Influence of Y Doping on WO3 Membranes Applied in Electrolyte-Insulator-Semiconductor Structures
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Pregl, S. Fabrication and Characterization of a Silicon Nanowire Based Schottky-Barrier Field Effect Transistor Platform for Functional Electronics and Biosensor Applications. Ph.D. Thesis, Dresden University of Technology, Dresden, Germany, 2015. [Google Scholar]
- Tareen, A.K.; Khan, K.; Rehman, S.; Iqbal, M.; Yu, J.; Zhou, Z.; Yin, J.; Zhang, H. Recent development in emerging phosphorene based novel materials: Progress, challenges, prospects and their fascinating sensing applications. Prog. Solid State Chem. 2021, 65, 100336. [Google Scholar] [CrossRef]
- Veigas, B.; Branquinho, R.; Pinto, J.V.; Wojcik, P.J.; Martins, R.; Fortunato, E.; Baptista, P.V. Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification. Biosens. Bioelectron. 2014, 52, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Charoenkitamorn, K.; Yakoh, A.; Jampasa, S.; Chaiyo, S.; Chailapakul, O. Electrochemical and optical biosensors for biological sensing applications. Sci. Asia 2020, 46, 245–253. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 2019, 48, 1465–1491. [Google Scholar] [CrossRef]
- Hizawa, T.; Sawada, K.; Takao, H.; Ishida, M. Fabrication of a two-dimensional pH image sensor using a charge transfer technique. Sens. Actuators B Chem. 2006, 117, 509–515. [Google Scholar] [CrossRef]
- Aoki, Y.; Kunitake, T. Solution-based Fabrication of High-κ Gate Dielectrics for Next-Generation Metal-Oxide Semiconductor Transistors. Adv. Mater. 2004, 16, 118–123. [Google Scholar] [CrossRef]
- Lee, M.L.; Kao, C.H.; Chen, H.; Lin, C.Y.; Chung, Y.T.; Chang, K.M. The structural and electrical comparison of Y2O3 and Ti-doped Y2O3 dielectrics. Ceram. Int. 2017, 43, 3043–3050. [Google Scholar] [CrossRef]
- Muller, J.; Boscke, T.S.; Schroder, U.; Mueller, S.; Brauhaus, D.; Bottger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323. [Google Scholar] [CrossRef]
- Hashim, A.; Jassim, A. Novel of biodegradable polymers-inorganic nanoparticles: Structural, optical and electrical properties as humidity sensors and gamma radiation shielding for biological applications. J. Bionanosci. 2018, 12, 170–176. [Google Scholar] [CrossRef]
- Zhang, F.; Braun, G.B.; Shi, Y.; Zhang, Y.; Sun, X.; Reich, N.O.; Zhao, D.; Stucky, G. Fabrication of Ag@SiO2@Y2O3: Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 2850–2851. [Google Scholar] [CrossRef]
- Singh, K.; Lou, B.-S.; Her, J.-L.; Pan, T.-M. Impact of yttrium concentration on structural characteristics and pH sensing properties of sol-gel derived Y2O3 based electrolyte-insulator-semiconductor sensor. Mater. Sci. Semicond. Process. 2020, 105, 104741. [Google Scholar] [CrossRef]
- Song, G.; Zhong, H.; Dai, Y.; Zhou, X.; Yang, J. WO3 membrane-encapsulated layered LiNi0.6Co0.2Mn0.2O2 cathode material for advanced Li-ion batteries. Ceram. Int. 2019, 45, 6774–6781. [Google Scholar] [CrossRef]
- Pooyodying, P.; Ok, J.-W.; Son, Y.-H.; Sung, Y.-M. Electrical and optical properties of electrochromic device with WO3: Mo film prepared by RF magnetron Co-Sputtering. Opt. Mater. 2021, 112, 110766. [Google Scholar] [CrossRef]
- Yang, C.-M.; Chiang, T.-W.; Yeh, Y.-T.; Das, A.; Lin, Y.-T.; Chen, T.-C. Sensing and pH-imaging properties of niobium oxide prepared by rapid thermal annealing for electrolyte–insulator–semiconductor structure and light-addressable potentiometric sensor. Sens. Actuators B Chem. 2015, 207, 858–864. [Google Scholar] [CrossRef]
- Liu, L.-Y.; Tian, Y.-W.; Zhai, Y.-c.; Xu, C.-Q. Influence of Y3+ doping on structure and electrochemical performance of layered Li1.05V3O8. Trans. Nonferrous Met. Soc. China 2007, 17, 110–115. [Google Scholar] [CrossRef]
- Tang, L.; Xue, F.; Guo, P.; Xin, Z.; Luo, Z.; Li, W. Significantly enhanced dielectric properties of Y3+ donor-doped CaCu3Ti4O12 ceramics by controlling electrical properties of grains and grain boundaries. Ceram. Int. 2018, 44, 18535–18540. [Google Scholar] [CrossRef]
- Wen, J.-Q.; Zhang, J.-M.; Li, Z.-Q. Structural and electronic properties of Y-doped ZnO with different Y concentration. Optik 2018, 156, 297–302. [Google Scholar] [CrossRef]
- Zheng, J.; Song, J.; Jiang, Q.; Lian, J. Enhanced UV emission of Y-doped ZnO nanoparticles. Appl. Surf. Sci. 2012, 258, 6735–6738. [Google Scholar] [CrossRef]
- Senol, S.; Ozturk, O.; Terzioğlu, C. Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method. Ceram. Int. 2015, 41, 11194–11201. [Google Scholar] [CrossRef]
- Lee, W.; Chen, S.-Y.; Chen, Y.-S.; Dong, C.-L.; Lin, H.-J.; Chen, C.-T.; Gloter, A. Defect structure guided room temperature ferromagnetism of Y-doped CeO2 nanoparticles. J. Phys. Chem. C 2014, 118, 26359–26367. [Google Scholar] [CrossRef]
- Ma, G.; Shimura, T.; Iwahara, H. Simultaneous doping with La3+ and Y3+ for Ba2+-and Ce4+-sites in BaCeO3 and the ionic conduction. Solid State Ion. 1999, 120, 51–60. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Liu, Y.W.; Wang, C.H. The electrical and physical characteristics of Mg-doped ZnO sensing membrane in EIS (electrolyte–insulator–semiconductor) for glucose sensing applications. Results Phys. 2020, 16, 102976. [Google Scholar] [CrossRef]
- Tomer, V.K.; Singh, K.; Kaur, H.; Shorie, M.; Sabherwal, P. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens. Actuators B Chem. 2017, 253, 703–713. [Google Scholar] [CrossRef]
- Li, S.; Liu, A.; Yang, Z.; Zhao, L.; Wang, J.; Liu, F.; You, R.; He, J.; Wang, C.; Yan, X. Design and preparation of the WO3 hollow spheres@ PANI conducting films for room temperature flexible NH3 sensing device. Sens. Actuators B Chem. 2019, 289, 252–259. [Google Scholar] [CrossRef]
- Shivaramu, N.; Lakshminarasappa, B.; Nagabhushana, K.; Singh, F. Ion beam induced cubic to monoclinic phase transformation of nanocrystalline yttria. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2016, 379, 73–77. [Google Scholar] [CrossRef] [Green Version]
- De Rouffignac, P.; Park, J.-S.; Gordon, R.G. Atomic layer deposition of Y2O3 thin films from yttrium tris (N, N′-diisopropylacetamidinate) and Water. Chem. Mater. 2005, 17, 4808–4814. [Google Scholar] [CrossRef]
- Milanov, A.P.; Xu, K.; Cwik, S.; Parala, H.; de los Arcos, T.; Becker, H.-W.; Rogalla, D.; Cross, R.; Paul, S.; Devi, A. Sc2O3, Er2O3, and Y2O3 thin films by MOCVD from volatile guanidinate class of rare-earth precursors. Dalton Trans. 2012, 41, 13936–13947. [Google Scholar] [CrossRef]
- Yang, J.; Wang, R.; Yang, L.; Lang, J.; Wei, M.; Gao, M.; Liu, X.; Cao, J.; Li, X.; Yang, N. Tunable deep-level emission in ZnO nanoparticles via yttrium doping. J. Alloy. Compd. 2011, 509, 3606–3612. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, B.; Li, C.; Luo, W.; Wang, Z. Effect of W6+ dopant on the morphology and luminescence properties of NaLa (MoO4)2: Eu3+ phosphors. Mater. Res. Bull. 2018, 101, 319–323. [Google Scholar] [CrossRef]
- Ding, B.; Han, C.; Zheng, L.; Zhang, J.; Wang, R.; Tang, Z. Tuning oxygen vacancy photoluminescence in monoclinic Y2WO6 by selectively occupying yttrium sites using lanthanum. Sci. Rep. 2015, 5, 9443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Shim, G.; Park, J.; Seo, H. Tunable polaron-induced coloration of tungsten oxide via a multi-step control of the physicochemical property for the detection of gaseous F. Phys. Chem. Chem. Phys. 2018, 20, 16932–16938. [Google Scholar] [CrossRef]
- Kumar, N.; Kumar, J.; Panda, S. Back-channel electrolyte-gated a-IGZO dual-gate thin-film transistor for enhancement of pH sensitivity over nernst limit. IEEE Electron. Device Lett. 2016, 37, 500–503. [Google Scholar] [CrossRef]
- Wu, C.; Poghossian, A.; Bronder, T.S.; Schöning, M.J. Sensing of double-stranded DNA molecules by their intrinsic molecular charge using the light-addressable potentiometric sensor. Sens. Actuators B Chem. 2016, 229, 506–512. [Google Scholar] [CrossRef]
- Chen, H.J.; Huang, Y.-C.; Lee, T.N.; Chen, S.-Z. Characterizations of Electrolyte–Insulator–Semiconductor Sensors with Array Wells and a Stack-Sensing Membrane. IEEE Trans. Electron. Dev. 2020, 67, 3761–3766. [Google Scholar] [CrossRef]
- Fredj, Z.; Baraket, A.; Ben Ali, M.; Zine, N.; Zabala, M.; Bausells, J.; Elaissari, A.; Benson, N.U.; Jaffrezic-Renault, N.; Errachid, A. Capacitance electrochemical pH sensor based on different hafnium dioxide (HfO2) thicknesses. Chemosensors 2021, 9, 13. [Google Scholar] [CrossRef]
- Pan, T.-M.; Garu, P.; Her, J.-L. Influence of Ti content on sensing performance of LaTixOy sensing membrane based electrolyte-insulator-semiconductor pH sensor. Mater. Chem. Phys. 2021, 269, 124774. [Google Scholar] [CrossRef]
- Kao, C.-H.; Chen, K.-L.; Chen, J.-R.; Chen, S.-M.; Kuo, Y.-W.; Lee, M.-L.; Lee, L.J.-H.; Chen, H. Comparison of magnesium and titanium doping on material properties and ph sensing performance on Sb2O3 membranes in electrolyte-insulator-semiconductor structure. Membranes 2022, 12, 25. [Google Scholar] [CrossRef]
- Vasudev, M.C.; Anderson, K.D.; Bunning, T.J.; Tsukruk, V.V.; Naik, R.R. Exploration of plasma-enhanced chemical vapor deposition as a method for thin-film fabrication with biological applications. ACS Appl. Mater. Interfaces 2013, 5, 3983–3994. [Google Scholar] [CrossRef]
- Van Den Vlekkert, H.; Bousse, L.; De Rooij, N. The temperature dependence of the surface potential at the Al2O3/electrolyte interface. J. Colloid Interface Sci. 1988, 122, 336–345. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kao, C.-H.; Liao, Y.-C.; Chuang, C.-C.; Huang, Y.-H.; Lee, C.-H.; Chen, S.-M.; Lee, M.-L.; Chen, H. Influence of Y Doping on WO3 Membranes Applied in Electrolyte-Insulator-Semiconductor Structures. Membranes 2022, 12, 328. https://doi.org/10.3390/membranes12030328
Kao C-H, Liao Y-C, Chuang C-C, Huang Y-H, Lee C-H, Chen S-M, Lee M-L, Chen H. Influence of Y Doping on WO3 Membranes Applied in Electrolyte-Insulator-Semiconductor Structures. Membranes. 2022; 12(3):328. https://doi.org/10.3390/membranes12030328
Chicago/Turabian StyleKao, Chyuan-Haur, Yu-Ching Liao, Chi-Chih Chuang, Yi-Hsuan Huang, Chang-Hsueh Lee, Shih-Ming Chen, Ming-Ling Lee, and Hsiang Chen. 2022. "Influence of Y Doping on WO3 Membranes Applied in Electrolyte-Insulator-Semiconductor Structures" Membranes 12, no. 3: 328. https://doi.org/10.3390/membranes12030328
APA StyleKao, C. -H., Liao, Y. -C., Chuang, C. -C., Huang, Y. -H., Lee, C. -H., Chen, S. -M., Lee, M. -L., & Chen, H. (2022). Influence of Y Doping on WO3 Membranes Applied in Electrolyte-Insulator-Semiconductor Structures. Membranes, 12(3), 328. https://doi.org/10.3390/membranes12030328