Air-to-Air Heat and Moisture Recovery in a Plate-Frame Exchanger Using Composite and Asymmetric Membranes
Abstract
:1. Introduction
2. Experimental
2.1. Exchanger Setup
- (1)
- Gas stream flowrate: it was varied in 1–5 L·min−1. In this series of experiments, the ratio of “fresh” air to “exhaust” air was equal to 1, and the humid supply air flow temperature was 50 °C;
- (2)
- The ratio of fresh air to exhaust air flow rate: it was studied in the range of 1 to 5, while the temperature and flow rate of the incoming “exhaust” air was kept constant at 50 °C and 1 L·min−1, respectively;
- (3)
- Humid air temperature: its effect was determined by varying between 40 and 80 °C. In contrast, the ratio of fresh air to exhaust air was equal to 1, and the “exhaust” air flow rate of 2 L·min−1 was considered.
2.2. Membrane Cores Preparation and Characterization
2.3. Performance Evaluation
3. Results and Discussion
3.1. Error Calculation
3.2. Effect of Flow Rate
3.3. Effect of Flow Rates Ratio
3.4. Effect of the Humid Air Temperature
3.5. Overall Heat Transfer Coefficient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Abbreviations | Full name |
CA | Cellulose acetate |
C-MEM | Thin film composite membrane |
DMF | Dimethylformamide |
EC | Ethyl cellulose |
EtOH | Ethyl alcohol (ethanol) |
HVAC | Heating Ventilation and Air Conditioning |
LiCl | Lithium chloride |
NIPS | Non-solvent induced phase separation |
PAMAC | Poly(acrylamide-co-acrylic acid) |
PDMS | Polydimethylsiloxane |
PEBAX | (PEBA) Polyether block amide |
PEI | Polyetherimide |
PES | Polyethersulfone |
PI | polyimide |
P-MEM | Asymmetric porous membrane |
PVA | Polyvinyl alcohol |
PVDF | Polyvinylidene fluoride |
SPEEK | Sulphonated poly (ether ether ketone) |
Symbols/units | Explanation |
(m2) | Membrane surface |
ε(l) | Latent efficiency |
ε(s) | Sensible efficiency |
ε(t) | total effectiveness |
(K) | Logarithmic mean temperature difference |
𝓀 (kJ/kg dry air) | Humid enthalpy |
(kJ/kg dry air) | Humid enthalpy of inlet “Exhaust” stream |
(kJ/kg dry air) | Humid enthalpy of outlet “Exhaust” stream |
(kJ/kg dry air) | Humid enthalpy of inlet “Fresh” stream |
(kg dry air/s) | Mass flow rate of inlet dry “Exhaust” air stream |
T (K) | Absolute temperature |
(K) | Temperature of inlet “Exhaust” stream |
(K) | Temperature of outlet “Exhaust” stream |
(K) | Temperature of inlet “Fresh” stream |
(K) | Temperature of outlet “Fresh” stream |
(kJ·s−1) | Total heat transfer rate |
W·m−2·K−1) | Overall heat transfer coefficient |
𝓌 (kg H2O/kg dry air) | Absolute humidity (Humidity ratio) |
(kg H2O/kg dry air) | Absolute humidity of inlet “Exhaust” stream |
(kg H2O/kg dry air) | Absolute humidity of outlet “Exhaust” stream |
(kg H2O/kg dry air) | Absolute humidity of inlet “Fresh” stream |
References
- Liang, C.; Zhang, L.; Pei, L. Independent air dehumidification with membrane-based total heat recovery: Modeling and experimental validation. Int. J. Refrig. 2009, 33, 398–408. [Google Scholar] [CrossRef]
- Xu, Q.; Riffat, S.; Zhang, S. Review of Heat Recovery Technologies for Building Applications. Energies 2019, 12, 1285. [Google Scholar] [CrossRef] [Green Version]
- Mardiana-Idayu, A.; Riffat, S. Review on heat recovery technologies for building applications. Renew. Sustain. Energy Rev. 2012, 16, 1241–1255. [Google Scholar] [CrossRef]
- Ong, K.S. Review of heat pipe heat exchangers for enhanced dehumidification and cooling in air conditioning systems. Int. J. Low-Carbon Technol. 2014, 11, 416–423. [Google Scholar] [CrossRef]
- Nasif, M.S.; Morrison, G.L.; Behnia, M. Membrane Based Enthalpy Heat Exchanger Performance in HVAC System. J. Appl. Membr. Sci. Technol. 2017, 2. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Y. Heat and mass transfer in a membrane-based energy recovery ventilator. J. Membr. Sci. 1999, 163, 29–38. [Google Scholar] [CrossRef]
- Asasian-Kolur, N.; Sharifian, S.; Haddadi, B.; Pourhoseinian, M.; Shekarbaghani, Z.M.; Harasek, M. Membrane-based enthalpy exchangers for coincident sensible and latent heat recovery. Energy Convers. Manag. 2021, 253, 115144. [Google Scholar] [CrossRef]
- Yang, B.; Yuan, W.; Gao, F.; Guo, B. A review of membrane-based air dehumidification. Indoor Built Environ. 2013, 24, 11–26. [Google Scholar] [CrossRef]
- Nasif, M.S.; Al-Waked, R.; Behnia, M.; Morrison, G. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis. J. Mech. Sci. Technol. 2013, 27, 3541–3551. [Google Scholar] [CrossRef]
- Nasif, M.; Al-Waked, R.; Morrison, G.; Behnia, M. Membrane heat exchanger in HVAC energy recovery systems, systems energy analysis. Energy Build. 2010, 42, 1833–1840. [Google Scholar] [CrossRef]
- Hansen, C.M. Diffusion in polymers. Polym. Eng. Sci. 1980, 20, 252–258. [Google Scholar] [CrossRef]
- Allen, S.; Fujii, M.; Stannett, V.; Hopfenberg, H.; Williams, J. The barrier properties of polyacrylonitrile. J. Membr. Sci. 1977, 2, 153–163. [Google Scholar] [CrossRef]
- Metz, S.; Van De Ven, W.; Potreck, J.; Mulder, M.; Wessling, M. Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes. J. Membr. Sci. 2005, 251, 29–41. [Google Scholar] [CrossRef]
- Narducci, R.; Di Vona, M.L.; Marrocchi, A.; Baldinelli, G. Stabilized SPEEK Membranes with a High Degree of Sulfonation for Enthalpy Heat Exchangers. Coatings 2018, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liang, C.; Pei, L. Heat and moisture transfer in application scale parallel-plates enthalpy exchangers with novel membrane materials. J. Membr. Sci. 2008, 325, 672–682. [Google Scholar] [CrossRef]
- Zhang, L.-Z.; Wang, Y.-Y.; Wang, C.-L.; Xiang, H. Synthesis and characterization of a PVA/LiCl blend membrane for air dehumidification. J. Membr. Sci. 2008, 308, 198–206. [Google Scholar] [CrossRef]
- Roy, S.; Hussain, C.M.; Mitra, S. Poly(acrylamide-co-acrylic acid) hydrophilization of porous polypropylene membrane for dehumidification. Sep. Purif. Technol. 2013, 107, 54–60. [Google Scholar] [CrossRef]
- Jesswein, I.; Hirth, T.; Schiestel, T. Continuous dip coating of PVDF hollow fiber membranes with PVA for humidification. J. Membr. Sci. 2017, 541, 281–290. [Google Scholar] [CrossRef]
- Kneifel, K.; Nowak, S.; Albrecht, W.; Hilke, R.; Just, R.; Peinemann, K.-V. Hollow fiber membrane contactor for air humidity control: Modules and membranes. J. Membr. Sci. 2006, 276, 241–251. [Google Scholar] [CrossRef]
- Zhang, X.R.; Zhang, L.Z.; Liu, H.M.; Pei, L.X. One-step fabrication and analysis of an asymmetric cellulose acetate membrane for heat and moisture recovery. J. Membr. Sci. 2011, 366, 158–165. [Google Scholar] [CrossRef]
- Al-Waked, R.F.; Nasif, M.S. Air to Air Energy Recovery from HVAC Systems under Different Membrane Materials. Univers. J. Mech. Eng. 2019, 7, 37–49. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Thin film composite and/or thin film nanocomposite hollow fiber membrane for water treatment, pervaporation, and gas/vapor separation. Polymers 2018, 10, 1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abetz, V.; Brinkmann, T.; Sözbilir, M. Fabrication and function of polymer membranes. Chem. Teach. Int. 2021, 3, 141–154. [Google Scholar] [CrossRef]
- Salafi, M.; Asasian-Kolur, N.; Sharifian, S.; Ghadimi, A. A flat-plate spiral-channeled membrane heat exchanger for methane dehumidification: Comparison of kraft paper and thin-film composite membrane. Int. J. Therm. Sci. 2021, 167, 107046. [Google Scholar] [CrossRef]
- Pourhoseinian, M.; Asasian-Kolur, N.; Sharifian, S. CFD investigation of heat and moisture recovery from air with membrane heat exchanger. Appl. Therm. Eng. 2021, 191, 116911. [Google Scholar] [CrossRef]
- Engarnevis, A.; Huizing, R.; Green, S.; Rogak, S. Particulate fouling assessment in membrane based air-to-air energy exchangers. Energy Build. 2017, 150, 477–487. [Google Scholar] [CrossRef]
- Ghadimi, A.; Norouzbahari, S.; Lin, H.; Rabiee, H.; Sadatnia, B. Geometric restriction of microporous supports on gas permeance efficiency of thin film composite membranes. J. Membr. Sci. 2018, 563, 643–654. [Google Scholar] [CrossRef]
- Deshko, V.; Karvatskii, A.; Sukhodub, I.O. Heat and mass transfer in cross-flow air-to-air membrane heat exchanger in heating mode. Appl. Therm. Eng. 2016, 100, 133–145. [Google Scholar] [CrossRef]
Main Segments | Equipment | Specification |
---|---|---|
Air supply | Air compressor | Active AC1350S, 50 L |
Humidifying column | Cylinder material, dimensions, Gas nozzle, position Water level | SS 304, thickness: 4 mm, volume: 2 L Swagelok® SC-11 gas filter, 3 cm above the bottom of column 1 L |
Membrane module | Channel width × height × length Material Total/Effective surface area | 5 mm × 6 mm × 15.4 cm Plexiglas® 7.7 cm2 |
Instruments | Air flow meter Heat trace device Needle valve Ball valve Pressure gauge Relative humidity and temperature sensor/indicator Pipeline | LZB-DK, 0.5–5 L·min−1 Silicon rubber heat generation,100 W Parker Hannifin, DE-LOK, SS 316 Parker, SS 316, ¼; Nippon, SS, ¼ Wika, EN 837-1, 0–4 bar ENDA EHTC7425A Stainless steel, ¼ |
Material | Company |
---|---|
PES Ultrason® E 6020P | BASF (Ludwigshafen, Germany) |
PEBA polymer (trade name PEBAX-1657) | Arkema (Colombes, France) |
Absolute ethanol (EtOH) | Merck (Darmstadt, Germany) |
N,N-dimethylformamide (DMF) [(CH3)2NC(O)H] | Merck (Darmstadt, Germany) |
Variable | Changing Range | Kraft Paper | P-MEM | C-MEM |
---|---|---|---|---|
Air flow rate | 1–5 L·min−1 | 12.8 | 11.1 | 13.8 |
“Fresh” to “Exhaust” air flow rate ratio | 1–5 | 19.0 | 11.7 | 12.4 |
Temperature of the inlet “exhaust” air | 40–80 °C | 13.7 | 15.3 | 12.6 |
Test Series | Operating Range | Overall Heat Transfer Coefficient (W·m−2·K−1) | ||
---|---|---|---|---|
Kraft Paper | C-MEM | P-MEM | ||
Flow rate | 1–5 L·min−1 (Flow ratio: 1, T = 50 °C) | 252 | 211 | 238 |
Flow ratio | 1–5 (Flow rate: 1 L·min−1; T = 50 °C) | 192 | 153 | 185 |
Temperature | 40–80 °C (Flow rate: 2 L·min−1; Flow ratio: 1) | 224 | 192 | 219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahed Mogharrab, A.; Sharifian, S.; Asasian-Kolur, N.; Ghadimi, A.; Haddadi, B.; Harasek, M. Air-to-Air Heat and Moisture Recovery in a Plate-Frame Exchanger Using Composite and Asymmetric Membranes. Membranes 2022, 12, 484. https://doi.org/10.3390/membranes12050484
Jahed Mogharrab A, Sharifian S, Asasian-Kolur N, Ghadimi A, Haddadi B, Harasek M. Air-to-Air Heat and Moisture Recovery in a Plate-Frame Exchanger Using Composite and Asymmetric Membranes. Membranes. 2022; 12(5):484. https://doi.org/10.3390/membranes12050484
Chicago/Turabian StyleJahed Mogharrab, Amir, Seyedmehdi Sharifian, Neda Asasian-Kolur, Ali Ghadimi, Bahram Haddadi, and Michael Harasek. 2022. "Air-to-Air Heat and Moisture Recovery in a Plate-Frame Exchanger Using Composite and Asymmetric Membranes" Membranes 12, no. 5: 484. https://doi.org/10.3390/membranes12050484
APA StyleJahed Mogharrab, A., Sharifian, S., Asasian-Kolur, N., Ghadimi, A., Haddadi, B., & Harasek, M. (2022). Air-to-Air Heat and Moisture Recovery in a Plate-Frame Exchanger Using Composite and Asymmetric Membranes. Membranes, 12(5), 484. https://doi.org/10.3390/membranes12050484