Optimization of Nanofiltration Hollow Fiber Membrane Fabrication Process Based on Response Surface Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of NF Membrane
2.3. Membrane Performance Test
2.4. Single-Factor Experiments
2.5. Response Surface Experiments
3. Results and Discussion
3.1. Single-Factor Experiments
3.1.1. Salt-Rejection Experiment
3.1.2. Multiple Linear Regression Analysis
3.2. Response Surface Experiments
3.2.1. RSM Modelling and ANOVA Analysis
3.2.2. Effect of LBL Deposition Condition on Membrane Performance by RSM Analysis
3.2.3. Optimization of the LBL Deposition Process
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oatley-Radcliffe, D.L.; Walters, M.; Ainscough, T.J.; Williams, P.M.; Mohammad, A.W.; Hilal, N. Nanofiltration membranes and processes: A review of research trends over the past decade. J. Water Process Eng. 2017, 19, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fatah, M.A. Nanofiltration systems and applications in wastewater treatment: Review article. Ain Shams Eng. J. 2018, 9, 3077–3092. [Google Scholar] [CrossRef]
- Song, Y.; Li, T.; Zhou, J.; Li, Z.; Gao, C. Analysis of nanofiltration membrane performance during softening process of simulated brackish groundwater. Desalination 2016, 399, 159–164. [Google Scholar] [CrossRef]
- Bandehali, S.; Parvizian, F.; Ruan, H.; Moghadassi, A.; Shen, J.; Figoli, A.; Adeleye, A.S.; Hilal, N.; Matsuura, T.; Drioli, E.; et al. A planned review on designing of high-performance nanocomposite nanofiltration membranes for pollutants removal from water. J. Ind. Eng. Chem. 2021, 101, 78–125. [Google Scholar] [CrossRef]
- Xu, G.R.; Wang, S.H.; Zhao, H.L.; Wu, S.B.; Xu, J.M.; Li, L.; Liu, X.Y. Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes. J. Membr. Sci. 2015, 493, 428–443. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, N.; Li, Z.; Gao, Z.; Yan, T.; Qian, Z.; Xu, S.; Wang, J. Brush assisted layer-by-layer assembled lignin/polyelectrolyte membrane. Mater. Lett. 2021, 292, 129650. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, G.Q.; Yang, X.; Deng, H. Preparation of Layer-by-Layer Nanofiltration Membranes by Dynamic Deposition and Crosslinking. Membranes 2019, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Bruening, M.L.; Dotzauer, D.M.; Jain, P.; Ouyang, L.; Baker, G.L. Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 2008, 24, 7663–7673. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, M.; Ji, C.H.; Xu, X.R.; Ma, X.H.; Xu, Z.L. Multilayer assembled CS-PSS/ceramic hollow fiber membranes for pervaporation dehydration. Sep. Purif. Technol. 2018, 203, 84–92. [Google Scholar] [CrossRef]
- Li, X.; Xu, Y.; Goh, K.; Chong, T.H.; Wang, R. Layer-by-layer assembly based low pressure biocatalytic nanofiltration membranes for micropollutants removal. J. Membr. Sci. 2020, 615, 118514. [Google Scholar] [CrossRef]
- Remmen, K.; Müller, B.; Köser, J.; Wessling, M.; Wintgens, T. Phosphorus recovery in an acidic environment using layer-by-layer modified membranes. J. Membr. Sci. 2019, 582, 254–263. [Google Scholar] [CrossRef]
- Huang, Y.; Sun, J.; Wu, D.; Feng, X. Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes. Sep. Purif. Technol. 2018, 207, 142–150. [Google Scholar] [CrossRef]
- Ying, A.L.Y.; Seman, M.N.A. Effect of number of layers and deposition time on layer-by-layer (LbL) composite forward osmosis membrane. Mater. Today Proc. 2021, 41, 9–13. [Google Scholar] [CrossRef]
- Cheng, W.; Liu, C.; Tong, T.; Epsztein, R.; Sun, M.; Verduzco, R.; Ma, J.; Elimelech, M. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength. J. Membr. Sci. 2018, 559, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, D.; Xiao, H.; Zhang, H.; Cao, S.; Chen, L.; Ni, Y.; Huang, L. Ultra-low pressure cellulose-based nanofiltration membrane fabricated on layer-by-layer assembly for efficient sodium chloride removal. Carbohydr. Polym. 2021, 255, 117352. [Google Scholar] [CrossRef] [PubMed]
- Vild, A.; Teixeira, S.; Kühn, K.; Cuniberti, G.; Sencadas, V. Orthogonal experimental design of titanium dioxide—Poly(methyl methacrylate) electrospun nanocomposite membranes for photocatalytic applications. J. Environ. Chem. Eng. 2016, 4, 3151–3158. [Google Scholar] [CrossRef] [Green Version]
- Jawad, J.; Hawari, A.H.; Zaidi, S. Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux. Desalination 2020, 484, 114427. [Google Scholar] [CrossRef]
- Esmaeili-Faraj, S.H.; Hassanzadeh, A.; Shakeriankhoo, F.; Hosseini, S.; Vaferi, B. Diesel fuel desulfurization by alumina/polymer nanocomposite membrane: Experimental analysis and modeling by the response surface methodology. Chem. Eng. Processing-Process Intensif. 2021, 164, 108396. [Google Scholar] [CrossRef]
- Jang, H.; Park, S.J.; Kim, J. Response surface methodology to investigate the effects of operational parameters on membrane fouling and organic matter rejection in hard-shell encased hollow-fiber membrane. Chemosphere 2022, 287 Pt 2, 132132. [Google Scholar] [CrossRef]
- Wang, C.; Wei, A.; Wu, H.; Qu, F.; Chen, W.; Liang, H.; Li, G. Application of response surface methodology to the chemical cleaning process of ultrafiltration membrane. Chin. J. Chem. Eng. 2016, 24, 651–657. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Z.; Jaffrin, M.Y.; Ding, L. Effects of Hydraulic Conditions on Effluent Quality, Flux Behavior, and Energy Consumption in a Shear-Enhanced Membrane Filtration Using Box-Behnken Response Surface Methodology. Ind. Eng. Chem. Res. 2014, 53, 7176–7185. [Google Scholar] [CrossRef]
- Asif, M.B.; Habib, R.; Iftekhar, S.; Khan, Z.; Majeed, N. Optimization of the operational parameters in a submerged membrane bioreactor using Box Behnken response surface methodology: Membrane fouling control and effluent quality. Desalination Water Treat. 2017, 82, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Khayet, M.; Seman, M.N.A.; Hilal, N. Response surface modeling and optimization of composite nanofiltration modified membranes. J. Membr. Sci. 2010, 349, 113–122. [Google Scholar] [CrossRef]
- Wang, C.; Zuo, Q.; Wang, L.; Long, B.; Salleh, K.M.; Anuar, N.I.S.; Zakaria, S. Diameter optimization of polyvinyl alcohol/sodium alginate fiber membranes using response surface methodology. Mater. Chem. Phys. 2021, 271, 124969. [Google Scholar] [CrossRef]
- Liu, C.; Shi, L.; Wang, R. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO42− in feed water. J. Membr. Sci. 2015, 486, 169–176. [Google Scholar] [CrossRef]
- Labban, O.; Liu, C.; Chong, T.H. Fundamentals of low-pressure nanofiltration: Membrane characterization, modeling, and understanding the multi-ionic interactions in water softening. J. Membr. Sci. 2017, 521, 18–32. [Google Scholar] [CrossRef]
- Labban, O.; Liu, C.; Chong, T.H.; Lienhard, J.H. Relating transport modeling to nanofiltration membrane fabrication: Navigating the permeability-selectivity trade-off in desalination pretreatment. J. Membr. Sci. 2018, 554, 26–38. [Google Scholar] [CrossRef] [Green Version]
- Souza, A.S.; dos Santos, W.N.; Ferreira, S.L. Ferreira, Application of Box–Behnken design in the optimisation of an on-line pre-concentration system using knotted reactor for cadmium determination by flame atomic absorption spectrometry. Spectrochim. Acta Part B Atomic Spectrosc. 2005, 60, 737–742. [Google Scholar] [CrossRef] [Green Version]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef]
- Reurink, D.M.; Willott, J.D.; Roesink, H.D.W.; De Vos, W.M. Role of Polycation and Cross-Linking in Polyelectrolyte Multilayer Membranes. ACS Appl. Polym. Mater. 2020, 2, 5278–5289. [Google Scholar] [CrossRef]
- Senthil, T.; Anandhan, S. Electrospinning of non-woven poly(styrene-co-acrylonitrile) nanofibrous webs for corrosive chemical filtration: Process evaluation and optimization by Taguchi and multiple regression analyses. J. Electrost. 2015, 73, 43–55. [Google Scholar] [CrossRef]
- Khalifa, A.E.; Lawal, D.U. Application of response surface and Taguchi optimization techniques to air gap membrane distillation for water desalinationA comparative study. Desalination Water Treat. 2016, 57, 28513–28530. [Google Scholar] [CrossRef]
- Zheng, Q.; Hu, Z.; Li, P.; Ni, L.; Huang, G.; Yao, Y.; Zhou, L. Effects of air parameters on sewage sludge drying characteristics and regression analyses of drying model coefficients. Appl. Therm. Eng. 2021, 198, 117501. [Google Scholar] [CrossRef]
- Nakamura, K.; Yasutaka, T.; Kuwatani, T.; Komai, T. Development of a predictive model for lead, cadmium and fluorine soil–water partition coefficients using sparse multiple linear regression analysis. Chemosphere 2017, 186, 501–509. [Google Scholar] [CrossRef]
- Rostamian, H.; Lotfollahi, M.N. A novel statistical approach for prediction of thermal conductivity of CO2 by Response Surface Methodology. Phys. A Stat. Mech. Its Appl. 2019, 527, 121175. [Google Scholar] [CrossRef]
- Fu, J.; Fares, H.M.; Schlenoff, J.B. Ion-Pairing Strength in Polyelectrolyte Complexes. Macromolecules 2017, 50, 1066–1074. [Google Scholar] [CrossRef]
- Rajabzadeh, S.; Liu, C.; Shi, L.; Wang, R. Preparation of low-pressure water softening hollow fiber membranes by polyelectrolyte deposition with two bilayers. Desalination 2014, 344, 64–70. [Google Scholar] [CrossRef]
- Krasemann, L.; Tieke, B. Selective Ion Transport across Self-Assembled Alternating Multilayers of Cationic and Anionic Polyelectrolytes. Langmuir 2011, 16, 287–290. [Google Scholar] [CrossRef]
- Schönhoff, M.; Ball, V.; Bausch, A.R.; Dejugnat, C.; Delorme, N.; Glinel, K.; Klitzing, R.V.; Steitz, R. Hydration and internal properties of polyelectrolyte multilayers. Colloids Surf. A Physicochem. Eng. Asp. 2007, 303, 14–29. [Google Scholar] [CrossRef]
Variables | Symbols | Values | ||||
---|---|---|---|---|---|---|
PSS (g·L−1) | X1 | 4.00 | 6.00 | 8.00 | 10.00 | 12.00 |
NaClPSS (mol·L−1) | X2 | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 |
PAH (g·L−1) | X3 | 4.00 | 6.00 | 8.00 | 10.00 | 12.00 |
NaClPAH (mol·L−1) | X4 | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 |
Layers | X5 | 1.50 | 2.00 | 2.50 | 3.00 | 3.50 |
GA (%) | X6 | 0.50 | 1.00 | 1.50 | 2.00 | 2.50 |
Variables | Symbols | Actual Values of Coded Levels | ||
---|---|---|---|---|
−1.00 | 0.00 | 1.00 | ||
PAH (g·L−1) | X3 | 4.00 | 8.00 | 12.00 |
NaClPAH (mol·L−1) | X4 | 0.50 | 1.50 | 2.50 |
GA (%) | X6 | 0.50 | 1.50 | 2.50 |
Predictor | Coefficient | Standard Error | t-Value | p-Value * |
---|---|---|---|---|
X1 | −0.824 | 0.676 | −1.218 | 0.236 |
X2 | 1.705 | 2.329 | 0.732 | 0.472 |
X3 | −1.857 | 0.676 | −2.475 | 0.012 |
X4 | −3.337 | 2.329 | −1.433 | 0.165 |
X5 | 11.871 | 3.113 | 3.813 | 0.001 |
X6 | 6.057 | 1.761 | 3.439 | 0.002 |
Source | Sum of Squares | Df | Mean Square | F Value | p-Value (Prob > F) | Significance |
---|---|---|---|---|---|---|
Model | 671.45 | 9 | 74.61 | 25.12 | 0.0002 | ** |
X3 | 251.72 | 1 | 251.72 | 84.74 | <0.0001 | ** |
X4 | 66.17 | 1 | 66.17 | 22.28 | 0.0022 | ** |
X6 | 84.18 | 1 | 84.18 | 28.34 | 0.0011 | ** |
X3 X4 | 52.15 | 1 | 52.15 | 17.56 | 0.0041 | ** |
X3 X6 | 25.62 | 1 | 25.62 | 8.62 | 0.0218 | * |
X4 X6 | 20.29 | 1 | 20.29 | 6.83 | 0.0347 | * |
X32 | 274.06 | 1 | 274.06 | 92.26 | <0.0001 | ** |
X42 | 3.710 | 1 | 3.71 | 1.25 | 0.3004 | - |
X62 | 12.70 | 1 | 12.70 | 4.28 | 0.0774 | - |
Residual | 20.79 | 7 | 2.97 | |||
Lack of Fit | 10.04 | 3 | 3.35 | 1.25 | 0.4039 | - |
Pure Error | 10.75 | 4 | 2.69 | |||
Total | 692.24 | 16 | ||||
R2 = 0.97 Adj. R2 = 0.93 |
Source | Sum of Squares | Df | Mean Square | F Value | p-Value (Prob > F) | Significance |
---|---|---|---|---|---|---|
Model | 29.35 | 9 | 3.26 | 11.59 | 0.0020 | ** |
X3 | 2.60 | 1 | 2.60 | 9.23 | 0.0189 | * |
X4 | 13.64 | 1 | 13.64 | 48.48 | 0.0002 | ** |
X6 | 11.73 | 1 | 11.73 | 41.69 | 0.0003 | ** |
X3X4 | 0.59 | 1 | 0.59 | 2.09 | 0.1915 | - |
X3X6 | 0.22 | 1 | 0.22 | 0.80 | 0.4019 | - |
X4X6 | 2.66 | 1 | 2.66 | 9.47 | 0.0179 | * |
X32 | 4.20 | 1 | 4.20 | 14.92 | 0.0062 | ** |
X42 | 0.21 | 1 | 0.21 | 0.74 | 0.4167 | - |
X62 | 2.04 | 1 | 2.04 | 7.24 | 0.0311 | * |
Residual | 1.97 | 7 | 0.28 | |||
Lack of Fit | 1.41 | 3 | 0.47 | 3.36 | 0.1363 | - |
Pure Error | 0.56 | 4 | 0.14 | |||
Total | 31.32 | 16 | ||||
R2 = 0.94 Adj. R2 = 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Liu, C.; Fan, M.; Liu, M.; Shen, S. Optimization of Nanofiltration Hollow Fiber Membrane Fabrication Process Based on Response Surface Method. Membranes 2022, 12, 374. https://doi.org/10.3390/membranes12040374
Wang M, Liu C, Fan M, Liu M, Shen S. Optimization of Nanofiltration Hollow Fiber Membrane Fabrication Process Based on Response Surface Method. Membranes. 2022; 12(4):374. https://doi.org/10.3390/membranes12040374
Chicago/Turabian StyleWang, Mingshu, Chang Liu, Min Fan, Meiling Liu, and Songtao Shen. 2022. "Optimization of Nanofiltration Hollow Fiber Membrane Fabrication Process Based on Response Surface Method" Membranes 12, no. 4: 374. https://doi.org/10.3390/membranes12040374
APA StyleWang, M., Liu, C., Fan, M., Liu, M., & Shen, S. (2022). Optimization of Nanofiltration Hollow Fiber Membrane Fabrication Process Based on Response Surface Method. Membranes, 12(4), 374. https://doi.org/10.3390/membranes12040374