Green Chemistry and Molecularly Imprinted Membranes
Abstract
:1. Introduction
2. Green Chemistry
3. Toward Green Polymers and Membranes
4. Green Chemistry in the Synthesis of Molecularly Imprinted Polymers: General Aspects
5. Green Molecularly Imprinted Membranes
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Kharissova, O.V.; Kharisov, B.I.; González, C.M.O.; Méndez, Y.P.; López, I. Greener synthesis of chemical compounds and materials. R. Soc. Open Sci. 2019, 6, 191–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldon, R.A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Anastas, P.; Eghbali, N. Green Chemistry: Principles and Practice. Chem. Soc. Rev. 2020, 39, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Unterlass, M.M. Green synthesis of inorganic–organic hybrid materials: State of the art and future perspectives. Eur. J. Inorg. Chem. 2016, 2016, 1135–1156. [Google Scholar] [CrossRef]
- Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev. 2012, 41, 1437–1451. [Google Scholar] [CrossRef] [Green Version]
- Janczura, M.; Lulínski, P.; Sobiech, M. Imprinting technology for effective sorbent fabrication: Current state-of-art and future prospects. Materials 2021, 14, 1850. [Google Scholar] [CrossRef]
- Donato, L.; Drioli, E. Imprinted Membranes for Sustainable Separation Processes. Front. Chem. Sci. Eng. 2021, 15, 775–792. [Google Scholar] [CrossRef]
- He, S.; Zhang, L.; Bai, S.; Yang, H.; Cui, Z.; Zhang, X.; Li, Y. Advances of molecularly imprinted polymers (MIP) and the application in drug delivery. Eur. Polym. J. 2021, 143, 110–179. [Google Scholar]
- Huang, Y.; Wang, R. Review on Fundamentals, Preparations and Applications of Imprinted Polymers. Curr. Org. Chem. 2018, 22, 1600–1618. [Google Scholar] [CrossRef]
- Zaidi, S.A. Molecular imprinting polymers and their composites: A promising material for diverse applications. Biomater Sci. 2017, 5, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Torres-Cartas, S.; Catalá-Icardo, M.; Meseguer-Lloret, S.; Simó-Alfonso, E.F.; Herrero-Martínez, J.M. Recent advances in molecularly imprinted membranes for sample treatment and separation. Separations 2020, 7, 69. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Lu, W.; Wu, X.; Li, J. Molecular imprinting Perspectives and applications. Chem. Soc. Rev. 2016, 45, 2137. [Google Scholar] [CrossRef]
- Algieri, C.; Drioli, E.; Ahmed, C.; Iben Nasser, I.; Donato, L. Emerging Tools for Recognition and/or Removal of Dyes from Polluted Sites: Molecularly Imprinted Membranes. J. Membr. Sep. Technol. 2014, 3, 243–266. [Google Scholar]
- Culver, H.A.; Steichen, S.D.; Peppas, N.A. A Closer look at the impact of molecular imprinting on adsorption capacity and selectivity for protein templates. Biomacromolecules 2016, 17, 4045–4053. [Google Scholar] [CrossRef]
- Yang, S.; Wang, Y.; Jiang, Y.; Li, S.; Liu, W. Molecularly imprinted polymers for the identification and separation of chiral drugs and biomolecules. Polymers 2016, 8, 216. [Google Scholar] [CrossRef]
- Irshad, J.M.; Iqbal, N.; Mujahid, A.; Afzal, A.; Hussain, T.; Sharif, A. Molecularly imprinted nanomaterials for sensor applications. Nanomaterials 2013, 3, 615–637. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Liu, C.; Chen, Z. Imprinted composite membranes. Prog. Chem. 2020, 32, 989–1002. [Google Scholar]
- Donato, L. A Spasso con le Membrane. Un Mondo Tutto da Scoprire; CNR Edizioni: Roma, Italy, 2021. [Google Scholar]
- Nascimento, T.A.; Fdz-Polanco, F.; Peña, M. Membrane-based technologies for the up-concentration of municipal wastewater: A review of pretreatment intensification. Sep. Purif. Rev. 2020, 49, 1–19. [Google Scholar] [CrossRef]
- Piacentini, E.; Mazzei, R.; Drioli, E.; Giorno, L. From biological membranes to artificial biomimetic membranes and systems. In Comprehensive Membrane Science and Engineering, 2nd ed.; Drioli, E., Giorno, L., Fontananova, E., Eds.; Elsevier: Kidlington, UK, 2017; pp. 1–16. [Google Scholar]
- Didaskalou, C.; Buyuktiryaki, S.; Kecili, R.; Fonte, C.P.; Szekely, G. Valorisation of agricultural waste with an adsorption/nanofiltration hybrid process: From materials to sustainable process design. Green Chem. 2017, 19, 3116–3125. [Google Scholar] [CrossRef] [Green Version]
- Rajesha, K.; Arun, M.I. Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications, 2nd ed.; CRC Press: London, UK, 2015; pp. 465–481. [Google Scholar]
- Kubota, N.; Hashimoto, T.; Mori, Y. Advanced Membrane Technology and Applications, 1st ed.; John Wiley & Sons Inc.: New York, NY, USA, 2008; pp. 101–129. [Google Scholar]
- Lu, J.; Qin, Y.; Wu, Y.; Meng, M.; Yan, Y.; Li, C. Recent advances in ion imprinted membranes: Separation and detection via ion-selective recognition. Environ. Sci. Water Res. Technol. 2019, 5, 1626–1653. [Google Scholar] [CrossRef]
- Boysen, R.I.; Schwarz, L.J.; Nicolau, D.V.; Hearn, M.T.W. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J. Sep. Sci. 2017, 40, 314–335. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Tharpa, K.; Dima, S.O. Molecularly Imprinted Membranes: Past, Present, and Future. Chem. Rev. 2016, 116, 11500–11528. [Google Scholar] [CrossRef] [PubMed]
- Keçili, R.; Yılmaz, E.; Ersöz, A.; Say, R. Sustainable Nanoscale Engineering: From Materials Design to Chemical Processing, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Anastas, P.T.; Warner, J.C. Principles of green chemistry. In Green Chemistry: Theory and Practice; Anastas, P.T., Warner, J.C., Eds.; Oxford University Press: Oxford, UK, 1998; pp. 29–56. [Google Scholar]
- Koenig, S.G. Scalable Green Chemistry: Case Studies from the Pharmaceutical Industry, 1st ed.; Taylor and Francis Group, CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Dicks, A.P.; Hent, A. Green Chemistry Metrics. A Guide to Determining and Evaluating Process Greenness; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Andraos, J. The Algebra of Organic Synthesis: Green Metrics, Design Strategy, Route Selection and Optimization; Taylor and Francis Group, CRC Press: Boca Raton. FL, USA, 2012. [Google Scholar]
- Andraos, J. Unification of reaction metrics for green chemistry: Applications to reaction analysis. Org. Process. Res. Dev. 2005, 9, 149–163. [Google Scholar] [CrossRef]
- Lapkin, A.; Constable, D.J.C. Green Chemistry Metrics: Measuring and Monitoring Sustainable Processes; Wiley-Blackwell: Chichester, UK, 2008. [Google Scholar]
- Li, C.-J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev. 2006, 35, 68–82. [Google Scholar]
- Li, C.-J. Organic Reactions in Aqueous Media with a Focus on Carbon−Carbon Bond Formations: A Decade Update. Chem. Rev. 2005, 105, 3095–3166. [Google Scholar]
- Díaz-Álvarez, A.E.; Francos, J.; Crochet, P.; Cadierno, V. Recent advances in the use of glycerol as Green solvent for synthetic organic chemistry. Curr. Green Chem. 2014, 1, 51–65. [Google Scholar] [CrossRef]
- Santosh, R.M.; Ganapati, D.Y. Effect of Supercritical CO2 as Reaction Medium for Selective Hydrogenation of Acetophenone to 1-Phenylethanol. ACS Omega 2018, 3, 7124–7132. [Google Scholar]
- Wood, C.D.; Cooper, A.I.; Desimone, J.M. Green synthesis of polymers using supercritical carbon dioxide. Curr. Opin. Solid State Mater. Sci. 2004, 8, 325–331. [Google Scholar] [CrossRef]
- Samantha, L.P.; Mega, K.; Douglas, R.M.; Karolina, M.; Jennifer, M.P. Ionic liquids for renewable thermal energy storage—A perspective. Green Chem. 2022, 24, 102–117. [Google Scholar]
- Lei, Z.; Chen, B.; Koo, Y.M.; MacFarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [Green Version]
- Chatel, G.; MacFarlane, D.R. Ionic Liquids and Ultrasound in Combination: Synergies and Challenges. Chem. Soc. Rev. 2014, 43, 8132–8149. [Google Scholar] [CrossRef]
- Alonso, D.A.; Baeza, A.; Chinchilla, R.; Guillena, G.; Pastor, I.M.; Ramón, D.J. Deep Eutectic Solvents: The Organic Reaction Medium of the Century. Eur. J. Org. Chem. 2016, 4, 612–632. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Row, K.H. Development of deep eutectic solvents applied in extraction and separation. J. Sep. Sci. 2016, 39, 3505–3520. [Google Scholar] [CrossRef]
- Azizi, N.; Dezfooli, S.; Mahmoudi, M. Greener synthesis of spirooxindole in deep eutectic solvent. J. Mol. Liq. 2014, 194, 62–67. [Google Scholar] [CrossRef]
- O’Neal, K.L.; Zhang, H.; Yang, Y.; Hong, L.; Lu, D.; Weber, S.G. Fluorous media for extraction and transport. J. Chromatogr. A 2010, 1217, 2287–2295. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowska, S.; Chudoba, T.; Wojnarowicz, J.; Łojkowski, W. Current Trends in the Development of Microwave Reactors for the Synthesis of Nanomaterials in Laboratories and Industries: A Review. Crystals 2018, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Roberts, B.A.; Strauss, C.R. Toward Rapid, “Green”, Predictable Microwave-Assisted Synthesis. Acc. Chem. Res. 2005, 38, 653–661. [Google Scholar] [CrossRef]
- Cravotto, G.; Cintas, P. Power Ultrasound in Organic Synthesis: Moving Cavitational Chemistry from Academia to Innovative and Large-Scale Applications. Chem. Soc. Rev. 2006, 35, 180–196. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Yan, T.; Jiang, Z.; Wu, W.; Fang, T. A review: Conventional and supercritical hydro/solvo thermal synthesis of ultra-fine particles as cathode in lithium battery. Ceram. Int. 2018, 44, 4521–4537. [Google Scholar] [CrossRef]
- Darr, J.A.; Zhang, J.; Makwana, N.M.; Weng, X. Continuous hydrothermal synthesis of inorganic nanoparticles: Applications and future directions. Chem. Rev. 2017, 117, 11125–11238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcin, K. Magnetic-field-induced synthesis of magnetic wire-like micro- and nanostructures. Nanoscale 2017, 9, 16511–16545. [Google Scholar]
- Mateti, S.; Mathesh, M.; Liu, Z.; Tao, T.; Ramireddy, T.; Glushenkov, A.M.; Chen, Y.I. Mechanochemistry: A force in disguise and conditional effects towards chemical reactions. Chem. Commun. 2021, 57, 1080–1092. [Google Scholar] [CrossRef] [PubMed]
- Glasing, J.; Champagne, P.; Cunningham, M.F. Current opinion in Green and sustainable chemistry graft modification of chitosan, cellulose and alginate using reversible deactivation radical polymerization (RDRP). Curr. Opin. Green Sustain. Chem. 2016, 2, 15–21. [Google Scholar] [CrossRef]
- Ardila Arias, A.N.; Arriola, E.; Reyes Calle, J.; Berrio Mesa, E.; Fuentes Zurita, G. Mineralización de etilenglicol por foto-fenton asistido con ferrioxalato. Rev. Int. Contam. Ambient. 2016, 32, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Scala, A.; Neri, G.; Micale, N.; Cordaro, M.; Piperno, A. State of the Art on Green Route Synthesis of Gold/Silver Bimetallic Nanoparticles. Molecules 2022, 27, 1134. [Google Scholar] [CrossRef]
- Kurniawan, Y.S.; Priyangga, K.T.A.; Krisbiantoro, P.A.; Imawan, A.C. Green Chemistry Influences in Organic Synthesis: A Review. J. Multidiscip. Appl. Nat. Sci. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Greening sample preparation: An overview of cutting-edge contributions. Curr. Opin. Green Sustain. Chem. 2021, 30, 10048. [Google Scholar] [CrossRef]
- Aparecida de Marco, B.; Saú Rechelo, B.; Gandolpho Tótoli, E.; Kogawa, A.C.; Nunes Salgado, H.R. Evolution of green chemistry and its multidimensional impacts: A review. Saudi Pharm. J. 2019, 27, 1–8. [Google Scholar] [CrossRef]
- Rente, D.; Paiva, A.; Duarte, A.R. The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules 2021, 26, 2336. [Google Scholar] [CrossRef]
- Viveiros, R.; Rebocho, S.; Casimiro, T. Green Strategies for Molecularly Imprinted Polymer Development. Polymers 2018, 10, 306. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.T.; Anastas, P.T. Innovations and Green Chemistry. Chem. Rev. 2007, 107, 2169–2173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, E.; Khajavian, M.; Sahebjamee, N.; Mahmoudi, M.; Drioli, E.; Matsuura, T. Advances in nanocomposite and nanostructured chitosan membrane adsorbents for environmental remediation: A review. Desalination 2022, 527, 115565. [Google Scholar] [CrossRef]
- Zou, D.; Nunes, P.S.; Vankelecom, I.F.J.; Figoli, A.; Lee, Y.M. Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chem. 2021, 23, 9815–9843. [Google Scholar] [CrossRef]
- Stefaniak, K.; Masek, A. Green Copolymers Based on Poly(Lactic Acid)—Short Review. Materials 2021, 14, 5254. [Google Scholar] [CrossRef]
- Shanxue, J.; Bradley, P.L. Green synthesis of polymeric membranes: Recent advances and future prospects. Curr. Opin. Green Sustain. Chem. 2020, 21, 1–8. [Google Scholar]
- Galiano, F.; Briceño, K.; Marino, T.; Molino, A.; Christensen, K.V.; Figoli, A. Advances in biopolymer-based membrane preparation and applications. J. Membr. Sci 2018, 564, 562–586. [Google Scholar] [CrossRef]
- Baatout, Z.; Teka, S.; Jaballah, N.; Sakly, N.; Sun, X.; Maurel, F.; Majdoub, M. Water-insoluble cyclodextrin membranes for humidity detection: Green synthesis, characterization and sensing performances. J. Mater. Sci. 2018, 53, 1455–1469. [Google Scholar] [CrossRef]
- Dan, L.V.; Miaomiao, Z.; Zhicheng, J.; Shaohua, J.; Qilu, Z.; Ranhua, X.; Chaobo, H. Green Electrospun Nanofibers and Their Application in Air Filtration. Macromol. Mater. Eng. 2018, 303, 1800336. [Google Scholar]
- Marino, T.; Blefari, S.; Di Nicolò, E.; Figoli, A. A more sustainable membrane preparation using triethyl phosphate as solvent. Green Processing Synth. 2017, 6, 295–300. [Google Scholar] [CrossRef]
- Mohshim, D.F.; Hilmi, M.; Man, Z. Composite blending of ionic liquid–poly(ether sulfone) polymeric membranes: Green materials with potential for carbon dioxide/methane separation. J. Appl. Polym. Sci. 2016, 133, 43999. [Google Scholar] [CrossRef]
- Li, S.; Qin, F.; Qin, P.; Karim, M.N.; Tan, T. Preparation of PDMS membrane using water as solvent for pervaporation separation of butanol-water mixture. Green Chem. 2013, 15, 2180–2190. [Google Scholar] [CrossRef]
- Worthington, M.J.; Kucera, R.L.; Chalker, J.M. Green chemistry and polymers made from sulfur. Green Chem. 2017, 19, 2748–2761. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Zhang, C.; Zhang, X.; Chen, L.; Jiang, L.; Meng, Y.; Wang, X. A green approach for preparing anion exchange membrane based on cardo polyetherketone powders. J. Power Sources 2014, 272, 211–217. [Google Scholar] [CrossRef]
- Figoli, A.; Marino, T.; Simone, S.; Di Nicolò, E.; Li, X.M.; He, T.; Tornaghi, S.; Drioli, E. Towards non-toxic solvents for membrane preparation: A review. Green Chem. 2014, 16, 4034–4059. [Google Scholar] [CrossRef]
- Barroso, T.; Temtem, M.; Casimiro, T.; Aguiar-Ricardo, A. Antifouling performance of poly(acrylonitrile)-based membranes: From green synthesis to application. J. Supercrit. Fluids 2011, 56, 312–321. [Google Scholar] [CrossRef]
- Srivastva, A.N.; Saxena, N.; Kumar, M. Green Polymers Decorated with Metal Nanocomposites: Application in Energy Storage, Energy Economy and Environmental Safety. In Metal Nanocomposites for Energy and Environmental Applications; Springer: Singapore, 2022; pp. 269–292. [Google Scholar]
- Yang, G.; Kong, H.; Chen, Y.; Liu, B.; Zhu, D.; Guo, L.; Wei, G. Recent advances in the hybridization of cellulose and carbon nanomaterials: Interactions, structural design, functional tailoring, and applications. Carbohydr. Polym 2022, 279, 118947. [Google Scholar]
- Tan, N.P.B.; Lee, C.H.; Li, P. Green synthesis of smart metal/polymer nanocomposite particles and their tuneable catalytic activities. Polymers 2016, 8, 105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibi, S.; Yasin, T.; Hassan, S.; Riaz, M.; Nawaz, M. Chitosan/CNTs green nanocompositemembrane: Synthesis, swelling and polyaromatic hydrocarbons removal. Mater. Sci. Eng. C 2015, 46, 359–365. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Synthesis of green hybrid materials using starch and non-isocyanate polyurethanes. Carbohydr. Polym. 2020, 229, 115535. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Lu, J.; Yu, Y. A novel green synthesis approach for polymer nanocomposites decorated with silver nanoparticles and their antibacterial activity. Analyst 2014, 139, 5793–5799. [Google Scholar] [CrossRef] [PubMed]
- Iles, A.; Martin, A.; Rosen, C.M. Undoing chemical industry lock-ins: Polyvinyl chloride and Green chemistry. Int. J. Philos. Chem. 2017, 23, 29–60. [Google Scholar]
- Kolya, H.; Jana, S.; Tripathy, T. Green synthesis of graft copolymers based on starch and acrylic monomers by solid phase polymerization technique. Am. J. Polym. Sci. Eng. 2016, 4, 103–110. [Google Scholar]
- Levina, M.A.; Miloslavskii, D.G.; Pridatchenko, M.L.; Gorshkov, A.V.; Shashkova, V.T.; Gotlib, E.M.; Tiger, R.P. Green chemistry of polyurethanes: Synthesis, structure, and functionality of triglycerides of soybean oil with epoxy and cyclocarbonate groups—Renewable raw materials for new urethanes. Polym. Sci. Ser. B 2015, 57, 584–592. [Google Scholar] [CrossRef]
- Wang, Z.; Ganewatta, M.S.; Tang, C. Sustainable polymers from biomass: Bridging chemistry with materials and processing. Prog. Polym. Sci. 2020, 101, 101197. [Google Scholar] [CrossRef]
- Scholten, P.B.V.; Detrembleur, C.; Michael, A.R.M. Plant-Based Nonactivated Olefins: A New Class of Renewable Monomers for Controlled Radical Polymerization. ACS Sustain. Chem. Eng. 2019, 7, 2751–2762. [Google Scholar] [CrossRef]
- Cinelli, P.; Anguillesi, I.; Lazzeri, A. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur. Polym. J. 2013, 49, 1174–1184. [Google Scholar] [CrossRef]
- Singh, P.; Quraishi, M.A.; Ebenso, E.E. Microwave assisted Green synthesis of Bisphenol polymer containing piperazine as a corrosion inhibitor for mild steel in 1 M HCl. Int. J. Electrochem. Sci. 2013, 8, 10890–10902. [Google Scholar]
- Perotto, G.; Ceseracciu, L.; Simonutti, R.; Paul, U.C. Bioplastics from vegetable waste via an eco-friendly water-based process. Green Chem. 2018, 20, 894–902. [Google Scholar] [CrossRef]
- Bayer, I.S.; Guzman-Puyol, S.; Heredia-Guerrero, J.A.; Ceseracciu, L.; Pignatelli, F.; Ruffilli, R.; Cingolani, R.; Athanassio, A. Direct Transformation of Edible Vegetable Waste into Bioplastics. Macromolecules 2014, 47, 5135–5143. [Google Scholar] [CrossRef]
- Marelli, B.; Patel, N.; Duggan, T.; Perotto, G.; Shirman, E.; Li, C.; Kaplan, D.L.; Omenetto, F.G. Programming function into mechanical forms by directed assembly of silk bulk materials. Proc. Natl. Acad. Sci. USA 2017, 114, 451–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Worrell, E.; Patel, M. Present and future development in plastics from biomass. Biofuels Bioprod. Biorefining 2010, 4, 25–40. [Google Scholar] [CrossRef]
- Kiser, B. Circular economy: Getting the circulation going. Nature 2016, 531, 443–446. [Google Scholar]
- Pfaltzgraff, L.A.; De Bruyn, M.; Cooper, E.C.; Budarin, V.; Clark, J.H. Food waste biomass: A resource for high-value chemicals. Green Chem. 2013, 15, 307–314. [Google Scholar] [CrossRef]
- Szekely, G.; Jimenez-Solomon, M.F.; Marchetti, P.; Kim, J.F.; Livingston, A.G. Sustainability assessment of organic solvent nanofiltration: From fabrication to application. Green Chem. 2014, 16, 4440–4473. [Google Scholar] [CrossRef] [Green Version]
- Soroko, I.; Bhole, Y.; Livingston, A.G. Environmentally friendly route for the preparation of solvent resistant polyimide nanofiltration membranes. Green Chem. 2011, 13, 162–168. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Zhang, C.; Wang, J.; Wang, S. A novel membrane prepared from sodium alginate cross-linked with sodium tartrate for CO2 capture. Chin. J. Chem. Eng. 2013, 21, 1098–1105. [Google Scholar] [CrossRef]
- Ishikawa, K.; Ueyama, Y.; Mano, T.; Koyama, T.; Suzuki, K.; Matsumura, T. Self-setting barrier membrane for guided tissue regeneration method: Initial evaluation of alginate membrane made with sodium alginate and calcium chloride aqueous solutions. J. Biomed. Mater. Res. 1999, 47, 111–115. [Google Scholar] [CrossRef]
- Uranga, J.; Nguyen, B.T.; Si, T.T.; Guerrero, P.; De la Caba, K. The Effect of Cross-Linking with Citric Acid on the Properties of Agar/Fish Gelatin Films. Polymers 2020, 12, 291. [Google Scholar] [CrossRef] [Green Version]
- Vanherck, K.; Koeckelberghs, G.; Vankelecom, I.F.J. Crosslinking polyimides for membrane applications: A review. Prog. Polym. Sci. 2013, 38, 874–896. [Google Scholar] [CrossRef]
- Gu, Y.; Jérôme, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev. 2013, 42, 9550. [Google Scholar] [CrossRef] [PubMed]
- Ismalaj, E.; Strappaveccia, G.; Ballerini, E.; Elisei, F.; Piermatti, O.; Gelman, D.; Vaccaro, L. γ-Valerolactone as a Renewable Dipolar Aprotic Solvent Deriving from Biomass Degradation for the Hiyama Reaction. ACS Sust. Chem. Eng. 2014, 2, 2461–2464. [Google Scholar]
- Cheng, H.N.; Dowd, M.K.; Selling, G.W.; Biswas, A. Synthesis of cellulose acetate from cotton byproducts. Carbohydr. Polym. 2010, 8, 449–452. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Bhat, A.H.; Ireana Yusra, A.F. Green composites from sustainable cellulose nanofibrils: A review. Carbohydr. Polym. 2012, 87, 963–979. [Google Scholar] [CrossRef]
- Medina-Gonzalez, Y.; Aimar, P.; Lahitte, J.F.; Remigy, J.C. Towards green membranes: Preparation of cellulose acetate ultrafiltration membranes using methyl lactate as a biosolvent. Int. J. Sustain. Eng. 2011, 4, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Sukma, F.M.; Çulfaz-Emecen, P.Z. Cellulose membranes for organic solvent nanofiltration. J. Membr. Sci. 2018, 545, 329–336. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, H.; Wu, C.; Hu, X. Formation and Characterization of Cellulose Membranes from N-Methylmorpholine-N-oxide Solution. Macromol. Biosci. 2001, 1, 141–148. [Google Scholar] [CrossRef]
- Li, X.L.; Zhu, L.P.; Zhu, B.K.; Xu, Y.Y. High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent. Sep. Purif. Technol. 2011, 83, 66–73. [Google Scholar] [CrossRef]
- Sivakumar, M.; Mohan, D.R.; Rangarajan, R. Studies on cellulose acetate-polysulfone ultrafiltration membranes: II. Effect of additive concentration. J. Membr. Sci. 2006, 268, 208–219. [Google Scholar] [CrossRef]
- Uppal, N.; Pappu, A.; Gowri, V.K.S.; Thakur, V.K. Cellulosic fibres-based epoxy composites: From bioresources to a circular economy. Ind. Crop. Prod. 2022, 182, 114895. [Google Scholar] [CrossRef]
- He, H.; Cheng, M.; Liang, Y.; Zhu, H.; Sun, Y.; Dong, D.; Wang, S. Intelligent cellulose nanofibers with excellent biocompatibility enable sustained antibacterial and drug release via a pH-responsive mechanism. J. Agric. Food Chem. 2020, 68, 3518–3527. [Google Scholar] [CrossRef] [PubMed]
- Green Chemicals Market Size, Trends: Industry Report, 2020–2027. Available online: https://dataintelo.com/report/green-chemicals-market (accessed on 21 February 2022).
- Parisi, O.I.; Francomano, F.; Dattilo, M.; Patitucci, F.; Prete, S.; Amone, F.; Puoci, F. The Evolution of Molecular Recognition: From Antibodies to Molecularly Imprinted Polymers (MIPs) as Artificial Counterpart. J. Funct. Biomater. 2022, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Bhogal, S.; Kaur, K.; Mohiuddin, I.; Kumar, S.; Lee, J.; Brown, R.J.; Malik, A.K. Hollow porous molecularly imprinted polymers as emerging adsorbents. Environ. Pollut. 2021, 288, 117775. [Google Scholar] [CrossRef]
- Haupt, K.; Medina Rangel, P.X.; Bui, B.T.S. Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chem. Rev. 2020, 120, 9554–9582. [Google Scholar] [CrossRef] [PubMed]
- Haupt, K. Molecular Imprinting; Springer Science & Business Media: Berlin, Germany, 2012; p. 325. [Google Scholar]
- Ylmnaz, E.; Schmidt, R.H.; Mosbach, K. Molecularly Imprinted Materials: Science and Technology, 1st ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 25–57. [Google Scholar]
- Wackerlig, J.; Schirhagl, R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward Industrial Use: A Review. Anal. Chem. 2016, 88, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, H.; Ma, S.; Bo, C.; Ou, J.; Gong, B. Recent application of molecular imprinting technique in food safety. J. Chromatogr. A 2021, 1657, 462579. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.; Wang, L.; Li, J. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Anal. Chem. 2020, 128, 115923. [Google Scholar] [CrossRef]
- Cui, Y.; Kang, W.; Qin, L.; Ma, J.; Liu, X.; Yang, Y. Magnetic surface molecularly imprinted polymer for selective adsorption of quinoline from coking wastewater. Chem. Eng. J. 2020, 397, 125480. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Z.; Li, J.; Chen, X.; Zhang, M.; Luo, L.; Yao, S. Novel molecularly imprinted polymers with carbon nanotube as matrix for selective solid-phase extraction of emodin from kiwi fruit root. Food Chem. 2014, 145, 687–693. [Google Scholar] [CrossRef]
- Chen, W.; Ma, Y.; Pan, J.; Meng, Z.; Pan, G.; Sellergren, B. Molecularly imprinted polymers with stimuli-responsive affinity: Progress and perspectives. Polymers 2015, 7, 1689–1715. [Google Scholar] [CrossRef] [Green Version]
- Crapnell, R.D.; Hudson, A.; Foster, C.W.; Eersels, K.; Van Grinsven, B.; Cleij, J.C. Recent advances in electrosynthesized molecularly imprinted polymer-sensing platforms for bioanalyte detection. Sensors 2019, 19, 1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, R.; Jin, H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. J. Photochem. Photobiol. C Photochem. Rev. 2019, 41, 100315. [Google Scholar] [CrossRef]
- Song, X.; Xu, S.; Chen, L.; Wei, Y.; Xiong, H. Recent advances in molecularly imprinted polymers in food analysis. Appl. Polym. Sci. 2014, 131, 40766. [Google Scholar] [CrossRef] [Green Version]
- Maier, N.M.; Lindner, W. Chiral recognition applications of molecularly imprinted polymers: A critical review. Anal. Bioanal. Chem. 2007, 389, 377–397. [Google Scholar] [CrossRef]
- Tuwahatua, C.A.; Yeung, C.C.; Lam, Y.W.; Arul, V.R.L. The molecularly imprinted polymer essentials: Curation of anticancer, ophthalmic, and projected gene therapy drug delivery systems. J. Control Release 2018, 287, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Pijush, K.P.; Alongkot, T.; Roongnapa, S. Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system. Acta Pharm. 2017, 67, 149–168. [Google Scholar]
- Erythropel, H.C.; Zimmerman, J.B.; de Winter, T.M.; Petitjean, L.; Melnikov, F.; Lam, C.H.; Lounsbury, A.W.; Mellor, K.E.; Janković, N.Z.; Tu, Q.; et al. The Green ChemisTREE: 20 years after taking root with the 12 principles. Green Chem. 2018, 20, 1929–1961. [Google Scholar]
- Del Blanco, S.G.; Donato, L.; Drioli, E. Development of molecularly imprinted membranes for selective recognition of primary amines in organic medium. Sep. Purif. Technol. 2012, 87, 40–46. [Google Scholar] [CrossRef]
- Arabi, M.; Ostovan, A.; Li, J.; Wang, X.; Zhang, Z.; Choo, J.; Chen, L. Molecular Imprinting: Green Perspectives and Strategies. Adv. Mater. 2021, 33, 2100543. [Google Scholar] [CrossRef]
- Wu, X.; Du, J.; Li, M.; Wu, L.; Han, C.; Su, F. Recent advances in green reagents for molecularly imprinted polymers. RSC Adv. 2018, 8, 311–327. [Google Scholar]
- Ding, S.; Lyu, Z.; Niu, X.; Zhou, Y.; Liu, D.; Falahati, M.; Du, D.; Lin, Y. Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: A review. Biosens. Bioelectron. 2020, 149, 111830. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.X.; Mubarak, N.M.; Mazari, S.A.; Jatoi, A.S.; Ahmed, A.; Khalid, M.; Walvekar, R.; Abdullah, E.C.; Karri, R.R.; Siddiqui, M.T.H.; et al. A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. J. Ind. Eng. Chem. 2021, 104, 362–380. [Google Scholar] [CrossRef]
- Liu, H.; Jin, P.; Zhu, F.; Nie, L.; Qiu, H. A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. Trends Anal. Chem. 2021, 134, 116132. [Google Scholar] [CrossRef]
- Booker, K.; Bowyer, M.C.; Lennard, C.J.; Holdsworth, C.I.; McCluskey, A. Molecularly imprinted polymers and room temperature ionic liquids: Impact of template on polymer morphology. Aust. J. Chem. 2007, 60, 51–56. [Google Scholar] [CrossRef]
- Guo, L.; Deng, Q.; Fang, G.; Gao, W.; Wang, S. Preparation and evaluation of molecularly imprinted ionic liquids polymer as sorbent for on-line solid-phase extraction of chlorsulfuron in environmental water samples. J. Chromatogr. A 2011, 1218, 6271–6277. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.P.; Tian, Z.Y.; Tong, S.; Zhang, X.H.; Xie, Y.L.; Xu, R.; Qin, Y.; Li, L.; Zhu, J.H.; Ouyang, X.K. A novel molecularly imprinted polymer of the specific ionic liquid monomer for selective separation of synephrine from methanol–water media. Food Chem. 2013, 141, 3578–3585. [Google Scholar] [CrossRef]
- Yan, H.Y.; Liu, S.T.; Gao, M.M.; Sun, N. Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine. J. Chromatogr. A 2013, 1294, 10–16. [Google Scholar] [CrossRef]
- Qiao, F.; Gao, M.; Yan, H. Molecularly imprinted ionic liquid magnetic microspheres for the rapid isolation of organochlorine pesticides in environmental water. J. Sep. Sci. 2016, 39, 1310–1315. [Google Scholar] [CrossRef]
- Lu, X.; Yang, Y.; Zeng, Y.; Li, L.; Wu, X. Rapid and reliable determination of p-Nitroaniline in wastewater by molecularly imprinted fluorescent polymeric ionic liquid microspheres. Biosens. Bioelectron. 2018, 99, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, Y.; Wang, X.; Wang, C.; Li, C.; Wang, Z. Electrochemical sensing of alpha-fetoprotein based on molecularly imprinted polymerized ionic liquid film on a gold nanoparticle modified electrode surface. Sensors 2019, 19, 3218. [Google Scholar] [CrossRef] [Green Version]
- Afzali, Z.; Mohadesi, A.; Ali Karimi, M.; Fathirad, F.A. Highly selective and sensitive electrochemical sensor based on graphene oxide and molecularly imprinted polymer magnetic nanocomposite for patulin determination. Microchem. J. 2022, 177, 107215. [Google Scholar] [CrossRef]
- Luo, X.; Dong, R.; Luo, S.; Zhan, Y.; Tu, X.; Yang, L. Preparation of water compatible molecularly imprinted polymers for caffeine with a novel ionic liquid as a functional monomer. J. Appl. Polym. Sci. 2013, 127, 2884–2890. [Google Scholar] [CrossRef]
- Xiang, H.; Peng, M.; Li, H.; Peng, S.; Shi, S. High-capacity hollow porous dummy molecular imprinted polymers using ionic liquid as functional monomer for selective recognition of salicylic acid. J. Pharm. Biomed. Anal. 2017, 133, 75–81. [Google Scholar] [CrossRef]
- Yuan, Y.; Liang, S.; Yan, H.; Ma, Z.; Liu, Y. Ionic liquid-molecularly imprinted polymers for pipette tip solid-phase extraction of (Z)-3-(chloromethylene)-6 flourothiochroman-4-one in urine. J. Chromatogr. A 2015, 1408, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Afzali, M.; Mostafavi, A.; Shamspur, T. Developing a novel sensor based on ionic liquid molecularly imprinted polymer/gold nanoparticles/graphene oxide for the selective determination of an anti-cancer drug imiquimod. Biosens. Bioelectron. 2019, 143, 111620. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, W.; Wang, L.; Wang, P.; Shi, D.; Wang, J.; Fan, J. Using ionic liquid monomer to improve the selective recognition performance of surface imprinted polymer for sulfamonomethoxine in strong polar medium. J. Chromatogr. A 2019, 1592, 38–46. [Google Scholar] [CrossRef]
- Gao, Z.X.Y.; Pan, M.F.; Fang, G.Z.; Jing, W.; He, S.Y.; Wang, S. An ionic liquid modified dummy molecularly imprinted polymer as a solid-phase extraction material for the simultaneous determination of nine organochlorine pesticides in environmental and food samples. Anal. Methods 2013, 5, 6128–6134. [Google Scholar] [CrossRef]
- Yuan, S.; Deng, Q.; Fang, G.; Wu, J.; Li, W.; Wang, S. Protein imprinted ionic liquid polymer on the surface of multiwall carbon nanotubes with high binding capacity for lysozyme. J. Chromatogr. B 2014, 960, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Xiaopeng, H.; Yide, X.; Yiwei, L.; Yanran, C.; Baizhao, Z. An effective ratiometric electrochemical sensor for highly selective and reproducible detection of ochratoxin A: Use of magnetic field improved molecularly imprinted polymer. Sens. Actuat. 2022, 359, 131582. [Google Scholar]
- Zhang, D.; Tang, J.; Liu, H. Rapid determination of lambda-cyhalothrin using a fluorescent probe based on ionic-liquid-sensitized carbon dots coated with molecularly imprinted polymers. Anal. Bioanal. Chem. 2019, 411, 5309–5316. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Feng, X.; Hu, J.; Bo, S.; Zhang, J.; Wang, W.; Li, S.; Yang, Y. Preparation of hemoglobin (Hb)-imprinted poly(ionic liquid)s via Hb-catalyzed eATRP on gold nanodendrites. Anal. Bioanal. Chem. 2020, 412, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Li, W.; Wang, P.; Cheng, G.; Chen, L.; Zhang, K.; Li, X. One-step polymerization of hydrophilic ionic liquid imprinted polymer in water for selective separation and detection of levofloxacin from environmental matrices. J. Sep. Sci. 2019, 43, 639–647. [Google Scholar] [CrossRef]
- Fan, J.P.; Yu, J.X.; Yang, X.M.; Zhang, X.H.; Yuan, T.T.; Peng, H.L. Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe3O4@void@PILMIP) for specific recognition of protein. Chem. Eng. J. 2018, 337, 722–732. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhang, N.; Du, C.B.; Guan, P.; Gao, X.M.; Wang, C.Y.; Du, Y.F.; Ding, S.C.; Hu, X.L. Preparation of magnetic epitope imprinted polymer microspheres using cyclodextrin-based ionic liquids as functional monomer for highly selective and effective enrichment of cytochrome c. Chem. Eng. J. 2017, 317, 988–998. [Google Scholar] [CrossRef]
- Yang, G.M.; Zhao, F.Q. Molecularly imprinted polymer grown on multiwalled carbon nanotube surface for the sensitive electrochemical determination of amoxicillin. Electrochim. Acta 2015, 174, 33–40. [Google Scholar]
- Hamdan, S.; Moore, L., Jr.; Lejeune, L.J.; Hasan, F.; Carlisle, T.K.; Bara, J.E.; Gin, D.; LaFrate, A.L.; Noble, R.; Spivak, D.A. Ionic Liquid Cross-linkers for Chiral Imprinted NanoGUMBOS. J. Colloid Interface Sci. 2016, 463, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Hu, X.; Guan, P.; Song, D.; Qian, L.; Du, C.; Song, R.; Wang, C. Preparation of “dummy” l-phenylalanine molecularly imprinted microspheres by using ionic liquid as a template and functional monomer. J. Sep. Sci. 2015, 38, 3279–3287. [Google Scholar] [CrossRef]
- Booker, K.; Holdsworth, C.I.; Doherty, C.M.; Hill, A.J.; Bowyerc, M.C.; McCluskey, A. Ionic liquids as porogens for molecularly imprinted polymers: Propranolol, a model study. Org. Biomol. Chem. 2014, 12, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Long, Y.; Pan, J.; Li, K.; Liu, F. Molecularly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone. Talanta 2008, 74, 1126–1131. [Google Scholar] [CrossRef]
- Hulsbosch, J.; De Vos, D.E.; Binnemans, K.; Ameloot, R. Biobased Ionic Liquids: Solvents for a Green Processing Industry. ACS Sustain. Chem. Eng. 2016, 4, 2917–2931. [Google Scholar]
- Subat, M.; Borovik, A.S.; König, B. Synthetic Creatinine Receptor: Imprinting of a Lewis Acidic Zinc(II)cyclen Binding Site to Shape Its Molecular Recognition Selectivity. J. Am. Chem. Soc. 2004, 126, 3185–3190. [Google Scholar] [CrossRef] [PubMed]
- Bie, Z.; Chen, Y.; Ye, J.; Wang, S.; Liu, Z. Boronate-Affinity Glycan-Oriented Surface Imprinting: A New Strategy to Mimic Lectins for the Recognition of an Intact Glycoprotein and Its Characteristic Fragments. Angew. Chem. Int. Ed. 2015, 54, 10211–10215. [Google Scholar] [CrossRef]
- Ostovan, A.; Ghaedi, M.; Arabi, M.; Yang, Q.; Li, J.; Chen, L. Hydrophilic multi-template molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins. Appl. Mater. Interfaces 2018, 10, 4140–4150. [Google Scholar] [CrossRef]
- Deng, H.; Wei, Z.; Wang, X. Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid. Carbohydr. Polym. 2017, 157, 1190–1197. [Google Scholar] [CrossRef]
- Herrero, E.P.; Del Valle, E.M.M.; Peppas, N.A. Protein Imprinting by Means of Alginate-Based Polymer Microcapsules. Ind. Eng. Chem. Res. 2010, 49, 9811–9814. [Google Scholar] [CrossRef]
- Sibrian-Vazquez, M.; Spivak, D.A. Molecular imprinting made easy. J. Am. Chem. Soc. 2004, 126, 7827–7833. [Google Scholar] [CrossRef] [PubMed]
- Panagiotopoulou, M.; Beyazit, S.; Nestora, N.; Haupt, K.; Bui, B.T.S. Initiator-free synthesis of molecularly imprinted polymers by polymerization of self-initiated monomers. Polymers 2015, 66, 43–51. [Google Scholar] [CrossRef]
- Wang, H.; Brown, H.R. Self-initiated photo-polymerization and photo-grafting of acrylic monomers. Macromol. Rapid Commun. 2004, 25, 1095–1099. [Google Scholar] [CrossRef]
- Kerton, F.M.; Marriott, R. Alternative Solvents for Green Chemistry, 2nd ed.; Royal Soc. Chem.: Cambridge, UK; Chicago, IL, USA, 2013; pp. 1–30. [Google Scholar]
- Thang, B.; Thang, H.; Row, K.H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J. Sep. Sci. 2015, 38, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Dadfarnia, S.; Shabani, A.M.H.; Tamaddon, F.; Azadi, D. Deep eutectic liquid organic salt as a new solvent for liquid-phase microextraction and its application in ligand less extraction and preconcentraion of lead and cadmium in edible oils. Talanta 2015, 144, 648–654. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Vigier, K.D.O.; Royer, S.; Jerome, F. Deep eutectic solvents: Syntheses, properties and applications. Chem. Soc. Rev. 2012, 41, 7108–7146. [Google Scholar] [CrossRef] [PubMed]
- Madikizela, L.M.; Tavengwa, N.T.; Tutu, H.; Chimuka, L. Green aspects in molecular imprinting technology: From design to environmental applications. Trends Environ. Anal. Chem. 2018, 17, 14–22. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Dai, Q.; Zhou, Y. Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein. Anal. Chem. Acta 2016, 936, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, W.; Wang, Q.; Zhu, T. Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle. J. Chromatogr. Sci. 2016, 54, 271–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surapong, N.; Santaladchaiyakit, Y.; Burakham, R. A water-compatible magnetic dual-template molecularly imprinted polymer fabricated from a ternary biobased deep eutectic solvent for the selective enrichment of organophosphorus in fruits and vegetables. Food Chem. 2022, 384, 132475. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yao, C.; Zeng, J.; Zhang, Y.; Zhang, Y. Eco-friendly deep eutectic solvents skeleton patterned molecularly imprinted polymers for the separation of sinapic acid from agricultural wastes. Colloids Surf. A Physicochem. Eng. Asp. 2022, 640, 128441. [Google Scholar] [CrossRef]
- Li, X.J.; Chen, X.X.; Sun, G.Y.; Zhao, Y.X.; Aisa, H.A. Green synthesis and evaluation of isoquercitrin imprinted polymers for class-selective separation and purification of flavonol glycosides. Anal. Methods 2015, 7, 4717–4724. [Google Scholar] [CrossRef]
- Pan, S.D.; Shen, H.Y.; Zhou, L.X.; Chen, X.H.; Zhao, Y.G.; Cai, M.Q.; Jin, M.C. Controlled synthesis of pentachlorophenol-imprinted polymers on the surface of magnetic graphene oxide for highly selective adsorption. J. Mater. Chem. A 2014, 2, 15345–15356. [Google Scholar] [CrossRef]
- Boyère, C.; Jérôme, C.; Debuigne, A. Input of supercritical carbon dioxide to polymer synthesis: An overview. Eur. Polym. J. 2014, 61, 45–63. [Google Scholar] [CrossRef]
- Da Silva, M.S.; Viveiros, R.; Aguiar-Ricardo, A.; Bonifácio, V.D.B.; Casimiro, T. Supercritical fluid technology as a new strategy for the development of semi-covalent molecularly imprinted materials. RSC Adv. 2012, 2, 5075–5079. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Hu, Y.; Li, G.; Chen, Y. Preparation of magnetic indole-3-acetic acid imprinted polymer beads with4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. J. Chromatogr. A 2010, 1217, 7337–7344. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.; Hu, Y.; Li, G. Microwave Heating in Preparation of Magnetic Molecularly Imprinted Polymer Beads for Trace Triazines Analysis in Complicated Samples Microwave Heating in Preparation of Magnetic Molecularly Imprinted Polymer Beads for Trace Triazines Analysis in Complicat. Anal. Chem. 2009, 81, 967–976. [Google Scholar] [CrossRef]
- Dmitrienko, S.G.; Popov, S.A.; Chumichkina, Y.A.; Zolotov, Y.A. The sorption properties of polymers with molecular imprints of 2,4-dichlorophenoxy acetic acid synthesized by various methods. Russ. J. Phys. Chem. A. 2011, 85, 472–477. [Google Scholar] [CrossRef]
- Price, G. Ultrasonically enhanced polymer synthesis. Ultrason. Sonochem. 1996, 3, S229–S238. [Google Scholar] [CrossRef]
- Chen, H.; Son, S.; Zhang, F.; Yan, J.; Li, Y.; Ding, H.; Ding, L. Rapid preparation of molecularly imprinted polymers by microwave-assisted emulsion polymerization for the extraction of florfenicol in milk. J. Chromatogr. B 2015, 983, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Li, H.; Wang, L.; Zhang, P.; Zhou, T.; Ding, H.; Ding, L. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk. Talanta 2016, 146, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Asfaram, A.; Ghaedi, M.; Dashtian, K. Ultrasound assisted combined molecularly imprinted polymer for selective extraction of nicotinamide in human urine and milk samples: Spectrophotometric determination and optimization study. Ultrason. Sonochem. 2017, 34, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Phutthawong, N.; Pattarawarapan, M. Facile synthesis of magnetic molecularly imprinted polymers for caffeine via ultrasound-assisted precipitation polymerization. Polym. Bull. 2013, 70, 691–705. [Google Scholar] [CrossRef]
- Schwarz, L.J.; Potdar, M.K.; Danylec, B.; Boysen, R.I.; Hearn, M.T.W. Microwave-assisted synthesis of resveratrol imprinted polymers with enhanced selectivity. Anal. Methods 2015, 7, 150–154. [Google Scholar] [CrossRef]
- Xia, X.; Lai, E.P.C.; Ormeci, B. Ultrasonication-Assisted Synthesis of Molecularly Imprinted Polymer-Encapsulated Magnetic Nanoparticles for Rapid and Selective Removal of 17 β-Estradiol from Aqueous Environment. Polym. Eng. Sci. 2012, 47, 1–9. [Google Scholar]
- Bagheri, A.R.; Mehrorang Ghaedi, M.A.; Ostovan, A.; Wang, X.; Li, J. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 2019, 195, 390–400. [Google Scholar] [CrossRef]
- Ning, F.; Qiu, T.; Wang, Q.; Peng, H.; Li, Y.; Wu, X.; Zhang, Z.; Chen, L.; Xiong, H. Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods. Food Chem. 2017, 221, 1797–1804. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Yan, K.; Xu, X.; Li, G. Rapid analysis of ractopamine in pig tissues by dummy-template imprinted solid-phase extraction coupling with surface-enhanced Raman spectroscopy. Talanta 2015, 138, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Wang, J.; Li, Y.; Yang, J.; Jin, J.; Shah, S.M.; Chen, J. Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples. J. Chromatogr. A 2014, 1359, 1–7. [Google Scholar] [CrossRef]
- Wang, M.; Chang, X.; Wu, X.; Yan, H.; Qiao, F. Water-compatible dummy molecularly imprinted resin prepared in aqueous solution for green miniaturized solid-phase extraction of plant growth regulators. J. Chromatogr. A 2016, 1458, 9–17. [Google Scholar] [CrossRef]
- Batlokwa, B.S.; Mokgadi, J.; Nyokong, T.; Torto, N. Optimal template removal from molecularly imprinted polymers by pressurized hot water extraction. Chromatographia 2011, 73, 589–593. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, R.A.; Carro, A.M.; Alvarez-Lorenzo, C.; Concheiro, A. To remove or not to remove? The challenge of extracting the template to make the cavities available in molecularly imprinted polymers (MIPs). Inter. J. Mol. Sci. 2011, 12, 4327–4347. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Li, Q.; Qin, L.; Zhou, X.; Fan, Y. Multi-templates surface molecularly imprinted polymer for simultaneous and rapid determination of sulfonamides and quinolones in water: Effect of carbon-carbon double bond. Environ. Sci. Pollut. Res. 2021, 28, 54950–54959. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Liu, J.; Li, J.; Wang, X.; Lv, M.; Cui, R.; Chen, L. Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography. Analyst 2019, 144, 1292–1302. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wang, X.; Wu, X.; Liu, D.; Li, J.; Chen, L.; Zhang, X. Multi-template imprinted polymers for simultaneous selective solid-phase extraction of six phenolic compounds in water samples followed by determination using capillary electrophoresis. J. Chromatogr. A 2017, 1483, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.; Tiritan, M.E.; Pinto, M.M.M. Chiral Separation in Preparative Scale: A Brief Overview of Membranes as Tools for Enantiomeric Separation. Symmetry 2017, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Liu, H.B.; Tang, S.Z.; Qiu, Z.D.; Zhu, H.X.; Song, Z.X. Synthesis, performance, and application of molecularly imprinted membranes: A review. J. Environ. Chem. Eng. 2021, 9, 106352. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Hotta, N.; Kyoumura, J.; Osagawa, Y.; Aoki, T. Chiral recognition sites from carbonyldioxyglyceryl moiety by an alternative molecular imprinting. Sensors Actuators B: Chem. 2005, 104, 282–288. [Google Scholar] [CrossRef]
- Zaidi, S.A. Recent developments in molecularly imprinted polymer nanofibers and their applications. Anal. Methods 2015, 7, 7406–7415. [Google Scholar] [CrossRef]
- Algieri, C.; Drioli, E.; Guzzo, L.; Donato, L. Bio-mimetic sensors based on molecularly imprinted membranes. Sensors 2014, 14, 13863–13912. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Luj, J.; Xing, W.; Ma, F.; Gao, J.; Lin, X.; Yu, C.; Yan, M. Double-layer-based molecularly imprinted membranes for template-dependent recognition and separation: An imitated core-shell-based synergistic integration design. Chem. Eng. J. 2020, 397, 125371. [Google Scholar] [CrossRef]
- Kenta, S.; Masakazu, Y. Molecularly Imprinted Chitin Nanofiber Membranes: Multi-Stage Cascade Membrane Separation within the Membrane. J. Membr. Sep. Technol. 2016, 5, 103–114. [Google Scholar]
- Masakazu, Y. Separation with molecularly imprinted membranes. Kobunshi Ronbunshu 2014, 71, 223–241. [Google Scholar] [CrossRef]
- Trotta, F.; Biasizzo, M.; Caldera, F. Molecularly imprinted membranes. Membranes 2012, 2, 440–477. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, M.; Guiver, M.D.; Robertson, G.P. Surface plasmon resonance studies on molecularly imprinted films. J. Appl. Polym. Sci. 2008, 110, 2826–2832. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Qin, Y.; Wu, Y.; Meng, M.; Dong, Z.; Yu, C.; Yan, Y.; Li, C.; Nyarko, F.K. Bidirectional molecularly imprinted membranes for selective recognition and separation of pyrimethamine: A double-faced loading strategy. J. Membr. Sci. 2020, 101, 117917. [Google Scholar] [CrossRef]
- Cui, J.; Wu, Y.; Meng, M.; Lu, J.; Wang, C.; Zhao, J.; Yan, Y. Bio-inspired synthesis of molecularly imprinted nanocomposite membrane for selective recognition and separation of artemisinin. J. Appl. Polym. Sci. 2016, 133, 43405. [Google Scholar] [CrossRef]
- Yukun, M.; Haijun, W.; Mengyan, G. Stainless Steel Wire Mesh Supported Molecularly Imprinted Composite Membranes for Selective Separation of Ebracteolata Compound B from Euphorbia fischeriana. Molecules 2019, 24, 565. [Google Scholar]
- Wei, M.H.; Chen, H.Y.; Wang, S.; Jiang, W.Y.; Wang, Y.; Wu, Z.F. Synthesis and characterization of hybrid molecularly imprinted membrane with blending SiO2 nanoparticles for ferulic acid. J. Inorg. Organomet. Polym. 2017, 27, 586–597. [Google Scholar] [CrossRef]
- Donato, L.; Tasselli, F.; Drioli, E. Molecularly imprinted membranes with affinity properties for folic acid. Sep. Sci. Technol. 2010, 45, 2273–2279. [Google Scholar] [CrossRef]
- Sánchez-González, J.; Odoardi, S.; Bermejo, A.M.; Bermejo-Barrera, P.; Romolo, F.S.; Moreda-Piñeiro, A.; Strano-Rossi, S. HPLC-MS/MS combined with membrane-protected molecularly imprinted polymer micro-solid-phase extraction for synthetic cathinones monitoring in urine. Drug Test. Anal. 2019, 11, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Odabas, M.; Uzun, L.; Baydemir, G.; Aksoy, N.H.; Acet, Ö.; Erdönmez, D. Cholesterol imprinted composite membranes for selective cholesterol recognition from intestinal mimicking solution. Colloids Surf. B: Biointerfaces 2018, 163, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, D.; Barbani, N.; Coluccio, M.L.; Pegoraro, C.; Giusti, P.; Cristallini, C. Poly (ethylene-co-vinyl alcohol) membranes with specific adsorption properties for potential clinical application. Sep. Sci. Technol. 2007, 42, 2829–2847. [Google Scholar] [CrossRef]
- Jantarat, C.; Attakitmongkol, K.; Nichsapa, S.; Sirathanarun, P.; Srivaro, S. Molecularly imprinted bacterial cellulose for sustained-release delivery of quercetin. J. Biomater. Sci. Polym. Ed. 2020, 31, 1961–1976. [Google Scholar] [CrossRef] [PubMed]
- Bakhshpour, M.; Yavuz, H.; Denizli, A. Controlled release of mitomycin C from PHEMAH–Cu(II) cryogel membranes. Artif. Cells Nanomed. Biotechnol. 2018, 46, 946–954. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185, 12–21. [Google Scholar] [CrossRef]
- Suedee, R.; Bodhibukkana, C.; Tangthong, N.; Amnuaikit, C.; Kaewnopparat, S.; Srichana, T. Development of a reservoir-type transdermal enantioselective controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane. J. Control Release 2008, 129, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Li, H.; Guo, T.; Li, S.; Shen, G.; Ban, C.; Liu, J. Chiral separation of (d,l)-lactic acid through molecularly imprinted cellulose acetate composite membrane. Cellulose 2018, 25, 3435–3448. [Google Scholar] [CrossRef]
- Son, S.H.; Jegal, J. Chiral Separation of D,L-Serine Racemate Using a Molecularly Imprinted Polymer Composite Membrane. J. Appl. Polym. Sci. 2007, 104, 1866–1872. [Google Scholar] [CrossRef]
- Donato, L.; Figoli, A.; Drioli, E. Novel composite poly (4-vinylpyridine)/polypropylene membranes with recognition properties for (S)-naproxen. J. Pharm. Biomed. Anal. 2005, 37, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Lah, N.F.C.; Ahmed, A.L.; Low, S.C. Molecular imprinted membrane biosensor for pesticide detection: Perspectives and challenges. Polym. Adv. Technol. 2021, 32, 17–30. [Google Scholar]
- Donato, L.; Greco, M.C.; Drioli, E. Preparation of molecularly imprinted membranes and evaluation of their performance in the selective recognition of dimethoate. Desalin. Water Treat. 2011, 30, 171–177. [Google Scholar] [CrossRef]
- Yoshimatsu, K.; Ye, L.; Stenlund, P.; Chronakis, I.S. A simple method for preparation of molecularly imprinted nanofiber materials with signal transduction ability. Chem. Commun. 2008, 2022–2024. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Fu, C. The recognizing mechanism and selectivity of the molecularly imprinting membrane. In Molecularly Imprinted Catalysts. Principles, Syntheses, and Applications; Li, S., Cao, S., Piletsky, S.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 159–182. [Google Scholar]
- Ulbricht, M. Membrane separations using molecularly imprinted polymers. J. Chromatogr. B 2004, 804, 113–125. [Google Scholar] [CrossRef]
- Cui, J.; Xie, A.; Liu, Y.; Xue, C.; Pan, J. Fabrication of multi-functional imprinted composite membrane for selective tetracycline and oil-in-water emulsion separation. Compos. Commun. 2021, 28, 100985. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Tanioka, A.; Matsumoto, H. Molecularly imprinted nanofiber membranes. Curr. Opin. Chem. Eng. 2011, 1, 18–26. [Google Scholar] [CrossRef]
- Donato, L.; Tasselli, F.; De Luca, G.; Del Blanco, S.; Drioli, E. Novel hybrid molecularly imprinted membranes for targeted 4,40-methylendianiline. Sep. Purif. Technol. 2013, 116, 184–191. [Google Scholar] [CrossRef]
- Xing, W.; Ma, Z.; Wang, C.; Lu, J.; Gao, J.; Yu, C. Metal-organic framework based molecularly imprinted nanofiber membranes with enhanced selective recognition and separation performance: A multiple strengthening system. Sep. Purif. Technol. 2022, 278, 119624. [Google Scholar] [CrossRef]
- Qu, Y.; Qin, L.; Guo, M.; Liu, X.; Yang, Y. Multilayered molecularly imprinted composite membrane based on porous carbon nanospheres/pDA cooperative structure for selective adsorption and separation of phenol. Sep. Purif. Technol. 2022, 280, 119915. [Google Scholar] [CrossRef]
- Dong, Z.; Lu, J.; Wu, Y.; Meng, M.; Yu, C.; Chang, S. Antifouling molecularly imprinted membranes for pretreatment of milk samples: Selective separation and detection of lincomycin. Food Chem. 2020, 333, 127477. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, X.; Liu, X.; Li, C.; Zeng, S.; Wang, H.; Zhang, S. Fabrication of multilayered molecularly imprinted membrane for selective recognition and separation of artemisinin. ACS Sustain. Chem. Eng. 2019, 7, 3127–3137. [Google Scholar] [CrossRef]
- Meng, M.; Feng, Y.; Liu, Y.; Dai, X.; Pan, J.; Yan, Y. Fabrication of submicrosized imprinted spheres attached polypropylene membrane using ‘‘two-dimensional’’ molecular imprinting method for targeted separation. Adsorpt. Sci. Technol. 2017, 35, 162–177. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, X.; Shi, X.; Sun, A.; Wang, L.; Xiao, T. Highly permselective membrane surface modification by cold plasma-induced grafting polymerization of molecularly imprinted polymer for recognition of ptyrethroid insecticides in fish. Anal. Chem. 2014, 86, 11705–11713. [Google Scholar] [CrossRef] [PubMed]
- Raharjo, Y.; Fahmi, Z.M.; Wafiroh, S.; Widati, A.A.; Amanda, E.R.; Ismail, A.F. Incorporation of imprinted-zeolite to polyethersulfone/cellulose acetate membrane for creatinine removal in hemodialysis treatment. J. Teknol. 2019, 81, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Zhu, X.; Yang, S.; Wu, Y.; Cao, Q.; Ding, Z. A pH controllable imprinted composite membrane for selective separation of podophyllotoxin and its analog. J. App. Polym. Sci. 2013, 128, 363–370. [Google Scholar] [CrossRef]
- Sueyoshi, Y.; Utsunomiya, A.; Yoshikawa, M.; Robertson, G.P.; Guiver, M.D. Chiral separation with molecularly imprinted polysulfonealdehyde derivatized nanofiber membranes. J. Membr. Sci. 2012, 401–402, 89–96. [Google Scholar]
- Barahona, F.; Turiel, E.; Martín-Esteban, A. Supported liquid membrane-protected molecularly imprinted fibre for solid-phase microextraction of thiabendazole. Anal. Chim. Acta. 2011, 694, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Amor, F.I.E.H.; Nasser, I.I.; Baatout, Z.; Teka, S.; Jaballah, N.; Donato, L.; Majdoub, M.; Ahmed, C. New Polymer Inclusion Membrane Containing Modified β-Cyclodextrin: Application to Molecular Facilitated Transport. J. App. Chem. 2016, 5, 435–445. [Google Scholar]
- Xu, L.; Huang, Y.A.; Zhu, Q.J.; Ye, C. Chitosan in molecularly-imprinted polymers: Current and future prospects. Int. J. Mol. Sci. 2015, 16, 18328–18347. [Google Scholar] [CrossRef]
- Dima, S.O.; Dobre, T.; Stoica-Guzun, A.; Oancea, F.; Jinga, S.I.; Nicolae, C.A. Molecularly imprinted bio-membranes based on cellulose nano-fibers for drug release and selective separations. Macromol. Symp. 2016, 359, 124–128. [Google Scholar] [CrossRef]
- Donato, L.; Chiappetta, G.; Drioli, E. Surface functionalization of PVDF membrane with a naringin-imprinted polymer layer using photo-polymerization method. Separ. Sci. Technol. 2011, 46, 1555–1562. [Google Scholar] [CrossRef]
- Lay, S.; Ni, X.F.; Yu, H.N.; Shen, S.R. State-of-the-art applications of cyclodextrins as functional monomers in molecular imprinting techniques: A review. J. Sep. Sci. 2016, 39, 2321–2331. [Google Scholar] [CrossRef]
- Na, L.; Hu, Y. Construction of natural polymeric imprinted materials and their applications in water treatment: A review. J. Hazard. Mater. 2021, 403, 123643. [Google Scholar]
- Zhou, Z.; He, L.; Mao, Y.; Chai, W.; Ren, Z. Green preparation and selective permeation of d-Tryptophan imprinted composite membrane for racemic tryptophan. Chem. Eng. J. 2017, 310, 63–71. [Google Scholar] [CrossRef]
- Tamahkar, E.; Bakhshpour, M.; Denizli, A. Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. J. Biomater. Sci. Polym. Ed. 2019, 30, 450–460. [Google Scholar] [CrossRef]
- Piloto, A.M.L.; Ribeiro, D.S.M.; Rodrigues, S.S.M.; Santos, J.L.M.; Sampaio, P.; Sale, G. Imprinted Fluorescent Cellulose Membranes for the On-Site Detection of Myoglobin in Biological Media. ACS Appl. Bio Mater. 2021, 4, 4224–4235. [Google Scholar] [CrossRef]
- Zhang, C.; Zhong, S.; Yang, Z. Cellulose acetate-based molecularly imprinted polymeric membrane for separation of vanillin and o-vanillin. Braz. J. Chem. Eng. 2008, 25, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.Q.; Zhao, Y.; Pan, J.F.; Bruggen, B.V.D.; Shen, J.N. A novel chitosan base molecularly imprinted membrane for selective separation of chlorogenic acid. Sep. Purif. Technol. 2016, 164, 70–80. [Google Scholar] [CrossRef]
- Xiao, X.D.; Li, Z.Q.; Liu, Y.; Jia, L. Preparation of chitosan-based molecularly imprinted material for enantioseparation of racemic mandelic acid in aqueous medium by solid phase extraction. J. Sep. Sci. 2019, 42, 3544–3552. [Google Scholar] [CrossRef] [PubMed]
- Di Bello, M.P.; Mergola, L.; Scorrano, S.; Del Sole, R. Towards a new strategy of a chitosan-based molecularly imprinted membrane for removal of 4-nitrophenol in real water samples. Polym. Int. 2017, 66, 1055–1063. [Google Scholar] [CrossRef]
- Ma, X.L.; Chen, R.Y.; Zheng, X.; Youn, H.; Chen, Z. Preparation of molecularly imprinted CS membrane for recognizing naringin in aqueous media. Polym. Bull. 2011, 66, 853–863. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, Y.Y.; Yu, Y.X.; Jiang, Z.Y. Molecularly Imprinted Chitosan Membrane for Chiral Resolution of Phenylalanine Isomers. J. Funct. Polym. 2007, 20, 262–266. [Google Scholar]
- Nong, L.P.; Huang, M.; Zhuang, Y.P. Preparation and Selective Permeation Characterization of L-Tryptophane Molecular Imprinting Chitosan Film. Chem. Res. 2009, 20, 15–18. [Google Scholar]
- Zheng, X.F.; Lian, Q.; Yang, H. Synthesis of chitosan–gelatin molecularly imprinted membranes for extraction of L-tyrosine. RSC Adv. 2014, 4, 42478–42485. [Google Scholar] [CrossRef]
- Qi, M.; Zhao, K.; Bao, Q.; Pan, P.; Zhao, Y.; Yang, Z.; Wang, H.; Wei, J. Adsorption and Electrochemical Detection of Bovine Serum Albumin Imprinted Calcium Alginate Hydrogel Membrane. Polymers 2019, 11, 622. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Cui, K.; Mao, Y.; Chai, W.; Wang, N.; Ren, Z. Green preparation of d-tryptophan imprinted self-supported membrane for ultrahigh enantioseparation of racemic tryptophan. RSC Adv. 2016, 6, 109992–110000. [Google Scholar] [CrossRef]
- Gao, T.; Guan, G.; Wang, X.; Lou, T. Electrospun molecularly imprinted sodium alginate/polyethylene oxide nanofibrous membranes for selective adsorption of methylene blue. Int. J. Biol. Macromol. 2022, 207, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Feng, L.; Lin, H.; Fu, Y.; Lin, B.; Cui, W.; Wei, J. Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix. Catal. Today 2014, 236, 127–134. [Google Scholar] [CrossRef]
- Shin, M.J.; Shin, J.S. A molecularly imprinted polymer undergoing a color change depending on the concentration of bisphenol A. Microchim. Acta 2019, 187, 44. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.L.; Liu, W.T.; Huang, X.C.; Ma, J.K. Preparation and application of a magnetic plasticizer as a molecularly imprinted polymer adsorbing material for the determination of phthalic acid esters in aqueous samples. J. Sep. Sci. 2018, 41, 3806. [Google Scholar] [CrossRef]
- Lu, J.; Qin, Y.Y.; Wu, Y.L.; Chen, M.N.; Sun, C.; Han, Z.X.; Yan, Y.S.; Li, C.X.; Yan, Y. Mimetic-core-shell design on molecularly imprinted membranes providing an antifouling and high-selective surface. Chem. Eng. J. 2021, 417, 128085. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Liu, Z.; Hu, X.; Xu, Z. β-cyclodextrin molecularly imprinted solid-phase microextraction coatings for selective recognition of polychlorophenols in water samples. Anal. Bioanal. Chem. 2018, 410, 509–519. [Google Scholar] [CrossRef]
- Xing, W.; Wu, Y.; Lu, J.; Lin, X.; Yu, C.; Dong, Z.; Li, C. Biomass-Based Synthesis of Green and Biodegradable Molecularly Imprinted Membranes for Selective Recognition and Separation of Tetracycline. Nano Brief Rep. Rev. 2020, 15, 2050004. [Google Scholar] [CrossRef]
- Masakazu, Y.; Kensuke, K.; Akinori, E.; Takashi, A.; Shinichi, S.; Kyoko, H.; Kunihiko, W. Green Polymers from Geobacillus thermodenitrificans DSM465–Candidates for Molecularly Imprinted Materials. Macromol. Biosci. 2006, 6, 210–215. [Google Scholar]
- Su, C.; Li, Z.; Zhang, D.; Wang, Z.; Zhou, X. A highly sensitive sensor based on a computer-designed magnetic molecularly imprinted membrane for the determination of acetaminophen. Biosens. Bioelectron. 2020, 148, 111819. [Google Scholar] [CrossRef]
- Wang, C.; Hu, X.; Guan, P.; Wu, D.; Qian, L.; Li, J. Separation and purification of thymopentin with molecular imprinting membrane by solid phase extraction disks. J. Pharm. Biomed. Anal. 2015, 102, 137–143. [Google Scholar] [CrossRef]
- He, Z.; Meng, M.; Yan, L.; Zhu, W.; Sun, F.; Yan, Y.; Liu, Y.; Liu, S. Fabrication of new cellulose acetate blend imprinted membrane assisted with ionic liquid ([BMIM]Cl) for selective adsorption of salicylic acid from industrial wastewater. Sep. Purif. Technol. 2015, 145, 63–74. [Google Scholar] [CrossRef]
- Fan, J.P.; Zhang, F.Y.; Yang, X.M.; Zhang, X.H.; Cao, Y.H.; Peng, H.L. Preparation of a novel supermacroporous molecularly imprinted cryogel membrane with a specific ionic liquid for protein recognition and permselectivity. J. Appl. Polym. Sci. 2018, 135, 46740. [Google Scholar] [CrossRef]
- Bai, M.; Qiang, L.Q.; Meng, M.; Li, B.; Wang, S.; Wu, Y. Upper surface imprinted membrane prepared by magnetic guidance phase inversion method for highly efficient and selective separation of artemisinin. Chem. Eng. J. 2021, 405, 126889. [Google Scholar] [CrossRef]
- Lee, T.P.; Saad, B.; Nakajima, L.; Takaomi, K. Preparation and Characterization of Hybrid Molecularly Imprinted Polymer Membranes for the Determination of Citrinin in Rice. Sains. Malays. 2019, 48, 1661–1670. [Google Scholar] [CrossRef]
- Yuan, Y.; Yuan, X.; Hang, Q.; Zheng, R.; Lin, L.; Zhao, L.; Xiong, Z. Dummy molecularly imprinted membranes based on an eco-friendly synthesis approach for recognition and extraction of enrofloxacin and ciprofloxacin in egg samples. J. Chromatogr. A 2021, 1653, 462411. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J.; Xu, Z.L.; Feng, J.L.; Bing, N.C.; Yang, Z.G. Molecularly imprinted membranes for the recognition of lovastatin acid in aqueous medium by a template analogue imprinting strategy. J. Membr. Sci. 2008, 313, 97–105. [Google Scholar] [CrossRef]
- Wan, L.; Gao, H.; Gao, H.; Yan, G.; Wang, F.; Wang, Y. Dummy molecularly imprinted solid phase extraction in a nylon membrane filter for analysis of vardenafil in health care products. Microchem. J. 2021, 165, 106157. [Google Scholar] [CrossRef]
- Sergeyeva, T.; Yarynka, D.; Dubey, L.; Dubey, I.; Piletska, E.; Linnik, R.; Antonyuk, M.; Ternovska, T.; Brovko, O.; Piletsky, S.; et al. Sensor Based on Molecularly Imprinted Polymer Membranes and Smartphone for Detection of Fusarium Contamination in Cereals. Sensors 2020, 20, 4304. [Google Scholar] [CrossRef]
- Wei, M.; Wang, S.; Jiang, W. Preparation and Characterization of Dual-Template Molecularly Imprinted Membrane with High Flux Based on Blending the Inorganic Nanoparticles. J. Inorg. Organomet. Polym. 2018, 28, 295–307. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Razavi, N. Application of molecularly imprinted polymers in solid-phase microextraction techniques. TrAC–Trends Anal. Chem. 2015, 73, 81–90. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Zhang, X.; Wu, Z.; Li, B.; Dong, X. Preparation and evaluation of molecularly imprinted composite membranes for inducing crystallization of oleanolic acid in supercritical CO2. Anal. Meth. 2016, 8, 5651–5657. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Wang, R.; Cui, Y.; Zhang, X.; Hong, L. Preparation of molecularly imprinted composite membranes for inducing bergenin crystallization in supercritical CO2 and adsorption properties. Bull. Korean Chem. Soc. 2012, 33, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, S.M.; Viveiros, R.; Coelho, M.B.; Aguiar-Ricardo, A.; Casimiro, T. Supercritical CO2-assisted preparation of a PMMA composite membrane for bisphenol A recognition in aqueous environment. Chem. Eng. Sci. 2012, 68, 94–100. [Google Scholar] [CrossRef]
Functional Monomer | Solvent | Template | Ref. |
---|---|---|---|
1-Allyl-3-ethylimidazolium bromide ([AEIM]Br) | Water | Phenylephrine (dummy template of clenbuterol) | [140] |
1-allyl-3- ethylimidazolium hexafluorophosphate; | Water and chloroform | 4,4–Dichlorobenzhydrol | [141] |
3-(anthracen-9-ylmethyl)-1-vinyl1H-imidazol-3-ium chloride; | Methanol | p-Nitroaniline | [142] |
1-[3-(N-cystamine)propyl]-3-vinylimidazolium tetrafluoroborate; | Water | a-Fetoprotein | [143] |
1-Ethyl- 3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), | ethanol/water | Patulin | [144] |
1-(a-methyl acrylate)-3-methylimidazolium bromide; | Methanol and water | Caffeine | [145] |
1-vinyl-3-methylimidazolium chloride | Acetonitrile and water | Benzoic acid (dummy template of salicylic acid) | [146] |
1-allyl-3-methylimidazolium bromide | Acetonitrile | Bromide (Z)-3-(chloromethylene)-6-flourothiochroman-4-one | [147] |
1-allyl-3-vinylimidazolium chloride | Water and ethanol | Imiquimod | [148] |
1-allyl-3-vinylimidazolium chloride; | methanol | Sulfamonomethoxine | [149] |
1-(Triethoxysilyl) propyl-3aminopropylimidazole bromide | Tetrahydrofuran and methanol | Bisphenol A (dummy template of organochlorines) | [150] |
1-vinyl-3 butyl imidazolium chloride | Water | Lysozyme | [151] |
1-Vinyl-3-ethylimidazolium bromide | Water | Ochratoxin A | [152] |
1-Viny-3-carboxybutyl imidazolium bromide | Methanol and water | Synephrine | [139] |
1-vinyl-3 butyl imidazolium tetrafluoroborate | Methanol | Cyhalothrin | [153] |
1-vinyl-3-propylimidazole sulfonate | Water | Hemoglobin | [154] |
1,6-hexa-3,30 -bis-1-vinylimidazolium bromine | Water | Levofloxacin | [155] |
3-(3-aminopropyl)-1vinylimidazolium chloride | Water | Bovine serum albumin | [156] |
Mono-6A-deoxy-6-(1-vinyl imidazolium)-β-cyclodextrin tosylate | Phosphate buffer | C terminal peptides of cytochrome C | [157] |
3-Propyl-1-vinyl imidazolium bromide | Methanol and water | Amoxicillin | [158] |
Natural Material | Template | Application | Ref. |
---|---|---|---|
Cellulose | Diosgenin | Sustained release and selective separation | [250] |
Gentamicin | Controlled delivery | [255] | |
Myoglobin | Sensing in biological media | [256] | |
Quercetin | Sustained release | [223] | |
Vanilline | Selective separation | [257] | |
Chitosan | Chlorogenic acid | Selective separation | [258] |
L-Mandelic acid | Enantioseparation | [259] | |
4-nitrophenol | Water treatment | [260] | |
Naringin | Debittering | [261] | |
L-Phenylalanine | Enantioseparation | [262] | |
L-Tryptophan | Enantioseparation | [263] | |
L-tyrosine | Selective separation | [264] | |
Sodium alginate | Bovine serum albumin | Adsorption and electrochemical detection in aqueous phase | [265] |
D-Tryptophan | Enantioseparation | [266] | |
Methylene blue | Removal from water | [267] | |
Methyl orange | Removal from water | [268] | |
β-cyclodextrin | Bisphenol A | Sensing in water | [269] |
Butyl benzyl phthalate and dibutyl phthalate (dual templates) | Sensing in water | [270] | |
Ciprofloxacin | Selective separation | [271] | |
Triclosan and polychlorophenols | Sensing in water | [272] |
Target Compound | Dummy Template | Application | Ref. |
---|---|---|---|
Artemisinin | Artesunate | Separation from similar artemether | [279] |
Citrinin | 1-Napthol | Detection in rice | [280] |
Enrofloxacin | Gatfloxacin | Detection and removal from eggs | [281] |
Lovastatin | Lovastatin acid | Separation of statins | [282] |
Vardefanil | Sildefanil | Solid-phase extraction | [283] |
Zearalenone | Cyclododecyl-2,4-dihydroxybenzoate | Detection in cereal samples for inspecting fusarium contamination | [284] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donato, L.; Nasser, I.I.; Majdoub, M.; Drioli, E. Green Chemistry and Molecularly Imprinted Membranes. Membranes 2022, 12, 472. https://doi.org/10.3390/membranes12050472
Donato L, Nasser II, Majdoub M, Drioli E. Green Chemistry and Molecularly Imprinted Membranes. Membranes. 2022; 12(5):472. https://doi.org/10.3390/membranes12050472
Chicago/Turabian StyleDonato, Laura, Imen Iben Nasser, Mustapha Majdoub, and Enrico Drioli. 2022. "Green Chemistry and Molecularly Imprinted Membranes" Membranes 12, no. 5: 472. https://doi.org/10.3390/membranes12050472
APA StyleDonato, L., Nasser, I. I., Majdoub, M., & Drioli, E. (2022). Green Chemistry and Molecularly Imprinted Membranes. Membranes, 12(5), 472. https://doi.org/10.3390/membranes12050472