of MWCNT agglomeration in polymeric-based membranes using atomic force microscope. Surf. Interface Anal. 2017, 49, 55–62. [Google Scholar] [CrossRef]
- Phao, N.; Nxumalo, E.N.; Mamba, B.B.; Mhlanga, S.D. A nitrogen-doped carbon nanotube enhanced polyethersulfone membrane system for water treatment. Phys. Chem. Earth Parts A/B/C 2013, 66, 148–156. [Google Scholar] [CrossRef]
- Yu, L.-Y.; Xu, Z.-L.; Shen, H.-M.; Yang, H. Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method. J. Membr. Sci. 2009, 337, 257–265. [Google Scholar] [CrossRef]
- Lu, D.; Zou, H.; Guan, R.; Dai, H.; Lu, L. Sulfonation of polyethersulfone by chlorosulfonic acid. Polym. Bull. 2005, 54, 21–28. [Google Scholar] [CrossRef]
- Guan, R.; Zou, H.; Lu, D.; Gong, C.; Liu, Y. Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics. Eur. Polym. J. 2005, 41, 1554–1560. [Google Scholar] [CrossRef]
- Tserengombo, B.; Jeong, H.; Dolgor, E.; Delgado, A.; Kim, S. Effects of Functionalization in Different Conditions and Ball Milling on the Dispersion and Thermal and Electrical Conductivity of MWCNTs in Aqueous Solution. Nanomaterials 2021, 11, 1323. [Google Scholar] [CrossRef]
- Microsoft Word - XEI 1.5 Manual _Release Candidate_.doc - XEImagingSoftwareManual.pdf. Available online: http://research.fit.edu/nhc/documents/XEImagingSoftwareManual.pdf (accessed on 26 July 2021).
- Shao, L.; Wang, Z.X.; Zhang, Y.L.; Jiang, Z.X.; Liu, Y.Y. A facile strategy to enhance PVDF ultrafiltration membrane performance via self-polymerized polydopamine followed by hydrolysis of ammonium fluotitanate. J. Membr. Sci. 2014, 461, 10–21. [Google Scholar] [CrossRef]
- Schrader, M.E. Young-dupre revisited. Langmuir 1995, 11, 3585–3589. [Google Scholar] [CrossRef]
- De León-Martínez, P.A.; Sáenz-Galindo, A.; Ávila-Orta, C.A.; Castañeda-Facio, A.O.; Andrade-Guel, M.L.; Sierra, U.; Alvarado-Tenorio, G.; Bernal-Martínez, J. Ultrasound-Assisted Surface Modification of MWCNT Using Organic Acids. Materials 2021, 14, 72. [Google Scholar] [CrossRef]
- Assi, L.; Alsalman, A.; Bianco, D.; Ziehl, P.; El-Khatib, J.; Bayat, M.; Hussein, F.H. Multiwall carbon nanotubes (MWCNTs) dispersion & mechanical effects in OPC mortar & paste: A review. J. Build. Eng. 2021, 43, 102512. [Google Scholar]
- Cheng, Y.; Li, W.; Fan, X.; Liu, J.; Xu, W.; Yan, C. Modified multi-walled carbon nanotube/Ag nanoparticle composite catalyst for the oxygen reduction reaction in alkaline solution. Electrochim. Acta 2013, 111, 635–641. [Google Scholar] [CrossRef]
- Buang, N.A.; Fadil, F.; Majid, Z.A.; Shahir, S. Characteristic of mild acid functionalized multiwalled carbon nanotubes towards high dispersion with low structural defects. Dig. J. Nanomater. Biostructures 2012, 7, 33–39. [Google Scholar]
- Giri, N.; Natarajan, R.; Gunasekaran, S.; Shreemathi, S. 13C NMR and FTIR spectroscopic study of blend behavior of PVP and nano silver particles. Arch. Appl. Sci. Res. 2011, 3, 624–630. [Google Scholar]
- Khomein, P.; Ketelaars, W.; Lap, T.; Liu, G. Sulfonated aromatic polymer as a future proton exchange membrane: A review of sulfonation and crosslinking methods. Renew. Sustain. Energy Rev. 2021, 137, 110471. [Google Scholar] [CrossRef]
- Choi, J.-H.; Jegal, J.; Kim, W.-N. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Membr. Sci. 2006, 284, 406–415. [Google Scholar] [CrossRef]
- Barth, C.; Goncalves, M.; Pires, A.; Roeder, J.; Wolf, B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. J. Membr. Sci. 2000, 169, 287–299. [Google Scholar] [CrossRef]
- Wang, H.; Yu, T.; Zhao, C.; Du, Q. Improvement of hydrophilicity and blood compatibility on polyethersulfone membrane by adding polyvinylpyrrolidone. Fibers Polym. 2009, 10, 1–5. [Google Scholar] [CrossRef]
- Rahimpour, A.; Madaeni, S.S.; Ghorbani, S.; Shockravi, A.; Mansourpanah, Y. The influence of sulfonated polyethersulfone (SPES) on surface nano-morphology and performance of polyethersulfone (PES) membrane. Appl. Surf. Sci. 2010, 256, 1825–1831. [Google Scholar] [CrossRef]
- Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Monfared, H.A.; Khadivi, M.A. Fabrication of PES nanofiltration membrane by simultaneous use of multi-walled carbon nanotube and surface graft polymerization method: Comparison of MWCNT and PAA modified MWCNT. Sep. Purif. Technol. 2013, 104, 32–44. [Google Scholar] [CrossRef]
- Vatanpour, V.; Madaeni, S.S.; Moradian, R.; Zinadini, S.; Astinchap, B. Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J. Membr. Sci. 2011, 375, 284–294. [Google Scholar] [CrossRef]
- Nakamura, K.; Matsumoto, K. Protein adsorption properties on a microfiltration membrane: A comparison between static and dynamic adsorption methods. J. Membr. Sci. 2006, 285, 126–136. [Google Scholar] [CrossRef]
- Khulbe, K.; Feng, C.; Matsuura, T. The art of surface modification of synthetic polymeric membranes. J. Appl. Polym. Sci. 2010, 115, 855–895. [Google Scholar] [CrossRef]
- Van der Bruggen, B. Chemical modification of polyethersulfone nanofiltration membranes: A review. J. Appl. Polym. Sci. 2009, 114, 630–642. [Google Scholar] [CrossRef]
- An, L.; Yu, Y.H.; Chen, J.; Bae, J.H.; Youn, D.H.; Jeong, H.M.; Kim, Y.S. Synthesis and characterization of tailor-made zwitterionic lignin for resistance to protein adsorption. Ind. Crops Prod. 2021, 167, 113514. [Google Scholar] [CrossRef]
Formulations (Weight Percentage) | ||||||
---|---|---|---|---|---|---|
Memb (M-CNT-SPES) | Step 1 (NCs) | Step 2 | ||||
f-MWCNT | PVP | DMF | PES | S-PES | DMF | |
M-PS | - | - | - | 16 | - | 84.00 |
M1-15 | 0.1 | 3 | 20 | 13.6 | 2.4 | 60.90 |
M1-30 | 0.1 | 3 | 20 | 11.2 | 4.8 | 60.90 |
M1-45 | 0.1 | 3 | 20 | 8.8 | 7.2 | 60.90 |
M2-15 | 0.2 | 3 | 20 | 13.6 | 2.4 | 60.80 |
M2-30 | 0.2 | 3 | 20 | 11.2 | 4.8 | 60.80 |
M2-45 | 0.2 | 3 | 20 | 8.8 | 7.2 | 60.80 |
M3-15 | 0.3 | 3 | 20 | 13.6 | 2.4 | 60.70 |
M3-30 | 0.3 | 3 | 20 | 11.2 | 4.8 | 60.70 |
M3-45 | 0.3 | 3 | 20 | 8.8 | 7.2 | 60.70 |
Membranes | Min (nm) | Max (nm) | Mid (nm) | Rpv (nm) | Rq (nm) | Ra (nm) | Rz (nm) | Rsk | Rku |
---|---|---|---|---|---|---|---|---|---|
M-PS | −139.23 | 111.49 | −13.87 | 250.72 | 26.82 | 19.92 | 242.18 | −0.15 | 4.38 |
M1-15 | −80.73 | 122.94 | 21.10 | 203.67 | 19.39 | 14.22 | 199.23 | −0.42 | 5.98 |
M1-30 | −87.55 | 275.02 | 93.74 | 362.57 | 25.23 | 18.81 | 355.73 | −1.20 | 13.87 |
M1-45 | −82.24 | 289.42 | 103.59 | 371.66 | 49.87 | 33.44 | 363.20 | −2.13 | 8.97 |
M2-15 | −60.41 | 117.85 | 28.72 | 178.26 | 16.03 | 12.01 | 173.69 | −0.62 | 6.60 |
M2-30 | −84.44 | 138.88 | 27.22 | 223.32 | 23.80 | 18.35 | 212.37 | −0.23 | 3.89 |
M2-45 | −245.73 | 280.15 | 17.21 | 525.88 | 47.41 | 31.44 | 516.70 | 0.19 | 6.61 |
M3-15 | −84.79 | 297.59 | 106.40 | 382.39 | 21.66 | 14.63 | 377.02 | −2.52 | 29.20 |
M3-30 | −115.05 | 123.34 | 4.14 | 238.39 | 34.42 | 27.46 | 235.19 | −0.11 | 3.04 |
M3-45 | −125.77 | 462.56 | 168.40 | 588.34 | 74.13 | 50.15 | 581.85 | −1.95 | 8.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irfan, M.; Irfan, M.; Idris, A.; Alsubaie, A.S.; Mahmoud, K.H.; Yusof, N.M.; Akhtar, N. Dual Optimized Sulfonated Polyethersulfone and Functionalized Multiwall Carbon Tube Based Composites High Fouling Resistance Membrane for Protein Separation. Membranes 2022, 12, 329. https://doi.org/10.3390/membranes12030329
Irfan M, Irfan M, Idris A, Alsubaie AS, Mahmoud KH, Yusof NM, Akhtar N. Dual Optimized Sulfonated Polyethersulfone and Functionalized Multiwall Carbon Tube Based Composites High Fouling Resistance Membrane for Protein Separation. Membranes. 2022; 12(3):329. https://doi.org/10.3390/membranes12030329
Chicago/Turabian StyleIrfan, Muhammad, Masooma Irfan, Ani Idris, Abdullah Saad Alsubaie, Khaled H. Mahmoud, Noordin Mohd Yusof, and Naeem Akhtar. 2022. "Dual Optimized Sulfonated Polyethersulfone and Functionalized Multiwall Carbon Tube Based Composites High Fouling Resistance Membrane for Protein Separation" Membranes 12, no. 3: 329. https://doi.org/10.3390/membranes12030329
APA StyleIrfan, M., Irfan, M., Idris, A., Alsubaie, A. S., Mahmoud, K. H., Yusof, N. M., & Akhtar, N. (2022). Dual Optimized Sulfonated Polyethersulfone and Functionalized Multiwall Carbon Tube Based Composites High Fouling Resistance Membrane for Protein Separation. Membranes, 12(3), 329. https://doi.org/10.3390/membranes12030329