Removal of MS2 and fr Bacteriophages Using MgAl2O4-Modified, Al2O3-Stabilized Porous Ceramic Granules for Drinking Water Treatment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Characterization of Starting Materials
3.2. Granulation
3.3. Filtration Tests and Virus Removal Performance
3.4. Characterization of Materials after Filtration
4. Conclusions
- The presence of homogenously distributed Mg-NP in Al2O3 granules offers effective means to enhance adsorption sites of virus surrogates (MS2 and fr bacteriophages).
- MgAl2O4-modified Al2O3 granules exceeded the retention performance of pristine Al2O3 granules, as revealed through flow tests.
- MgAl2O4-modified Al2O3 granules possess promising adsorption properties, and could successfully achieve a log10 reduction of 5 and 7 of MS2 and fr bacteriophages, respectively, with 4 g of MgAl after 2 L of filtration.
- There was no degradation in phase composition and morphology of the granules upon filtration.
- No aluminum nor significant magnesium leakage was detected during the filtration, suggesting a high stability of the developed materials as a result of consolidation at 800 °C.
- Preliminary regeneration tests indicated that the developed granular ceramic filter materials can be potentially reused after thermal treatment.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Drinking-Water, Key Facts. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-water (accessed on 26 April 2022).
- Kroll, S.; de Moura, M.O.C.; Meder, F.; Grathwohl, G.; Rezwan, K. High virus retention mediated by zirconia microtubes with tailored porosity. J. Eur. Ceram. Soc. 2012, 32, 4111–4120. [Google Scholar] [CrossRef]
- Peter-Varbanets, M.; Zurbrügg, C.; Swartz, C.; Pronk, W. Decentralized systems for potable water and the potential of membrane technology. Water Res. 2009, 43, 245–265. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Guo, L.; Yang, Y.; Oguma, K.; Hou, L.-a. Comparative effectiveness of membrane technologies and disinfection methods for virus elimination in water: A review. Sci. Total Environ. 2021, 801, 149678. [Google Scholar] [CrossRef] [PubMed]
- Sobsey, M.D.; Stauber, C.E.; Casanova, L.M.; Brown, J.M.; Elliott, M.A. Point of use household drinking water filtration: A practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ. Sci. Technol. 2008, 42, 4261–4267. [Google Scholar] [CrossRef] [PubMed]
- Mankad, A.; Tapsuwan, S. Review of socio-economic drivers of community acceptance and adoption of decentralised water systems. J. Environ. Manag. 2011, 92, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Pooi, C.K.; Ng, H.Y. Review of low-cost point-of-use water treatment systems for developing communities. NPJ Clean Water 2018, 1, 11. [Google Scholar] [CrossRef]
- Michen, B.; Diatta, A.; Fritsch, J.; Aneziris, C.; Graule, T. Removal of colloidal particles in ceramic depth filters based on diatomaceous earth. Sep. Purif. Technol. 2011, 81, 77–87. [Google Scholar] [CrossRef]
- Sellaoui, L.; Badawi, M.; Monari, A.; Tatarchuk, T.; Jemli, S.; Dotto, G.L.; Bonilla-Petriciolet, A.; Chen, Z. Make it clean, make it safe: A review on virus elimination via adsorption. Chem. Eng. J. 2021, 412, 128682. [Google Scholar] [CrossRef]
- Van Halem, D.; Van der Laan, H.; Heijman, S.; Van Dijk, J.; Amy, G. Assessing the sustainability of the silver-impregnated ceramic pot filter for low-cost household drinking water treatment. Phys. Chem. Earth Parts A/B/C 2009, 34, 36–42. [Google Scholar] [CrossRef]
- Wegmann, M.; Michen, B.; Graule, T. Nanostructured surface modification of microporous ceramics for efficient virus filtration. J. Eur. Ceram. Soc. 2008, 28, 1603–1612. [Google Scholar] [CrossRef]
- Brown, J.; Sobsey, M.D. Microbiological effectiveness of locally produced ceramic filters for drinking water treatment in Cambodia. J. Water Health 2010, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mugnier, N.; Howell, J.A.; Ruf, M. Optimisation of a back-flush sequence for zeolite microfiltration. J. Membr. Sci. 2000, 175, 149–161. [Google Scholar] [CrossRef]
- Willemse, R.; Brekvoort, Y. Full-scale recycling of backwash water from sand filters using dead-end membrane filtration. Water Res. 1999, 33, 3379–3385. [Google Scholar] [CrossRef]
- Mazurkow, J.M.; Yuüzbasi, N.S.; Domagala, K.W.; Pfeiffer, S.; Kata, D.; Graule, T. Nano-sized copper (oxide) on alumina granules for water filtration: Effect of copper oxidation state on virus removal performance. Environ. Sci. Technol. 2019, 54, 1214–1222. [Google Scholar] [CrossRef]
- Michen, B. Virus Removal in Ceramic Depth Filters: The Electrostatic Enhanced Adsorption Approach. Ph.D. Thesis, Technical University Bergakademie Freiberg, Freiberg, Germany, 2010. [Google Scholar]
- Michen, B.; Graule, T. Isoelectric points of viruses. J. Appl. Microbiol. 2010, 109, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Dowd, S.E.; Pillai, S.D.; Wang, S.; Corapcioglu, M.Y. Delineating the specific influence of virus isoelectric point and size on virus adsorption and transport through sandy soils. Appl. Environ. Microbiol. 1998, 64, 405–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobsey, M.; Shields, P.; Hauchman, F.; Hazard, R.; Caton Iii, L. Survival and transport of hepatitis A virus in soils, groundwater and wastewater. Water Sci. Technol. 1986, 18, 97–106. [Google Scholar] [CrossRef]
- Armanious, A.; Aeppli, M.; Jacak, R.; Refardt, D.; Sigstam, T.; Kohn, T.; Sander, M. Viruses at solid–water interfaces: A systematic assessment of interactions driving adsorption. Environ. Sci. Technol. 2016, 50, 732–743. [Google Scholar] [CrossRef]
- Armanious, A.; Münch, M.; Kohn, T.; Sander, M. Competitive Coadsorption Dynamics of Viruses and Dissolved Organic Matter to Positively Charged Sorbent Surfaces. Environ. Sci. Technol. 2016, 50, 3597–3606. [Google Scholar] [CrossRef] [PubMed]
- Domagała, K.; Bell, J.; Yüzbasi, N.S.; Sinnet, B.; Kata, D.; Graule, T. Virus removal from drinking water using modified activated carbon fibers. RSC Adv. 2021, 11, 31547–31556. [Google Scholar] [CrossRef]
- Gerba, C.P. Applied and theoretical aspects of virus adsorption to surfaces. Adv. Appl. Microbiol. 1984, 30, 133–168. [Google Scholar] [PubMed]
- Heffron, J.; Mayer, B.K. Emerging investigators series: Virus mitigation by coagulation: Recent discoveries and future directions. Environ. Sci. Water Res. Technol. 2016, 2, 443–459. [Google Scholar] [CrossRef]
- Dika, C.; Duval, J.F.; Francius, G.; Perrin, A.; Gantzer, C. Isoelectric point is an inadequate descriptor of MS2, Phi X 174 and PRD1 phages adhesion on abiotic surfaces. J. Colloid Interface Sci. 2015, 446, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Farrah, S.R.; Shah, D.O.; Ingram, L.O. Effects of chaotropic and antichaotropic agents on elution of poliovirus adsorbed on membrane filters. Proc. Natl. Acad. Sci. USA 1981, 78, 1229–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dika, C.; Ly-Chatain, M.; Francius, G.; Duval, J.; Gantzer, C. Non-DLVO adhesion of F-specific RNA bacteriophages to abiotic surfaces: Importance of surface roughness, hydrophobic and electrostatic interactions. Colloids Surf. A Physicochem. Eng. Asp. 2013, 435, 178–187. [Google Scholar] [CrossRef]
- Watts, S.; Julian, T.R.; Maniura-Weber, K.; Graule, T.; Salentinig, S. Colloidal Transformations in MS2 Virus Particles: Driven by pH, Influenced by Natural Organic Matter. ACS Nano 2020, 14, 1879–1887. [Google Scholar] [CrossRef]
- Wegmann, M.; Michen, B.; Luxbacher, T.; Fritsch, J.; Graule, T. Modification of ceramic microfilters with colloidal zirconia to promote the adsorption of viruses from water. Water Res. 2008, 42, 1726–1734. [Google Scholar] [CrossRef]
- Michen, B.; Meder, F.; Rust, A.; Fritsch, J.; Aneziris, C.; Graule, T. Virus removal in ceramic depth filters based on diatomaceous earth. Environ. Sci. Technol. 2012, 46, 1170–1177. [Google Scholar] [CrossRef]
- Parks, G.A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 1965, 65, 177–198. [Google Scholar] [CrossRef]
- Gutierrez, L.; Li, X.; Wang, J.; Nangmenyi, G.; Economy, J.; Kuhlenschmidt, T.B.; Kuhlenschmidt, M.S.; Nguyen, T.H. Adsorption of rotavirus and bacteriophage MS2 using glass fiber coated with hematite nanoparticles. Water Res. 2009, 43, 5198–5208. [Google Scholar] [CrossRef]
- Lukasik, J.; Cheng, Y.-F.; Lu, F.; Tamplin, M.; Farrah, S.R. Removal of microorganisms from water by columns containing sand coated with ferric and aluminum hydroxides. Water Res. 1999, 33, 769–777. [Google Scholar] [CrossRef]
- Noubactep, C. Metallic iron for environmental remediation: A review of reviews. Water Res. 2015, 85, 114–123. [Google Scholar] [CrossRef]
- Schabikowski, M.; Cichoń, A.; Németh, Z.; Kubiak, W.; Kata, D.; Graule, T. Electrospun iron and copper oxide fibers for virus retention applications. Text. Res. J. 2019, 89, 4373–4382. [Google Scholar] [CrossRef]
- Ke, X.B.; Zhu, H.Y.; Gao, X.P.; Liu, J.W.; Zheng, Z.F. High-performance ceramic membranes with a separation layer of metal oxide nanofibers. Adv. Mater. 2007, 19, 785–790. [Google Scholar] [CrossRef] [Green Version]
- Szekeres, G.P.; Németh, Z.n.; Schrantz, K.; Németh, K.n.; Schabikowski, M.; Traber, J.; Pronk, W.; Hernádi, K.r.; Graule, T. Copper-coated cellulose-based water filters for virus retention. ACS Omega 2018, 3, 446–454. [Google Scholar] [CrossRef]
- Michen, B.; Fritsch, J.; Aneziris, C.; Graule, T. Improved virus removal in ceramic depth filters modified with MgO. Environ. Sci. Technol. 2013, 47, 1526–1533. [Google Scholar] [CrossRef]
- Haijun, Z.; Xiaolin, J.; Zhanjie, L.; Zhenzhen, L. The low temperature preparation of nanocrystalline MgAl2O4 spinel by citrate sol–gel process. Mater. Lett. 2004, 58, 1625–1628. [Google Scholar] [CrossRef]
- Kadosh, T.; Cohen, Y.; Talmon, Y.; Kaplan, W.D.; Krell, A. In Situ Characterization of Spinel Nanoceramic Suspensions. J. Am. Ceram. Soc. 2012, 95, 3103–3108. [Google Scholar] [CrossRef]
- Kamato, Y.; Suzuki, Y. Reactively sintered porous MgAl2O4 for water-purification filter with controlled particle morphology. Ceram. Int. 2017, 43, 14090–14095. [Google Scholar] [CrossRef] [Green Version]
- Finley, J. Ceramic membranes: A robust filtration alternative. Filtr. Sep. 2005, 42, 34–37. [Google Scholar] [CrossRef]
- Wang, Z.; Meng, F.; He, X.; Zhou, Z.; Huang, L.-N.; Liang, S. Optimisation and performance of NaClO-assisted maintenance cleaning for fouling control in membrane bioreactors. Water Res. 2014, 53, 1–11. [Google Scholar] [CrossRef]
- Jacquin, C.; Yu, D.; Sander, M.; Domagala, K.; Traber, J.; Morgenroth, E.; Julian, T.R. Competitive co-adsorption of bacteriophage MS2 and natural organic matter onto multiwalled carbon nanotubes. Water Res. X 2020, 9, 100058. [Google Scholar] [CrossRef]
- Herath, G.; Yamamoto, K.; Urase, T. Removal of Viruses by Microfiltration Membranes at Different Solution Environments. Water Sci. Technol. 1999, 40, 331–338. [Google Scholar] [CrossRef]
- Sakoda, A.; Sakai, Y.; Hayakawa, K.; Suzuki, M. Adsorption of viruses in water environment onto solid surfaces. Water Sci. Technol. 1997, 35, 107–114. [Google Scholar] [CrossRef]
- USEPA. Method 1602: Male-Specific (F+) and Somatic Coliphage in Water by Single Agar Layer (SAL) Procedure; EPA 821-R-01-029; USEPA: Washington, DC, USA, 2001. [Google Scholar]
- Mishchenko, M.I.; Travis, L.D. Light scattering by polydisperse, rotationally symmetric nonspherical particles: Linear polarization. J. Quant. Spectrosc. Radiat. Transf. 1994, 51, 759–778. [Google Scholar] [CrossRef]
- Scott, D.M.; Matsuyama, T. Laser diffraction of acicular particles: Practical applications. In Proceedings of the International Conference on Optical Particle Characterization (OPC 2014), Tokyo, Japan, 10–14 March 2014; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; p. 923210. [Google Scholar]
- Pfeiffer, S.; Florio, K.; Makowska, M.; Ferreira Sanchez, D.; Van Swygenhoven, H.; Aneziris, C.G.; Wegener, K.; Graule, T. Iron oxide doped spray dried aluminum oxide granules for selective laser sintering and melting of ceramic parts. Adv. Eng. Mater. 2019, 21, 1801351. [Google Scholar] [CrossRef]
- Kendall, K. Adhesion: Molecules and mechanics. Science 1994, 263, 1720–1725. [Google Scholar] [CrossRef]
- Kendall, K.; Weihs, T. Adhesion of nanoparticles within spray dried agglomerates. J. Phys. D Appl. Phys. 1992, 25, A3. [Google Scholar] [CrossRef]
- Herzig, J.; Leclerc, D.; Goff, P.L. Flow of suspensions through porous media—application to deep filtration. Ind. Eng. Chem. 1970, 62, 8–35. [Google Scholar] [CrossRef]
- WHO. Evaluating Household Water Treatment Options: Health-Based Targets and Microbiological Performance Specifications; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Heffron, J.; McDermid, B.; Maher, E.; McNamara, P.J.; Mayer, B.K. Mechanisms of virus mitigation and suitability of bacteriophages as surrogates in drinking water treatment by iron electrocoagulation. Water Res. 2019, 163, 114877. [Google Scholar] [CrossRef]
- Abbaszadegan, M.; Monteiro, P.; Nwachuku, N.; Alum, A.; Ryu, H. Removal of adenovirus, calicivirus, and bacteriophages by conventional drinking water treatment. J. Environ. Sci. Health Part A 2008, 43, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Gerba, C.P.; Riley, K.R.; Nwachuku, N.; Ryu, H.; Abbaszadegan, M. Removal of Encephalitozoon intestinalis, Calicivirus, and Coliphages by Conventional Drinking Water Treatment. J. Environ. Sci. Health Part A 2003, 38, 1259–1268. [Google Scholar] [CrossRef] [PubMed]
- Overby, L.R.; Barlow, G.H.; Doi, R.H.; Jacob, M.; Spiegelman, S. Comparison of Two Serologically Distinct Ribonucleic Acid Bacteriophages, I. Properties of the Viral Particles. J. Bacteriol. 1966, 91, 442–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Calcium and Magnesium in Drinking Water: Public Health Significance; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Thompson, M.; Wood, R. The international harmonized protocol for the proficiency testing of (chemical) analytical laboratories (Technical Report). Pure Appl. Chem. 1993, 65, 2123–2144. [Google Scholar] [CrossRef]
- Asakura, S.; Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 1958, 33, 183–192. [Google Scholar] [CrossRef]
- Lu, K.; Kessler, C. Colloidal dispersion and rheology study of nanoparticles. J. Mater. Sci. 2006, 41, 5613–5618. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Carvalho, C.; Susano, M.; Fernandes, E.; Santos, S.; Gannon, B.; Nicolau, A.; Gibbs, P.; Teixeira, P.; Azeredo, J. Method for bacteriophage isolation against target Campylobacter strains. Lett. Appl. Microbiol. 2010, 50, 192–197. [Google Scholar] [CrossRef]
- Chu, Y.; Jin, Y.; Yates, M.V. Virus Transport through Saturated Sand Columns as Affected by Different Buffer Solutions; Wiley Online Library: New York, NY, USA, 2000. [Google Scholar] [CrossRef]
Starting Materials | Spray-Dried Granules | |
---|---|---|
Al-Pl | plate-like Al2O3 powder (white sapphire) | - |
Mg-NP | MgAl2O4 nanoparticles (spinel S25CR) | - |
MgAl | - | MgAl2O4-modified Al2O3 granules |
Al | - | Al2O3 granules |
Starting Materials | Granules | ||||
---|---|---|---|---|---|
Al-Pl | Mg-NP | Mg-NP/1 wt.% PAA | Al Granules | MgAl Granules | |
Particle size | |||||
dv90 (µm) | 25.7 | 31.7 | 1.1 | 98.20 | 123.5 |
dv50 (µm) | 11.6 | 2.7 | 0.8 | 51.69 | 52.02 |
dv10 (µm) | 1.1 | 0.5 | 0.6 | 28.20 | 26.37 |
Surface area (m2∙g−1) | 1.7 | 24.6 | - | 1.7 | 7.6 |
Cumulative pore volume (cm3∙g−1) | - | - | - | 1.01 | 0.91 |
Density (g∙cm−3) | 3.94 | 3.80 | - | - | - |
IEP | 9.06 | 11.84 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yüzbasi, N.S.; Krawczyk, P.A.; Domagała, K.W.; Englert, A.; Burkhardt, M.; Stuer, M.; Graule, T. Removal of MS2 and fr Bacteriophages Using MgAl2O4-Modified, Al2O3-Stabilized Porous Ceramic Granules for Drinking Water Treatment. Membranes 2022, 12, 471. https://doi.org/10.3390/membranes12050471
Yüzbasi NS, Krawczyk PA, Domagała KW, Englert A, Burkhardt M, Stuer M, Graule T. Removal of MS2 and fr Bacteriophages Using MgAl2O4-Modified, Al2O3-Stabilized Porous Ceramic Granules for Drinking Water Treatment. Membranes. 2022; 12(5):471. https://doi.org/10.3390/membranes12050471
Chicago/Turabian StyleYüzbasi, Nur Sena, Paweł A. Krawczyk, Kamila W. Domagała, Alexander Englert, Michael Burkhardt, Michael Stuer, and Thomas Graule. 2022. "Removal of MS2 and fr Bacteriophages Using MgAl2O4-Modified, Al2O3-Stabilized Porous Ceramic Granules for Drinking Water Treatment" Membranes 12, no. 5: 471. https://doi.org/10.3390/membranes12050471
APA StyleYüzbasi, N. S., Krawczyk, P. A., Domagała, K. W., Englert, A., Burkhardt, M., Stuer, M., & Graule, T. (2022). Removal of MS2 and fr Bacteriophages Using MgAl2O4-Modified, Al2O3-Stabilized Porous Ceramic Granules for Drinking Water Treatment. Membranes, 12(5), 471. https://doi.org/10.3390/membranes12050471