Effect of UF Membrane Rotation on Filtration Performance Using High Concentration Latex Emulsion Solution
Abstract
:1. Introduction
2. Experiment
2.1. Experimental Equipment
2.2. Experimental Method
2.3. Experimental Conditions
3. Results and Discussion
3.1. Changes Transmembrane Pressure Due to Rotation
3.2. Relationship between Transmembrane Pressure and Permeate Flux
3.3. Relationship between Rotation Number and Permeate Flux
3.4. Relation between Membrane Rotation Velocity and Permeate Flux
3.5. Relationship between Share Rate and Permeate Flux
3.6. Index for Scale-Up Procedure
4. Conclusions
- The relationship between the operating pressure and the pure water permeate flux changes when rotating the membrane. This is due to the fact that the pressure of the permeate side increases due to the centrifugal force acting on the rotation of the membrane. This was confirmed by the good agreement between the experimental value and the value obtained from the equation representing the pressure difference generated by the action of centrifugal forces between any two points on the rotating disk.
- The permeate flux of the rotating membrane is almost constant at certain rotation numbers at low latex concentrations but continues to rise at high concentrations. This is due to the fact that the higher the concentration, the greater the effect of membrane rotation on the permeate flux. Under any operating condition and membrane diameter, the permeate flux of the latex solution increases when increasing the membrane rotation number and rotation velocity. However, the relationship between the rotation parameter and the permeate flux changes when the membrane diameter changes. This suggests that neither the rotation number nor the rotation velocity of the membrane is a parameter that accurately represents the influence of membrane rotation on the membrane separation characteristics.
- The permeate flux of the latex solution increases when increasing the average shear rate applied to the fluid near the membrane surface under all operating conditions. Furthermore, since the relationship between the average shear rate and the permeate flux does not change even when the membrane diameter changes, the average shear rate is a parameter that accurately represents the effect of membrane rotation on the permeate flux.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murase, T.; Pradistsuwana, C.; Iritani, E.; Kano, K. Dynamic Microfiltration of Dilute Slurries with a Rotating Ceramic Membrane. J. Membr. Sci. 1991, 62, 187–199. [Google Scholar] [CrossRef]
- Vigo, F.; Uliana, C.; Lupino, P. The Performance of a Rotating Module in Oily Emulsion Ultrafiltration. Sep. Sci. Technol. 1985, 20, 213–230. [Google Scholar] [CrossRef]
- Vigo, F.; Uliana, C. Influence of the Vibratory at the Membrane Surface on the Performance of the Ultrafiltration Rotating Module. Sep. Sci. Technol. 1986, 21, 367–381. [Google Scholar] [CrossRef]
- Ruigomez, I.; Gonzales, E.; Galan, P.; Rodriguez-Sevilla, J.; Vera, L. A Rotating Hollow Fiber Module for Fouling Control in Direct Membrane Filtration of Primary Settled Wastewater. Ind. Eng. Chem. Res. 2019, 58, 16901–16910. [Google Scholar] [CrossRef]
- Schwille, J.A.; Mitra, D.; Lueptow, R.M. Design parameters for rotating cylindrical filtration. J. Membr. Sci. 2002, 204, 53–65. [Google Scholar] [CrossRef]
- Bouzerar, R.; Jaffrin, M.Y.; Ding, L.; Paullier, P. Influence of Geometry and Angular Velocity on Performance of a Rotating Disk Filter. AIChE J. 2000, 46, 257–265. [Google Scholar] [CrossRef]
- Serra, C.A.; Wiesner, M.R. A comparison of rotating and stationary membrane disk filters using computational fluid dynamics. J. Membr. Sci. 2000, 165, 19–29. [Google Scholar] [CrossRef]
- Torras, C.; Pallares, J.; Garcia-Valls, R.; Jaffrin, M.Y. CFD simulation of a rotating disl flat membrane module. Desalination 2006, 200, 453–455. [Google Scholar] [CrossRef]
- Sarkar, D.; Bhattacharjee, C. Modeling and Analytical simulation of rotating disk ultrafiltration module. J. Membr. Sci. 2008, 320, 344–355. [Google Scholar] [CrossRef]
- Jaffrin, M.Y.; Ding, L.H.; Akoum, O.; Brou, A. A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems. J. Membr. Sci. 2004, 242, 155–167. [Google Scholar] [CrossRef]
- Fillaudeau, L.; Boissier, B.; Moreau, A.; Blanpain-Avet, P.; Ermolaev, S.; Jitariouk, N.; Gourdon, A. Investigation of rotating and vibrating filtration for clarification of rough beer. J. Food Eng. 2007, 80, 206–217. [Google Scholar] [CrossRef]
- Li, L.; Ding, L.; Tu, Z.; Wan, Y.; Clausse, D.; Lanoiselle, J.L. Recovery of linseed oil dispersed within an oil-in-water emulsion using hydrophilic membrane by rotating disk filtration system. J. Membr. Sci. 2009, 342, 70–79. [Google Scholar] [CrossRef]
- Lloyd, D.M.; Norton, I.T.; Spyropoulos, F. Process optimization of rotating membrane emulsification through the study of surfactant dispersions. J. Food Eng. 2015, 166, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Xue, W.; Jian, M.; Lin, T.; Ma, B.; Wu, R.; Li, X. A novel strategy to alleviate ultrafiltration membrane fouling by rotating membrane module. Chemosphere 2020, 260, 127535. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, K.; Nakekuni, N.; Nogaki, N.; Itakura, I.; Shimizu, Y.; Watanabe, A. Microfiltration of Soy Sauce Sediment with Rotating Disk Membrane Module. J. Chem. Eng. Jpn. 1993, 21, 66–73. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Engler, J.; Wiesner, M.R. Particle Fouling of Rotating Membrane Disk. Wat. Res. 2000, 34, 557–565. [Google Scholar] [CrossRef]
- Schlichting, H.; Gersten, K. Boundary Layer Theory, 8th ed.; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Schlichting, H. Boundary Layer Theory, 7th ed.; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
(a) Rotating conditions for rotary membrane separation experiments. | |||
Membrane Diameter (m) | Rotation Speed (rpm) | ||
0.30 | 0, 300, 580, 860, 1130 | ||
0.45 | 0, 125, 250, 375, 560, 735 | ||
0.60 | 0, 125, 250, 360, 475, 530 | ||
0.70 | 0, 125, 240, 350 | ||
(b) Operating conditions. | |||
Operating Pressure (MPa) | Concentration of Latex Emulsion (kg m−3) | Kinematic Viscosity of Latex Emulsion (m2 s−1) | |
0.2 | 10 | 1.365 × 10−6 | |
0.3 | 100 | 1.546 × 10−6 | |
0.4 | 200 | 2.329 × 10−6 | |
300 | 4.237 × 10−6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takata, K.; Tanida, K. Effect of UF Membrane Rotation on Filtration Performance Using High Concentration Latex Emulsion Solution. Membranes 2022, 12, 422. https://doi.org/10.3390/membranes12040422
Takata K, Tanida K. Effect of UF Membrane Rotation on Filtration Performance Using High Concentration Latex Emulsion Solution. Membranes. 2022; 12(4):422. https://doi.org/10.3390/membranes12040422
Chicago/Turabian StyleTakata, Kazutaka, and Katsuyoshi Tanida. 2022. "Effect of UF Membrane Rotation on Filtration Performance Using High Concentration Latex Emulsion Solution" Membranes 12, no. 4: 422. https://doi.org/10.3390/membranes12040422
APA StyleTakata, K., & Tanida, K. (2022). Effect of UF Membrane Rotation on Filtration Performance Using High Concentration Latex Emulsion Solution. Membranes, 12(4), 422. https://doi.org/10.3390/membranes12040422