Zinc–Tin Oxide Film as an Earth-Abundant Material and Its Versatile Applications to Electronic and Energy Materials
Abstract
:1. Introduction
2. ZTO Film and Applications
2.1. Manufacturing Process of ZTO Thin Film
2.2. ZTO-Based Thin-Film Transistors
2.3. Flexible Electronics
2.4. Memory Applications
2.5. Solar Cell Applications
2.6. Sensors
3. Conclusions
- (1)
- A more elaborate ZTO-film-patterning process is needed to improve the scalability of ZTO-based devices. A robust and stable patterning process based on ZTO should be accompanied because scalable patterning technology is crucial for the success of silicon-based electronics.
- (2)
- Research efforts on the device process yield and reproducibility for commercialization are still insufficient. For more practical use of ZTO films, an analysis of single-device characteristics, yield verification, and reproducibility evaluations through multiple device tests are needed.
- (3)
- For the ZTO-based thin-film transistor aspect, development is required at the level of a more complex circuit beyond a single device or inverter circuit. The research focused only on improving the charge mobility of ZTO unit transistors. On the other hand, interest in complementary circuit integration and the development of p-type transistors compatible with the ZTO film is increasing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Sumithra, S.; Jaya, N.V. Band gap tuning and room temperature ferromagnetism in Co doped Zinc stannate nanostructures. Phys. B Condens. Matter 2016, 493, 35–42. [Google Scholar] [CrossRef]
- Lee, I.-J.; Sung, N.-E.; Chae, K.H.; Conley, R. Characterization of zinc–tin–oxide films deposited by radio frequency magnetron sputtering at various substrate temperatures. Thin Solid Film. 2013, 548, 385–388. [Google Scholar] [CrossRef]
- Lindahl, J.; Hägglund, C.; Wätjen, J.T.; Edoff, M.; Törndahl, T. The effect of substrate temperature on atomic layer deposited zinc tin oxide. Thin Solid Film. 2015, 586, 82–87. [Google Scholar] [CrossRef]
- Joo, Y.-H.; Wi, J.-H.; Lee, W.-J.; Chung, Y.-D.; Cho, D.-H.; Kang, S.; Um, D.-S.; Kim, C.-I. Work Function Tuning of Zinc–Tin Oxide Thin Films Using High-Density O2 Plasma Treatment. Coatings 2020, 10, 1026. [Google Scholar] [CrossRef]
- Lee, J.S.; Kwack, Y.-J.; Choi, W.-S.; Woon-Seop, C. Low-temperature solution-processed zinc-tin-oxide thin-film transistor and its stability. J. Korean Phys. Soc. 2011, 59, 3055–3059. [Google Scholar] [CrossRef]
- Kim, B.; Geier, M.L.; Hersam, M.C.; Dodabalapur, A. Complementary D flip-flops based on inkjet printed single-walled carbon nanotubes and zinc tin oxide. IEEE Electron Device Lett. 2014, 35, 1245–1247. [Google Scholar]
- Kim, B.; Park, J.; Geier, M.L.; Hersam, M.C.; Dodabalapur, A. Voltage-controlled ring oscillators based on inkjet printed carbon nanotubes and zinc tin oxide. ACS Appl. Mater. Interfaces 2015, 7, 12009–12014. [Google Scholar] [CrossRef]
- Kim, J.S.; Jang, Y.; Kang, S.; Lee, Y.; Kim, K.; Kim, W.; Lee, W.; Hwang, C.S. Substrate-Dependent Growth Behavior of Atomic-Layer-Deposited Zinc Oxide and Zinc Tin Oxide Thin Films for Thin-Film Transistor Applications. J. Phys. Chem. C 2020, 124, 26780–26792. [Google Scholar] [CrossRef]
- Dutta, S.; Dodabalapur, A. Zinc tin oxide thin film transistor sensor. Sens. Actuators B Chem. 2009, 143, 50–55. [Google Scholar] [CrossRef]
- Görrn, P.; Lehnhardt, M.; Riedl, T.; Kowalsky, W. The influence of visible light on transparent zinc tin oxide thin film transistors. Appl. Phys. Lett. 2007, 91, 193504. [Google Scholar] [CrossRef]
- Xue, J.; Lei, D.; Bi, Q.; Tang, C.; Zhang, L. Enhancing photocatalytic performance of Zn2SnO4 by doping Yb: Oxygen vacancies formation and dye self-sensitization degradation. Opt. Mater. 2020, 108, 110454. [Google Scholar] [CrossRef]
- Fahlteich, J.; Fahland, M.; Schönberger, W.; Schiller, N. Permeation barrier properties of thin oxide films on flexible polymer substrates. Thin Solid Film. 2009, 517, 3075–3080. [Google Scholar] [CrossRef]
- Oo, T.Z.; Chandra, R.D.; Yantara, N.; Prabhakar, R.R.; Wong, L.H.; Mathews, N.; Mhaisalkar, S.G. Zinc Tin Oxide (ZTO) electron transporting buffer layer in inverted organic solar cell. Org. Electron. 2012, 13, 870–874. [Google Scholar] [CrossRef]
- Han, D.; Zhang, Y.; Cong, Y.; Yu, W.; Zhang, X.; Wang, Y. Fully transparent flexible tin-doped zinc oxide thin film transistors fabricated on plastic substrate. Sci. Rep. 2016, 6, 38984. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Song, L.; Wu, C.; Li, L. Enhanced conductivity and stability of Cu-embedded zinc tin oxide flexible transparent conductive thin films. Ceram. Int. 2022, 48, 15925–15931. [Google Scholar] [CrossRef]
- Morales-Masis, M.; Dauzou, F.; Jeangros, Q.; Dabirian, A.; Lifka, H.; Gierth, R.; Ruske, M.; Moet, D.; Hessler-Wyser, A.; Ballif, C. An Indium-Free Anode for Large-Area Flexible OLEDs: Defect-Free Transparent Conductive Zinc Tin Oxide. Adv. Funct. Mater. 2016, 26, 384–392. [Google Scholar] [CrossRef]
- Jackson, W.; Taussig, C.; Elder, R.; Tong, W.M.; Hoffman, R.; Emery, T.; Smith, D.; Koch, T. 58.3: Fabrication of Zinc Tin Oxide TFTs by Self-Aligned Imprint Lithography (SAIL) on Flexible Substrates; SID Symposium Digest of Technical Papers; Wiley Online Library: Hoboken, NJ, USA, 2009; pp. 873–876. [Google Scholar]
- Pandey, R.; Cho, S.H.; Hwang, D.K.; Choi, W.K. Structural and electrical properties of fluorine-doped zinc tin oxide thin films prepared by radio-frequency magnetron sputtering. Curr. Appl. Phys. 2014, 14, 850–855. [Google Scholar] [CrossRef]
- Lee, H.W.; Yang, B.S.; Kim, Y.J.; Hwang, A.Y.; Oh, S.; Lee, J.H.; Jeong, J.K.; Kim, H.J. Comprehensive studies on the carrier transporting property and photo-bias instability of sputtered zinc tin oxide thin film transistors. IEEE Trans. Electron Devices 2014, 61, 3191–3198. [Google Scholar]
- Rajachidambaram, J.S.; Sanghavi, S.; Nachimuthu, P.; Shutthanandan, V.; Varga, T.; Flynn, B.; Thevuthasan, S.; Herman, G.S. Characterization of amorphous zinc tin oxide semiconductors. J. Mater. Res. 2012, 27, 2309–2317. [Google Scholar] [CrossRef]
- Hoffman, R. Effects of channel stoichiometry and processing temperature on the electrical characteristics of zinc tin oxide thin-film transistors. Solid-State Electron. 2006, 50, 784–787. [Google Scholar] [CrossRef]
- Tanskanen, J.T.; Hagglund, C.; Bent, S.F. Correlating growth characteristics in atomic layer deposition with precursor molecular structure: The case of zinc tin oxide. Chem. Mater. 2014, 26, 2795–2802. [Google Scholar] [CrossRef]
- Allemang, C.R.; Cho, T.H.; Trejo, O.; Ravan, S.; Rodríguez, R.E.; Dasgupta, N.P.; Peterson, R.L. High-Performance Zinc Tin Oxide TFTs with Active Layers Deposited by Atomic Layer Deposition. Adv. Electron. Mater. 2020, 6, 2000195. [Google Scholar] [CrossRef]
- Park, J.; Oh, K.-T.; Kim, D.-H.; Jeong, H.-J.; Park, Y.C.; Kim, H.-S.; Park, J.-S. High-performance zinc tin oxide semiconductor grown by atmospheric-pressure mist-CVD and the associated thin-film transistor properties. ACS Appl. Mater. Interfaces 2017, 9, 20656–20663. [Google Scholar] [CrossRef] [PubMed]
- Jackson, W.; Hoffman, R.; Herman, G. High-performance flexible zinc tin oxide field-effect transistors. Appl. Phys. Lett. 2005, 87, 193503. [Google Scholar] [CrossRef]
- Dang, G.; Kawaharamura, T.; Furuta, M.; Allen, M. Zinc tin oxide metal semiconductor field effect transistors and their improvement under negative bias (illumination) temperature stress. Appl. Phys. Lett. 2017, 110, 073502. [Google Scholar] [CrossRef]
- Park, J.H.; Byun, D.; Lee, J.K. Employment of fluorine doped zinc tin oxide (ZnSnOx: F) coating layer on stainless steel 316 for a bipolar plate for PEMFC. Mater. Chem. Phys. 2011, 128, 39–43. [Google Scholar] [CrossRef]
- Jeong, Y.; Song, K.; Kim, D.; Koo, C.Y.; Moon, J. Bias stress stability of solution-processed zinc tin oxide thin-film transistors. J. Electrochem. Soc. 2009, 156, H808. [Google Scholar] [CrossRef]
- Son, Y.; Liao, A.; Peterson, R. Effect of relative humidity and pre-annealing temperature on spin-coated zinc tin oxide films made via the metal–organic decomposition route. J. Mater. Chem. C 2017, 5, 8071–8081. [Google Scholar] [CrossRef]
- Kompa, A.; Murari, M.; Kekuda, D.; Mahesha, M.; Rao, K.M. Effect of cation concentration and annealing temperature on structural, morphological, optical, and electrical properties of spin coated zinc-tin-oxide thin films. Ceram. Int. 2021, 47, 35294–35301. [Google Scholar]
- Kim, C.; Lee, N.-H.; Kwon, Y.-K.; Kang, B. Effects of film thickness and Sn concentration on electrical properties of solution-processed zinc tin oxide thin film transistors. Thin Solid Film. 2013, 544, 129–133. [Google Scholar] [CrossRef]
- Liu, L.-C.; Chen, J.-S.; Jeng, J.-S.; Chen, W.-Y. Variation of oxygen deficiency in solution-processed ultra-thin zinc-tin oxide films to their transistor characteristics. ECS J. Solid State Sci. Technol. 2013, 2, Q59. [Google Scholar] [CrossRef]
- Lehnen, T.; Zopes, D.; Mathur, S. Phase-selective microwave synthesis and inkjet printing applications of Zn2SnO4 (ZTO) quantum dots. J. Mater. Chem. 2012, 22, 17732–17736. [Google Scholar] [CrossRef]
- Ryu, S.O.; Ha, C.H.; Jun, H.Y.; Ryu, S.O. Annealing Temperature Dependence of ZTO Thin Film Properties and Its Application on Thin Film Transistors by Inkjet Printing. J. Electron. Mater. 2020, 49, 2003–2007. [Google Scholar] [CrossRef]
- Tilton, J.E. On Borrowed Time: Assessing the Threat of Mineral Depletion; Routledge: New York, NY, USA, 2010. [Google Scholar]
- Crowson, P. Gallium. In Minerals Handbook 1996–97; Springer: Berlin/Heidelberg, Germany, 1996; pp. 130–136. [Google Scholar]
- Crowson, P. Indium. In Minerals Handbook 1996–97; Springer: Berlin/Heidelberg, Germany, 1996; pp. 159–165. [Google Scholar]
- Niang, K.M.; Cho, J.; Heffernan, S.; Milne, W.; Flewitt, A. Optimisation of amorphous zinc tin oxide thin film transistors by remote-plasma reactive sputtering. J. Appl. Phys. 2016, 120, 085312. [Google Scholar] [CrossRef] [Green Version]
- McDowell, M.; Sanderson, R.; Hill, I. Combinatorial study of zinc tin oxide thin-film transistors. Appl. Phys. Lett. 2008, 92, 013502. [Google Scholar] [CrossRef] [Green Version]
- Niang, K.M.; Cho, J.; Sadhanala, A.; Milne, W.I.; Friend, R.H.; Flewitt, A.J. Zinc tin oxide thin film transistors produced by a high rate reactive sputtering: Effect of tin composition and annealing temperatures. Phys. Status Solidi A 2017, 214, 1600470. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.-J.; Choi, C.G.; Hwang, Y.H.; Bae, B.-S. High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D: Appl. Phys. 2008, 42, 035106. [Google Scholar] [CrossRef]
- Jeong, S.; Jeong, Y.; Moon, J. Solution-processed zinc tin oxide semiconductor for thin-film transistors. J. Phys. Chem. C 2008, 112, 11082–11085. [Google Scholar] [CrossRef]
- Zhang, Q.; Xia, G.; Li, L.; Xia, W.; Gong, H.; Wang, S. High-performance Zinc-Tin-Oxide thin film transistors based on environment friendly solution process. Curr. Appl. Phys. 2019, 19, 174–181. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Seo, S.-J.; Jeon, J.-H.; Bae, B.-S. Ultraviolet photo-annealing process for low temperature processed sol-gel zinc tin oxide thin film transistors. Electrochem. Solid-State Lett. 2012, 15, H91. [Google Scholar] [CrossRef]
- Salgueiro, D.; Kiazadeh, A.; Branquinho, R.; Santos, L.; Barquinha, P.; Martins, R.; Fortunato, E. Solution based zinc tin oxide TFTs: The dual role of the organic solvent. J. Phys. D Appl. Phys. 2017, 50, 065106. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, K.-H.; Oh, M.S.; Kim, H.J.; Han, J.I.; Han, M.-K.; Park, S.K. Ink-jet-printed zinc–tin–oxide thin-film transistors and circuits with rapid thermal annealing process. IEEE Electron Device Lett. 2010, 31, 836–838. [Google Scholar]
- Zhussupbekova, A.; Caffrey, D.; Zhussupbekov, K.; Smith, C.M.; Shvets, I.V.; Fleischer, K. Low-Cost, High-Performance Spray Pyrolysis-Grown Amorphous Zinc Tin Oxide: The Challenge of a Complex Growth Process. ACS Appl. Mater. Interfaces 2020, 12, 46892–46899. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, Y.; Song, K.; Park, S.-K.; Cao, G.; Moon, J. Inkjet-printed zinc tin oxide thin-film transistor. Langmuir 2009, 25, 11149–11154. [Google Scholar] [CrossRef]
- Lee, Y.G.; Choi, W.-S. Electrohydrodynamic jet-printed zinc–tin oxide TFTs and their bias stability. ACS Appl. Mater. Interfaces 2014, 6, 11167–11172. [Google Scholar] [CrossRef]
- Lahr, O.; von Wenckstern, H.; Grundmann, M. Ultrahigh-performance integrated inverters based on amorphous zinc tin oxide deposited at room temperature. APL Mater. 2020, 8, 091111. [Google Scholar] [CrossRef]
- Heineck, D.P.; McFarlane, B.R.; Wager, J.F. Zinc tin oxide thin-film-transistor enhancement/depletion inverter. IEEE Electron Device Lett. 2009, 30, 514–516. [Google Scholar] [CrossRef]
- Chiang, H.; Wager, J.; Hoffman, R.; Jeong, J.; Keszler, D.A. High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 2005, 86, 013503. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.-S. Controlled Zr doping for inkjet-printed ZTO TFTs. Ceram. Int. 2017, 43, 4775–4779. [Google Scholar] [CrossRef]
- Baek, J.H.; Seol, H.; Cho, K.; Yang, H.; Jeong, J.K. Comparative study of antimony doping effects on the performance of solution-processed ZIO and ZTO field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 10904–10913. [Google Scholar] [CrossRef]
- Hu, W.; Peterson, R. Molybdenum as a contact material in zinc tin oxide thin film transistors. Appl. Phys. Lett. 2014, 104, 192105. [Google Scholar] [CrossRef]
- Lee, C.-G.; Dodabalapur, A. Solution-processed zinc–tin oxide thin-film transistors with low interfacial trap density and improved performance. Appl. Phys. Lett. 2010, 96, 243501. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Han, J.-I.; Park, S.K. Effect of zinc/tin composition ratio on the operational stability of solution-processed zinc–tin–oxide thin-film transistors. IEEE Electron Device Lett. 2011, 33, 50–52. [Google Scholar] [CrossRef]
- Lim, K.H.; Kim, K.; Kim, S.; Park, S.Y.; Kim, H.; Kim, Y.S. UV–visible spectroscopic analysis of electrical properties in alkali metal-doped amorphous zinc tin oxide thin-film transistors. Adv. Mater. 2013, 25, 2994–3000. [Google Scholar] [CrossRef]
- Cho, I.-H.; Park, H.-W.; Chung, K.-B.; Kim, C.-J.; Jun, B.-H. Influence of lithium doping on the electrical properties and ageing effect of ZnSnO thin film transistors. Semicond. Sci. Technol. 2018, 33, 085004. [Google Scholar] [CrossRef]
- Kim, B.; Jang, S.; Geier, M.L.; Prabhumirashi, P.L.; Hersam, M.C.; Dodabalapur, A. High-speed, inkjet-printed carbon nanotube/zinc tin oxide hybrid complementary ring oscillators. Nano Lett. 2014, 14, 3683–3687. [Google Scholar] [CrossRef]
- Sanctis, S.; Hoffmann, R.C.; Bruns, M.; Schneider, J.J. Direct photopatterning of solution–processed amorphous indium zinc oxide and zinc tin oxide semiconductors—A chimie douce molecular precursor approach to thin film electronic oxides. Adv. Mater. Interfaces 2018, 5, 1800324. [Google Scholar] [CrossRef]
- Wang, G.; Chang, B.; Yang, H.; Zhou, X.; Zhang, L.; Zhang, X.; Zhang, S. Implementation of self-aligned top-gate amorphous zinc tin oxide thin-film transistors. IEEE Electron Device Lett. 2019, 40, 901–904. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Zhou, X.; Lu, L.; Zhang, S. Self-Aligned Top-Gate Amorphous Zinc-Tin Oxide Thin-Film Transistor with Source/Drain Regions Doped by Al Reaction. IEEE J. Electron Devices Soc. 2021, 9, 653–657. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, Z.; Xiao, Z.; Qian, Z.; Sun, Y.; Zeng, Z.; Wang, R. Flexible electronics based on 2D transition metal dichalcogenides. J. Mater. Chem. A 2022, 10, 89–121. [Google Scholar] [CrossRef]
- Han, D.; Chen, Z.; Cong, Y.; Yu, W.; Zhang, X.; Wang, Y. High-performance flexible tin-zinc-oxide thin-film transistors fabricated on plastic substrates. IEEE Trans. Electron Devices 2016, 63, 3360–3363. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.-H.; Kim, J.; Oh, M.S. Transparent and flexible zinc tin oxide thin film transistors and inverters using low-pressure oxygen annealing process. J. Korean Phys. Soc. 2018, 72, 1073–1077. [Google Scholar] [CrossRef]
- Ha, T.-J. High-performance solution-processed Zinc–Tin-Oxide thin-film transistors employing ferroelectric copolymers fabricated at low temperature for transparent flexible displays. IEEE Electron Device Lett. 2016, 37, 1586–1589. [Google Scholar] [CrossRef]
- Fernandes, C.; Santa, A.; Santos, Â.; Bahubalindruni, P.; Deuermeier, J.; Martins, R.; Fortunato, E.; Barquinha, P. A sustainable approach to flexible electronics with zinc-tin oxide thin-film transistors. Adv. Electron. Mater. 2018, 4, 1800032. [Google Scholar] [CrossRef]
- Schlupp, P.; Vogt, S.; von Wenckstern, H.; Grundmann, M. Low voltage, high gain inverters based on amorphous zinc tin oxide on flexible substrates. APL Mater. 2020, 8, 061112. [Google Scholar] [CrossRef]
- Marette, A.; Poulin, A.; Besse, N.; Rosset, S.; Briand, D.; Shea, H. Flexible zinc–tin oxide thin film transistors operating at 1 kV for integrated switching of dielectric elastomer actuators arrays. Adv. Mater. 2017, 29, 1700880. [Google Scholar] [CrossRef]
- Lou, Q.; Yang, Y.; Feng, W.; Xiao, T.; Song, W. Toward Durably Flexible Nickel Oxide Electrochromic Film by Covering an 18 nm Zinc Tin Oxide Buffer Layer. ACS Appl. Energy Mater. 2021, 4, 12935–12942. [Google Scholar] [CrossRef]
- Chen, J.-S.; Li, J.-T.; Liu, L.-C.; Ke, P.-H.; Jeng, J.-S. Light-bias interaction of zinc-tin oxide (ZTO) thin film transistor for charge-trapping memory application. In Proceedings of the 2017 24th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, 4–7 July 2017; pp. 62–65. [Google Scholar]
- Li, J.-T.; Liu, L.-C.; Ke, P.-H.; Chen, J.-S.; Jeng, J.-S. Light-bias coupling erase process for non-volatile zinc tin oxide TFT memory with a nickel nanocrystals charge trap layer. J. Phys. D Appl. Phys. 2016, 49, 115104. [Google Scholar] [CrossRef]
- Yoon, S.-M.; Jung, S.-W.; Yang, S.-H.; Byun, C.-W.; Hwang, C.-S.; Park, S.-H.K.; Ishiwara, H. Nonvolatile memory transistors using solution-processed zinc–tin oxide and ferroelectric poly (vinylidene fluoride-trifluoroethylene). Org. Electron. 2010, 11, 1746–1752. [Google Scholar] [CrossRef]
- Fan, Y.-S.; Liu, P.-T.; Teng, L.-F.; Hsu, C.-H. Bipolar resistive switching characteristics of Al-doped zinc tin oxide for nonvolatile memory applications. Appl. Phys. Lett. 2012, 101, 052901. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.-H.; Kim, B.; Hussain, F.; Mahata, C.; Ismail, M.; Kim, Y.; Kim, S. Bio-inspired synaptic functions from a transparent zinc-tin-oxide-based memristor for neuromorphic engineering. Appl. Surf. Sci. 2021, 544, 148796. [Google Scholar] [CrossRef]
- Silva, C.; Martins, J.; Deuermeier, J.; Pereira, M.E.; Rovisco, A.; Barquinha, P.; Goes, J.; Martins, R.; Fortunato, E.; Kiazadeh, A. Towards Sustainable Crossbar Artificial Synapses with Zinc-Tin Oxide. Electron. Mater. 2021, 2, 105–115. [Google Scholar] [CrossRef]
- Murdoch, B.J.; McCulloch, D.G.; Partridge, J.G. Synaptic plasticity and oscillation at zinc tin oxide/silver oxide interfaces. J. Appl. Phys. 2017, 121, 054104. [Google Scholar] [CrossRef]
- Wei, J.; Yin, Z.; Chen, S.-C.; Zheng, Q. Low-temperature solution-processed zinc tin oxide film as a cathode interlayer for organic solar cells. ACS Appl. Mater. Interfaces 2017, 9, 6186–6193. [Google Scholar] [CrossRef]
- Pimachev, A.; Poudyal, U.; Proshchenko, V.; Wang, W.; Dahnovsky, Y. Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells. Phys. Chem. Chem. Phys. 2016, 18, 26771–26776. [Google Scholar] [CrossRef]
- Park, Y.; Ferblantier, G.; Slaoui, A.; Dinia, A.; Park, H.; Alhammadi, S.; Kim, W.K. Yb-doped zinc tin oxide thin film and its application to Cu (InGa) Se2 solar cells. J. Alloys Compd. 2020, 815, 152360. [Google Scholar] [CrossRef]
- Lindahl, J.; Keller, J.; Donzel-Gargand, O.; Szaniawski, P.; Edoff, M.; Törndahl, T. Deposition temperature induced conduction band changes in zinc tin oxide buffer layers for Cu (In, Ga) Se2 solar cells. Sol. Energy Mater. Sol. Cells 2016, 144, 684–690. [Google Scholar] [CrossRef]
- Werner, J.; Walter, A.; Rucavado, E.; Moon, S.-J.; Sacchetto, D.; Rienaecker, M.; Peibst, R.; Brendel, R.; Niquille, X.; De Wolf, S. Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells. Appl. Phys. Lett. 2016, 109, 233902. [Google Scholar] [CrossRef] [Green Version]
- Rovisco, A.; Branquinho, R.; Martins, J.; Oliveira, M.J.; Nunes, D.; Fortunato, E.; Martins, R.; Barquinha, P. Seed-layer free zinc tin oxide tailored nanostructures for nanoelectronic applications: Effect of chemical parameters. ACS Appl. Nano Mater. 2018, 1, 3986–3997. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.B.; Nasser, R.; Alshahrani, S.M.; Al-Shamiri, H.A.; Elgammal, B.; Elhouichet, H. Synthesis, characterization, and visible-light photocatalytic activity of transition metals doped ZTO nanoparticles. Ceram. Int. 2021, 47, 32882–32890. [Google Scholar]
- Rovisco, A.; Branquinho, R.; Deuermeier, J.; Freire, T.S.; Fortunato, E.; Martins, R.; Barquinha, P. Shape effect of zinc-tin oxide nanostructures on photodegradation of methylene blue and rhodamine B under UV and visible light. ACS Appl. Nano Mater. 2021, 4, 1149–1161. [Google Scholar] [CrossRef]
- Jung, U.; Kim, S.; Kim, D.; Shin, D.S.; Xian, Z.; Park, J. Metal–Semiconductor–Metal UV Detectors Using Transferrable Amorphous and Crystalline Zinc-Tin-Oxide Microsphere Monolayers. ACS Sustain. Chem. Eng. 2019, 8, 60–70. [Google Scholar] [CrossRef]
- Farooq, M.I.; Khan, M.S.; Yousaf, M.; Zhang, K.; Zou, B. Antiferromagnetic magnetic polaron formation and optical properties of CVD-grown Mn-doped zinc stannate (ZTO). ACS Appl. Electron. Mater. 2020, 2, 1679–1688. [Google Scholar] [CrossRef]
- Shi, J.-B.; Wu, P.-F.; Lin, H.-S.; Lin, Y.-T.; Lee, H.-W.; Kao, C.-T.; Liao, W.-H.; Young, S.-L. Synthesis and characterization of single-crystalline zinc tin oxide nanowires. Nanoscale Res. Lett. 2014, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Saeedabad, S.H.; Baratto, C.; Rigoni, F.; Rozati, S.; Sberveglieri, G.; Vojisavljevic, K.; Malic, B. Gas sensing applications of the inverse spinel zinc tin oxide. Mater. Sci. Semicond. Processing 2017, 71, 461–469. [Google Scholar] [CrossRef]
- Wang, W.; Pan, X.; Dai, W.; Zeng, Y.; Ye, Z. Ultrahigh sensitivity in the amorphous ZnSnO UV photodetector. RSC Adv. 2016, 6, 32715–32720. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Xiao, L.-K.; Chang, Y.-H.; Chen, L.-Y.; Chen, G.-T.; Li, M.-H. High-performance solution-processed ZnSnO metal–semiconductor–metal ultraviolet photodetectors via ultraviolet/ozone photo-annealing. Semicond. Sci. Technol. 2021, 36, 095013. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Zhu, H.; Li, H.; Jiang, L.; Shu, C.; Hu, W.; Wang, C. High performance ultraviolet photodetectors based on an individual Zn 2 SnO 4 single crystalline nanowire. J. Mater. Chem. 2010, 20, 9858–9860. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Lin, T.-J.; Liao, P.-C. High-performance metal-semiconductor-metal ZnSnO UV photodetector via controlling the nanocluster size. Nanotechnology 2020, 31, 495203. [Google Scholar] [CrossRef]
- Dou, J.; Li, X.; Li, Y.; Chen, Y.; Wei, M. Fabrication of Zn2SnO4 microspheres with controllable shell numbers for highly efficient dye-sensitized solar cells. Sol. Energy 2019, 181, 424–429. [Google Scholar] [CrossRef]
- Agbenyeke, R.E.; Song, S.; Park, B.K.; Kim, G.H.; Yun, J.H.; Chung, T.M.; Kim, C.G.; Han, J.H. Band gap engineering of atomic layer deposited ZnxSn1-xO buffer for efficient Cu (In, Ga) Se2 solar cell. Prog. Photovolt. Res. Appl. 2018, 26, 745–751. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, T.-C.; Li, H.-W.; Chung, W.-F.; Wu, C.-P.; Chen, S.-C.; Lu, J.; Chen, Y.-H.; Tai, Y.-H. High-stability oxygen sensor based on amorphous zinc tin oxide thin film transistor. Appl. Phys. Lett. 2012, 100, 262908. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Lou, Z.; Shen, G. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures. Adv. Funct. Mater. 2018, 28, 1705389. [Google Scholar] [CrossRef]
- Biggs, J.; Myers, J.; Kufel, J.; Ozer, E.; Craske, S.; Sou, A.; Ramsdale, C.; Williamson, K.; Price, R.; White, S. A natively flexible 32-bit Arm microprocessor. Nature 2021, 595, 532–536. [Google Scholar] [CrossRef]
- Çeliker, H.; Dehaene, W.; Myny, K. Dual-Input Pseudo-CMOS Logic for Digital Applications on Flexible Substrates. In Proceedings of the ESSCIRC 2021-IEEE 47th European Solid State Circuits Conference (ESSCIRC), Grenoble, France, 13–22 September 2021; pp. 255–258. [Google Scholar]
- Kim, B. Inkjet-Printed Ternary Inverter Circuits with Tunable Middle Logic Voltages. Adv. Electron. Mater. 2020, 6, 2000426. [Google Scholar] [CrossRef]
- Yoo, H.; On, S.; Lee, S.B.; Cho, K.; Kim, J.J. Negative transconductance heterojunction organic transistors and their application to full-swing ternary circuits. Adv. Mater. 2019, 31, 1808265. [Google Scholar] [CrossRef]
- Yang, B.; He, G.; Wang, W.; Zhang, Y.; Zhang, C.; Xia, Y.; Xu, X. Diffusion-activated high performance ZnSnO/Yb2O3 thin film transistors and application in low-voltage-operated logic circuits. J. Mater. Sci. Technol. 2021, 70, 49–58. [Google Scholar] [CrossRef]
- Yang, K.; Liu, D.; Qian, Z.; Jiang, D.; Wang, R. Computational Auxiliary for the Progress of Sodium-Ion Solid-State Electrolytes. ACS Nano 2021, 15, 17232–17246. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.; Yoo, H. Zinc–Tin Oxide Film as an Earth-Abundant Material and Its Versatile Applications to Electronic and Energy Materials. Membranes 2022, 12, 485. https://doi.org/10.3390/membranes12050485
Seo J, Yoo H. Zinc–Tin Oxide Film as an Earth-Abundant Material and Its Versatile Applications to Electronic and Energy Materials. Membranes. 2022; 12(5):485. https://doi.org/10.3390/membranes12050485
Chicago/Turabian StyleSeo, Juhyung, and Hocheon Yoo. 2022. "Zinc–Tin Oxide Film as an Earth-Abundant Material and Its Versatile Applications to Electronic and Energy Materials" Membranes 12, no. 5: 485. https://doi.org/10.3390/membranes12050485
APA StyleSeo, J., & Yoo, H. (2022). Zinc–Tin Oxide Film as an Earth-Abundant Material and Its Versatile Applications to Electronic and Energy Materials. Membranes, 12(5), 485. https://doi.org/10.3390/membranes12050485