Asymmetric Cellulose/Carbon Nanotubes Membrane with Interconnected Pores Fabricated by Droplet Method for Solar-Driven Interfacial Evaporation and Desalination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Acidification of Carbon Nanotubes
2.3. Fabrication of Cellulose/CNTs Membrane
2.4. Characterization
2.5. Solar-Driven Interfacial Evaporation Experiments
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.; Bae, J.; Zhou, X.; Guo, Y.; Yu, G. Nanostructured Functional Hydrogels as an Emerging Platform for Advanced Energy Technologies. Adv. Mater. 2018, 30, e1801796. [Google Scholar] [CrossRef] [PubMed]
- Dao, V.-D.; Vu, N.H.; Yun, S. Recent Advances and Challenges for Solar-Driven Water Evaporation System toward Applications. Nano Energy 2020, 68, 104324. [Google Scholar] [CrossRef]
- Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-Driven Interfacial Evaporation. Nat. Energy 2018, 3, 1031–1041. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Solar-Driven Photothermal Nanostructured Materials Designs and Prerequisites for Evaporation and Catalysis Applications. Mater. Horiz. 2018, 5, 323–343. [Google Scholar] [CrossRef]
- Tan, Z.; Chen, S.; Peng, X.; Zhang, L.; Gao, C. Polyamide Membranes with Nanoscale Turing Structures for Water Purification. Science 2018, 360, 518–521. [Google Scholar] [CrossRef] [Green Version]
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for Next-Generation Desalination and Water Purification Membranes. Nat. Rev. Mater. 2016, 1, 16018. [Google Scholar] [CrossRef]
- Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Recent Progress in Solar-Driven Interfacial Water Evaporation: Advanced Designs and Applications. Nano Energy 2019, 57, 507–518. [Google Scholar] [CrossRef]
- Wang, Z.; Elimelech, M.; Lin, S. Environmental Applications of Interfacial Materials with Special Wettability. Environ. Sci. Technol. 2016, 50, 2132–2150. [Google Scholar] [CrossRef] [Green Version]
- Ghim, D.; Wu, X.; Suazo, M.; Jun, Y.-S. Achieving Maximum Recovery of Latent Heat in Photothermally Driven Multi-Layer Stacked Membrane Distillation. Nano Energy 2021, 80, 105444. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Kazmerski, L.L. Energy Consumption and Water Production Cost of Conventional and Renewable-Energy-Powered Desalination Processes. Renew. Sustain. Energ. Rev. 2013, 24, 343–356. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Cai, P.; Wen, Z. An Electrochemically Neutralized Energy-Assisted Low-Cost Acid-Alkaline Electrolyzer for Energy-Saving Electrolysis Hydrogen Generation. J. Mater. Chem. A 2018, 6, 4948–4954. [Google Scholar] [CrossRef]
- Liu, X.; Mishra, D.D.; Wang, X.; Peng, H.; Hu, C. Towards Highly Efficient Solar-Driven Interfacial Evaporation for Desalination. J. Mater. Chem. A 2020, 8, 17907–17937. [Google Scholar] [CrossRef]
- Kim, C.; Shin, D.; Baitha, M.N.; Ryu, Y.; Urbas, A.M.; Park, W.; Kim, K. High-Efficiency Solar Vapor Generation Boosted by a Solar-Induced Updraft with Biomimetic 3D Structures. ACS Appl. Mater. Interfaces 2021, 13, 29602–29611. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, T.; Nandakumar, D.K.; Tan, S.C. Structure Architecting for Salt-Rejecting Solar Interfacial Desalination to Achieve High-Performance Evaporation With In Situ Energy Generation. Adv. Sci. 2020, 7, 1903478. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, W.; Zada, I.; Zhang, Y.; Gu, J.; Liu, Q.; Su, H.; Pantelić, D.; Jelenković, B.; Zhang, D. 3D-Structured Carbonized Sunflower Heads for Improved Energy Efficiency in Solar Steam Generation. ACS Appl. Mater. Interfaces 2020, 12, 2171–2179. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, Y.; Guo, Q.; Cai, X.; Xiao, J.; Ding, Z.; Yang, J. Macroporous Double-Network Hydrogel for High-Efficiency Solar Steam Generation Under 1 Sun Illumination. ACS Appl. Mater. Interfaces 2018, 10, 10998–11007. [Google Scholar] [CrossRef]
- Shi, Y.; Li, R.; Jin, Y.; Zhuo, S.; Shi, L.; Chang, J.; Hong, S.; Ng, K.-C.; Wang, P. A 3D Photothermal Structure toward Improved Energy Efficiency in Solar Steam Generation. Joule 2018, 2, 1171–1186. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, Q.; Wu, S.; Xu, B.; Xu, H. Multilayer Polypyrrole Nanosheets with Self-Organized Surface Structures for Flexible and Efficient Solar–Thermal Energy Conversion. Adv. Mater. 2019, 31, 1807716. [Google Scholar] [CrossRef]
- Wu, S.; Xiong, G.; Yang, H.; Tian, Y.; Gong, B.; Wan, H.; Wang, Y.; Fisher, T.S.; Yan, J.; Cen, K.; et al. Scalable Production of Integrated Graphene Nanoarchitectures for Ultrafast Solar-Thermal Conversion and Vapor Generation. Matter 2019, 1, 1017–1032. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Lou, D.; Liang, E.; Gu, Y.; Wang, Z.; Shi, X.; Bradley, R.; Zhao, B.; Wu, W. Nanosecond Laser Patterned Porous Graphene from Monolithic Mesoporous Carbon for High-Performance Solar Thermal Interfacial Evaporation. Adv. Mater. Technol. 2021, 6, 2101052. [Google Scholar] [CrossRef]
- Zhu, Z.; Xu, Y.; Luo, Y.; Wang, W.; Chen, X. Porous Evaporators with Special Wettability for Low-Grade Heat-Driven Water Desalination. J. Mater. Chem. A 2021, 9, 702–726. [Google Scholar] [CrossRef]
- Elma, M.; Rampun, E.L.A.; Rahma, A.; Assyaifi, Z.L.; Sumardi, A.; Lestari, A.E.; Saputro, G.S.; Bilad, M.R.; Darmawan, A. Carbon Templated Strategies of Mesoporous Silica Applied for Water Desalination: A Review. J. Water Process Eng. 2020, 38, 101520. [Google Scholar] [CrossRef]
- Zhou, S. Novel Janus Membrane with Unprecedented Osmosis Transport Performance. J. Mater. Chem. A 2019, 7, 632–638. [Google Scholar] [CrossRef]
- Huang, Y. Robust Preparation of Tubular PTFE/FEP Ultrafine Fibers-Covered Porous Membrane by Electrospinning for Continuous Highly Effective Oil/Water Separation. J. Membr. Sci. 2018, 10, 87–96. [Google Scholar] [CrossRef]
- Liu, P.-F.; Miao, L.; Deng, Z.; Zhou, J.; Su, H.; Sun, L.; Tanemura, S.; Cao, W.; Jiang, F.; Zhao, L.-D. A Mimetic Transpiration System for Record High Conversion Efficiency in Solar Steam Generator under One-Sun. Mater. Today Energy 2018, 8, 166–173. [Google Scholar] [CrossRef]
- Li, X.; Lin, R.; Ni, G.; Xu, N.; Hu, X.; Zhu, B.; Lv, G.; Li, J.; Zhu, S.; Zhu, J. Three-Dimensional Artificial Transpiration for Efficient Solar Waste-Water Treatment. Natl. Sci. Rev. 2018, 5, 70–77. [Google Scholar] [CrossRef]
- Jiang, Q.; Gholami Derami, H.; Ghim, D.; Cao, S.; Jun, Y.-S.; Singamaneni, S. Polydopamine-Filled Bacterial Nanocellulose as a Biodegradable Interfacial Photothermal Evaporator for Highly Efficient Solar Steam Generation. J. Mater. Chem. A 2017, 5, 18397–18402. [Google Scholar] [CrossRef]
- Athanasekou, C.; Sapalidis, A.; Katris, I.; Savopoulou, E.; Beltsios, K.; Tsoufis, T.; Kaltzoglou, A.; Falaras, P.; Bounos, G.; Antoniou, M.; et al. Mixed Matrix PVDF/Graphene and Composite-Skin PVDF/Graphene Oxide Membranes Applied in Membrane Distillation: Enhanced Flux Properties and Scaling Behavior of Mixed Matrix PVDF/Graphene and Composite-Skin PVDF/Graphene Oxide Membranes in Direct Contact Membran. Polym. Eng. Sci. 2019, 59, E262–E278. [Google Scholar] [CrossRef]
- Li, Y.; Qi, L. Advances in Fabrication of Two-dimensionally Ordered Porous Membranes by Nanosphere Lithography at the Gas-liquid Interface. Acta Chim. Sin. 2015, 73, 869. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Cao, Y.; Zhao, H.; Wang, L. Interfacial Morphology between the Two Layers of the Dual-Layer Asymmetric Hollow Fiber Membranes Fabricated by Co-Extrusion and Dry-Jet Wet-Spinning Phase-Inversion Techniques. J. Membr. Sci. 2013, 444, 482–492. [Google Scholar] [CrossRef]
- Wei, C.; Cheng, Q.; Lin, L. One-Step Fabrication of Recyclable Polyimide Nanofiltration Membranes with High Selectivity and Performance Stability by a Phase Inversion-Based Process. J. Mater.Sci. 2018, 53, 11104–11115. [Google Scholar] [CrossRef]
- Fen’ko, L.A.; Semenkevich, N.G.; Bil’dyukevich, A.V. The Kinetics of Membrane Pore Structure Formation by Phase Inversion. Pet. Chem. 2011, 51, 527–535. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, Z.; Wei, W.; Li, Z. Preparation and Characterization of Plla Composite Scaffolds by ScCO2-Induced Phase Separation. Polym. Compos. 2012, 33, 1667–1671. [Google Scholar] [CrossRef]
- Chen, X.; Shi, C.; Wang, Z.; He, Y.; Bi, S.; Feng, X.; Chen, L. Structure and Performance of Poly(Vinylidene Fluoride) Membrane with Temperature-Sensitive Poly(n-Isopropylacrylamide) Homopolymers in Membrane Pores. Polym. Compos. 2013, 34, 457–467. [Google Scholar] [CrossRef]
- Roy, K.J.; Anjali, T.V.; Sujith, A. Asymmetric Membranes Based on Poly(Vinyl Chloride): Effect of Molecular Weight of Additive and Solvent Power on the Morphology and Performance. J. Mater. Sci. 2017, 52, 5708–5725. [Google Scholar] [CrossRef]
- Watanabe, T.; Yasuhara, Y.; Ono, T. Multilayer Poly(Ionic Liquid) Microcapsules Prepared by Sequential Phase Separation and Subsequent Photopolymerization in Ternary Emulsion Droplets. ACS Appl. Polym. Mater. 2022, 4, 348–356. [Google Scholar] [CrossRef]
- Wang, F.; Altschuh, P.; Ratke, L.; Zhang, H.; Selzer, M.; Nestler, B. Progress Report on Phase Separation in Polymer Solutions. Comput. Mater. Sci. 2019, 31, e1806733. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q. The Formation of Regular Porous Polyurethane Membrane via Phase Separation Induced by Water Droplets from Ultrasonic Atomizer. Mater. Lett. 2013, 100, 23–25. [Google Scholar] [CrossRef]
- Su, Y.; Beltsios, K.G.; Cheng, L. Phase Inversion in Reusable Baths (PIRBs): A New Polymer Membrane Fabrication Method as Applied to EVOH. J. Appl. Polym. Sci. 2019, 136, 48193. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Liu, C.; Xu, Y.; Zhuang, Y.; Zhou, Y.; Gu, S.; Xu, W.; Yang, H. Effect of Temperature on the Morphology of Poly (Lactic Acid) Porous Membrane Prepared via Phase Inversion Induced by Water Droplets. Int. J. Biol. Macromol. 2019, 133, 902–910. [Google Scholar] [CrossRef]
- Yang, H.; Ye, Q.; Zhou, Y.; Xiang, Y.; Xing, Q.; Dong, X.; Wang, D.; Xu, W. Formation, Morphology and Control of High-Performance Biomedical Polyurethane Porous Membranes by Water Micro-Droplet Induced Phase Inversion. Polymer 2014, 55, 5500–5508. [Google Scholar] [CrossRef]
- Zhu, R.; Wang, D.; Liu, Y.; Liu, M.; Fu, S. Bifunctional Superwetting Carbon Nanotubes/Cellulose Composite Membrane for Solar Desalination and Oily Seawater Purification. Chem. Eng. J. 2022, 433, 133510. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Q.; Fan, J.; Wang, W.; Yu, D. Simple and Robust MXene/Carbon Nanotubes/Cotton Fabrics for Textile Wastewater Purification via Solar-Driven Interfacial Water Evaporation. Sep. Purif. Technol. 2021, 254, 117615. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, M.; Shen, P.; Uytterhoeven, C.; Mamrol, N.; Shen, J.; Gao, C.; Van der Bruggen, B. Composite Anti-Scaling Membrane Made of Interpenetrating Networks of Nanofibers for Selective Separation of Lithium. J. Membr. Sci. 2021, 618, 118668. [Google Scholar] [CrossRef]
- Son, M.; Cho, K.H.; Jeong, K.; Park, J. Membrane and Electrochemical Processes for Water Desalination: A Short Perspective and the Role of Nanotechnology. Membranes 2020, 10, 280. [Google Scholar] [CrossRef]
- Ye, B.; Liu, H.; Ye, M.; Zeng, C.; Luo, H.; Liu, G.; Zhang, R.; Huang, H. Seawater Desalination Using the Microbial Electrolysis Desalination and Chemical-Production Cell with Monovalent Selective Cation Exchange Membrane. Desalination 2022, 523, 115394. [Google Scholar] [CrossRef]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M.V. Preparation and Characterization of Membranes Formed by Nonsolvent Induced Phase Separation: A Review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
- Guillen, G.R.; Ramon, G.Z.; Kavehpour, H.P.; Kaner, R.B.; Hoek, E.M.V. Direct Microscopic Observation of Membrane Formation by Nonsolvent Induced Phase Separation. J. Membr. Sci. 2013, 431, 212–220. [Google Scholar] [CrossRef]
- Menut, P.; Su, Y.S.; Chinpa, W.; Pochat-Bohatier, C.; Deratani, A.; Wang, D.M.; Huguet, P.; Kuo, C.Y.; Lai, J.Y.; Dupuy, C. A Top Surface Liquid Layer during Membrane Formation Using Vapor-Induced Phase Separation (VIPS)—Evidence and Mechanism of Formation. J. Membr. Sci. 2008, 310, 278–288. [Google Scholar] [CrossRef]
- Gao, J.; Li, W.; Wong, J.S.-P.; Hu, M.; Li, R.K.Y. Controllable Morphology and Wettability of Polymer Microspheres Prepared by Nonsolvent Assisted Electrospraying. Polymer 2014, 55, 2913–2920. [Google Scholar] [CrossRef]
- Zang, L.; Sun, L.; Zhang, S. Nanofibrous Hydrogel-Reduced Graphene Oxide Membranes for Effective Solar-Driven Interfacial Evaporation and Desalination. Chem. Eng. J. 2021, 422, 129998. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Zang, L.; Dou, T.; Xin, Y.; Zhang, Y.; Zhao, D.; Sun, L. Asymmetric Cellulose/Carbon Nanotubes Membrane with Interconnected Pores Fabricated by Droplet Method for Solar-Driven Interfacial Evaporation and Desalination. Membranes 2022, 12, 369. https://doi.org/10.3390/membranes12040369
Yang Z, Zang L, Dou T, Xin Y, Zhang Y, Zhao D, Sun L. Asymmetric Cellulose/Carbon Nanotubes Membrane with Interconnected Pores Fabricated by Droplet Method for Solar-Driven Interfacial Evaporation and Desalination. Membranes. 2022; 12(4):369. https://doi.org/10.3390/membranes12040369
Chicago/Turabian StyleYang, Zhiyu, Linlin Zang, Tianwei Dou, Yajing Xin, Yanhong Zhang, Dongyu Zhao, and Liguo Sun. 2022. "Asymmetric Cellulose/Carbon Nanotubes Membrane with Interconnected Pores Fabricated by Droplet Method for Solar-Driven Interfacial Evaporation and Desalination" Membranes 12, no. 4: 369. https://doi.org/10.3390/membranes12040369
APA StyleYang, Z., Zang, L., Dou, T., Xin, Y., Zhang, Y., Zhao, D., & Sun, L. (2022). Asymmetric Cellulose/Carbon Nanotubes Membrane with Interconnected Pores Fabricated by Droplet Method for Solar-Driven Interfacial Evaporation and Desalination. Membranes, 12(4), 369. https://doi.org/10.3390/membranes12040369