Three-Phase Three-Dimensional Electrochemical Process for Efficient Treatment of Greywater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Simulated Greywater
2.3. The Electrolysis System
2.4. Electro-Fenton Process for Greywater Using Three-Dimensional Electrodes
2.4.1. Pretreatment of the Particle Electrodes
2.4.2. Three-Dimensional Electrodes
2.5. Electro-Fenton Process for Greywater Using Three-Dimensional Electrodes
3. Results and Discussion
3.1. The Effect of Electrode Spacing on the Degree of Greywater Treatment
3.2. Effect of Different Factors on the Degree of Greywater Treatment
3.2.1. The Treatment Time
3.2.2. Applied Voltage
3.2.3. Activated Carbon Loading
3.3. Changes in the Electrical Conductivity of Greywater during Treatment
3.4. Changes in the Turbidity of Greywater during Treatment
3.5. Box–Behnken Design and Response Surface Methodology
3.6. Results of the Response Surface Optimization of the Proposed Greywater Treatment Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, L.-Q. Present situation and policy of water resources in China. Sci. Technol. Inf. 2013, 16, 120–122. [Google Scholar]
- Kaldellis, J.K.; Kondili, E.M. The water shortage problem in the Aegean archipelago islands: Cost-effective desalination prospects. Desalination 2007, 216, 123–138. [Google Scholar] [CrossRef]
- El-Sayed, M.K.; Mansour, R.S. Water Scarcity as a Non-traditional Threat to Security in the Middle East. India Q. A J. Int. Aff. 2017, 73, 227–240. [Google Scholar] [CrossRef]
- Meister, U. Demand and Supply—A Brief Overview. In Introducing Competition into the Piped Water Market: A Theoretical Analysis of Common Carriage and Franchise Bidding; Deutscher Universitätsverlag: Wiesbaden, Germany, 2006; pp. 7–12. [Google Scholar]
- Li, Y.-H.; Zhu, S.-K.; Zhang, Y.; Lv, M.-H.; Kinhoun, J.J.R.; Qian, T.-T.; Fan, B. Constructed wetland treatment of source separated washing wastewater in rural areas of southern China, Separation and Purification Technology. Sep. Purif. Technol. 2021, 272, 118725. [Google Scholar] [CrossRef]
- Silva, M.M.D.; Cristovão, L.; Marinho, D.; Esteves, E.; Martins, D. Reduction of carbon emissions in a mediterranean urban wastewater treatment plant. WIT Trans. Ecol. Environ. 2021, 251, 87–94. [Google Scholar]
- Singh, P.K.; Deshbhratar, P.B.; Ramteke, D.S. Effects of sewage wastewater irrigation on soil properties, crop yield and environment. Agric. Water Manag. 2012, 103, 100–104. [Google Scholar] [CrossRef]
- Olaolu, T.D.; Akpor, O.B.; Akor, C.O. Pollution Indicators and Pathogenic Microorganisms in Wastewater Treatment: Implication on Receiving Water Bodies. Int. J. Environ. Prot. Policy 2014, 2, 205–212. [Google Scholar] [CrossRef]
- Lokhande, R.S.; Singare, P.U.; Pimple, D.S. Pollution in Water of Kasardi River Flowing along Taloja Industrial Area of Mumbai, India. World Environ. 2012, 1, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Yu, M.; Yu, J.-B.; Li, Y.-Z.; Guan, B.; Wang, X.-H.; Wang, Z.-K.; Lv, Z.-B.; Qu, F.-Z.; Yang, J.-S. Impacts of inland pollution input on coastal water quality of the Bohai Sea. Sci. Total Environ. 2021, 765, 142691. [Google Scholar] [CrossRef]
- Muthukumar, C.; Balasubramaniyan, S.; Garlapati, D.; Bharathi, M.D.; Kumar, B.C.; James, R.A.; Ramu, K.; Ramanamurthy, M.V. Impact of untreated sewage and thermal effluent discharges on the air-sea CO2 fluxes in a highly urbanized tropical coastal region. Mar. Pollut. Bull. 2022, 175, 113166. [Google Scholar] [CrossRef]
- Okoh, A.I.; Sibanda, T.; Gusha, S.S. Inadequately treated wastewater as a source of human enteric viruses in the environment. Int. J. Environ. Res. Public Health 2010, 7, 2620–2637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svraka, S.; Duizer, E.; Vennema, H.; de Bruin, E.; van der Veer, B.; Dorresteijn, B.; Koopmans, M. Etiological role of viruses in outbreaks of acute gastroenteritis in The Netherlands from 1994 through 2005. J. Clin. Microbiol. 2007, 45, 1389–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pooja, G.; Kumar, P.S.; Prasannamedha, G.; Varjani, S.; Vo, N.V. Sustainable approach on removal of toxic metals from electroplating industrial wastewater using dissolved air flotation. J. Environ. Manag. 2021, 295, 113147. [Google Scholar] [CrossRef] [PubMed]
- Alalwan, H.A.; Kadhom, M.A.; Alminshid, A.H. Removal of heavy metals from wastewater using agricultural byproducts. J. Water Supply Res. Technol.-Aqua 2020, 69, 99–112. [Google Scholar] [CrossRef]
- Alwared, A.I.; Abdulrazzaq, N.; Al-Sabbagh, B. Micro-Bubble Flotation for Removing Cadmium Ions from Aqueous Solution: Artificial Neural Network Modeling and Kinetic of Flotation. Iraqi J. Chem. Pet. Eng. 2019, 20, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Ayekoe, C.Y.P.; Robert, D.; Lanciné, D.G. Combination of coagulation-flocculation and heterogeneous photocatalysis for improving the removal of humic substances in real treated water from Agbô River (Ivory-Coast). Catal. Today 2017, 281, 2–13. [Google Scholar] [CrossRef]
- Mahvi, A.H.; Maleki, A.; Roshani, B. Removal of Anionic Surfactants in Detergent Wastewater by Chemical Coagulation. Pak. J. Biol. Sci. 2004, 7, 2222–2226. [Google Scholar]
- Khan, S.A.R.; Ponce, P.; Yu, Z.; Golpîra, H.; Mathew, M. Environmental technology and wastewater treatment: Strategies to achieve environmental sustainability. Chemosphere 2022, 286, 131532. [Google Scholar] [CrossRef]
- Yan, S.; Zhong, S.-T.; Li, Z.-H. Pilot Tests on the Treatment of Bath Wastewater by a Membrane Bioreactor. Membranes 2021, 11, 85. [Google Scholar]
- Ortiz, M.; Raluy, R.G.; Serra, L.; Uche, J. Life cycle assessment of water treatment technologies: Wastewater and water-reuse in a small town. Desalination 2007, 204, 121–131. [Google Scholar] [CrossRef]
- Chen, H.; Gao, Y.; Sun, L.-C. Highly Active Three-Dimensional NiFe/Cu2O Nanowires/Cu Foam Electrode for Water Oxidation. ChemSusChem 2017, 10, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Zhan, J.-H.; Li, Z.-X.; Yu, G.; Pan, X.-J.; Wang, J.-L.; Zhu, W.; Han, X.; Wang, Y.-J. Enhanced treatment of pharmaceutical wastewater by combining three-dimensional electrochemical process with ozonation to in situ regenerate granular activated carbon particle electrodes. Sep. Purif. Technol. 2019, 208, 12–18. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Y.-H.; Li, Y.-L.; Hu, Z.-X.; Zhou, L.; Zhou, M.-H. Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 2013, 228, 455–467. [Google Scholar] [CrossRef]
- Wu, X.-W.; Wang, Y.; Xie, Y.-S.; Lan, T.-X.; Dai, J. Effect of Three-Dimensional Electrochemistry on Removal of Ammonia-Nitrogen in Swine Wastewater. Technol. Water Treat. 2019, 45, 118–121. [Google Scholar]
- Wang, B.; Kong, W.-P.; Ma, H.-Z. Electrochemical treatment of paper mill wastewater using three-dimensional electrodes with Ti/Co/SnO2-Sb2O5 anode. J. Hazard. Mater. 2007, 146, 295–301. [Google Scholar] [CrossRef]
- Deng, Y.; Zhu, X.; Chen, N.; Feng, C.-P.; Wang, H.-S.; Kuang, P.-J.; Hu, W.-W. Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. Sci. Total Environ. 2020, 745, 140768. [Google Scholar] [CrossRef]
- Chai, Y.-Z.; Qin, P.-F.; Wu, Z.-B.; Bai, M.; Li, W.-J.; Pan, J.-J.; Cao, R.-Y.; Chen, A.-W.; Jin, D.-D.; Peng, C. A coupled system of flow-through electro-Fenton and electrosorption processes for the efficient treatment of high-salinity organic wastewater. Sep. Purif. Technol. 2021, 267, 118683. [Google Scholar] [CrossRef]
- Yuan, J.; Niu, Z.-Q.; Wang, Y.-H. Study on Purifying and Reusing of Bath-Swill Wastewater. J. Taiyuan Univ. Technol. 2007, 38, 327–328. [Google Scholar]
- Huang, S.-Y.; Huang, Q.; Chen, S.-B. UBF Process for Treatment of High Concentration Printing and Dyeing Wastewater. China Water Wastewater 2012, 28, 80–82. [Google Scholar]
- Singh, S.; Ahammed, M.M.; Shaikh, I.N. Combined coagulation and intermittent sand filtration for on-site treatment of greywater. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1114, 012031. [Google Scholar] [CrossRef]
- Aydin, M.I.; Ozaktac, D.; Yuzer, B.; Doğu, M.; Inan, H.; Okten, H.E.; Coskun, S.; Selcuk, H. Desalination and Detoxification of Textile Wastewater by Novel Photocatalytic Electrolysis Membrane Reactor for Ecosafe Hydroponic Farming. Membranes 2021, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Shariati, F.P.; Mehrnia, M.R.; Salmasi, B.M.; Heran, M.; Wisniewski, C.; Sarrafzadeh, M.H. Membrane bioreactor for treatment of pharmaceutical wastewater containing acetaminophen. Desalination 2010, 250, 798. [Google Scholar] [CrossRef]
- Yao, J.-C.; Mei, Y.; Jiang, J.-H.; Xia, G.-H.; Chen, J. Process Optimization of Electrochemical Treatment of COD and Total Nitrogen Containing Wastewater. Int. J. Environ. Res. Public Health 2022, 19, 850. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Long, N.N.; Hien, P.V.; Dung, N.T. Rapid and efficient treatment of wastewater from fish sauce-manufacturing factories by using the electrochemical oxidation process. Vietnam. J. Chem. 2019, 57, 406–410. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, H.-J.; Zhao, Y.-P. Study on Optimization of Degradation of Landfill Leachate by Electrochemical Oxidation Process with Response Surface Methodology. Adv. Mater. Res. 2014, 989–994, 591–594. [Google Scholar] [CrossRef]
- Vepsäläinen, M.; Ghiasvand, M.; Selin, J.; Pienimaa, J.; Repo, E.; Pulliainen, M.; Sillanpää, M. Investigations of the effects of temperature and initial sample pH on natural organic matter (NOM) removal with electrocoagulation using response surface method (RSM). Sep. Purif. Technol. 2009, 69, 255–261. [Google Scholar] [CrossRef]
- Wang, M.-S.; Liu, C.; Fan, M.; Liu, M.-L.; Shen, S.-T. Optimization of Nanofiltration Hollow Fiber Membrane Fabrication Process Based on Response Surface Method. Membranes 2022, 12, 374. [Google Scholar] [CrossRef]
- Ding, S.-L.; Zhao, Z.; Tian, Q.-Q.; Li, D.-Q.; Ren, H.-J. Effect of iron-carbon micro-electrolysis-fenton on the dewatering performance of sludge. Environ. Sci. Pollut. Res. 2021, 28, 47126–47135. [Google Scholar] [CrossRef]
- Beyazt, N.; Atmaca, K. COD and Color Removal from Landfill Leachate by photo- electro-Fenton Process. Int. J. Electrochem. Sci. 2021, 16, 1–14. [Google Scholar] [CrossRef]
- Louhichi, B.; Gaied, F.; Mansouri, K.; Jeday, M.R. Treatment of textile industry effluents by Electro-Coagulation and Electro-Fenton processes using solar energy: A comparative study. Chem. Eng. J. 2022, 427, 131735. [Google Scholar] [CrossRef]
- Shi, Y.; Yu, H.-C.; Xu, D.-Y.; Zheng, X.-Q. Degradation of Landfill Leachate by Combined Three-Dimensional Electrode and Electro-Fenton. Adv. Mater. Res. 2012, 347–353, 440–443. [Google Scholar] [CrossRef]
- Li, M.-R.; Qin, X.; Cui, J.-X.; Guo, R.; Guo, C.-R.; Wang, Z.-Y.; Li, T.-H. Three-dimensional Electro-Fenton degradation for fulvic acids with Cu-Fe bimetallic aerogel-like carbon as particle electrode and catalyst: Electrode preparation, operation parameter optimization and mechanism. J. Environ. Chem. Eng. 2021, 9, 105573. [Google Scholar] [CrossRef]
- Administration, S.E.P. Monitoring and Analysis Method of Water and Wastewater, 4th ed.; China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Moreno-Casillas, H.A.; Cocke, D.L.; Gomes, J.A.G.; Morkovsky, P.; Parga, J.R.; Peterson, E. Electrocoagulation mechanism for COD removal. Sep. Purif. Technol. 2007, 56, 204–211. [Google Scholar] [CrossRef]
- Wei, L.-Y.; Guo, S.-H.; Yan, G.-X.; Chen, C.-M.; Jiang, X.-Y. Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor. Electrochim. Acta 2010, 55, 8615–8620. [Google Scholar] [CrossRef]
- Lv, W.-W.; Huangfu, Z.-J.; Wang, K.-K. Efficient degradation of indigo wastewater by one-step electrochemical oxidation and electro-flocculation. Pigment. Resin Technol. 2020, 50, 32–40. [Google Scholar] [CrossRef]
- Kushwaha, J.P.; Srivastava, V.C.; Mall, I.D. Organics removal from dairy wastewater by electrochemical treatment and residue disposal. Sep. Purif. Technol. 2010, 76, 198–205. [Google Scholar] [CrossRef]
- Saleh, M.; Yildirim, R.; Isik, Z.; Karagunduz, A.; Dizge, N. Optimization of the electrochemical oxidation of textile wastewater by graphite electrodes by response surface methodology and artificial neural network. Water Sci. Technol. 2021, 84, 1245–1256. [Google Scholar] [CrossRef]
- Isik, Z.; Unal, B.O.; Karagunduz, A.; Keskinler, B.; Dizge, N. Electrochemical Treatment of Textile Dye Bath Wastewater Using Activated Carbon Cloth Electrodes. Avicenna J. Environ. Health Eng. 2020, 7, 47–52. [Google Scholar] [CrossRef]
Treatment Process | Target Pollutants | Key Processing Conditions | CODCr Removal (%) | Reference |
---|---|---|---|---|
C–ISF 2 | Greywater | CS 9 = 2.97 mm, Gravel = 8.38 mm | 80 | [32] |
PE-MBR 3 | Textile wastewater | MR 10 = 462 cm2 | 52.0 | [33] |
ELA-MBR 4 | Pharmaceutical wastewater | MR = 40 cm2 | 50 | [34] |
DEC 5 | Industrial wastewater | CC 11 = 1000 mg·L−1, j 12 = 10 mA·cm−2, pH = 6 | 79.1 | [35] |
2-DET 6 | PSM 8 wastewater | j = 30 mA·cm−2, HRT 13 = 60 min, pH = 8 | 57.2 | [36] |
3-DET 7 | Paper mill wastewater | j = 167 mA·cm−2, pH = 11, T = 20 °C | 86.3 | [27] |
Components | Concentration (g/L) | Components | Concentration (g/L) |
---|---|---|---|
Glucose | 1.8 | Lactic acid | 0.7 |
Urea | 1.7 | KH2PO4 | 0.4 |
NaCl | 2.1 | Fatty acids | 8.0 |
KCl | 0.8 | Mg2SO4 | 0.2 |
CaCl2 | 0.1 | Shower gel | 1.0 |
Cholesterol | 0.5 | - | - |
pH | Turbidity (NTU 1) | CODCr 2 (mg/L) | TDS 3 (μS/cm) |
---|---|---|---|
3–3.5 | 189–227 | 420–995 | 3904–6389 |
Reactor Types | Wastewaters | Conditions | CODCr Removal (%) | Reference |
---|---|---|---|---|
2D 1 | HOR 3 wastewater | j 4 = 30 mA·cm−2, T = 60 °C, HRT 5 = 100 min | 30.8 | [47] |
2D | Indigo wastewater | U = 9 V, HRT = 60 min, NC 6 = 5 g/L | 60.3 | [48] |
2D | Dairy wastewater | j = 2730 mA·cm−2, pH = 7, HRT = 50 min | 70 | [49] |
2D | Textile wastewater | j = 15 mA·cm−2, pH = 5, HRT = 120 min | 77.7 | [50] |
3D 2 | Greywater | U = 9 V, GAC 7 = 10 g, ES 8 = 7 cm, HRT = 120 min | 85 | This work |
Factor | Variable | Low Level (g/L) | High Level (g/L) |
---|---|---|---|
Voltage | A | 7 | 11 |
Time | B | 1 | 3 |
Activated carbon loading | C | 8 | 12 |
RUN | Coded Variable Level | Real Variable Level | CODCr Removal (%) | |||||
---|---|---|---|---|---|---|---|---|
A | B | C | Voltage (V) | Time (h) | Activated Carbon Loading (g) | Predicted | Experimental | |
1 | 0 | −1 | −1 | 9 | 1 | 8 | 55.93 | 55.60 |
2 | 0 | 0 | 0 | 9 | 2 | 10 | 86.68 | 85.60 |
3 | 1 | 1 | 0 | 11 | 3 | 10 | 64.89 | 64.60 |
4 | 0 | −1 | 1 | 9 | 1 | 12 | 56.65 | 56.90 |
5 | 0 | 0 | 0 | 9 | 2 | 10 | 85.68 | 85.70 |
6 | −1 | 1 | 0 | 7 | 3 | 10 | 74.59 | 74.80 |
7 | 0 | 0 | 0 | 9 | 2 | 10 | 86.68 | 85.30 |
8 | 0 | 1 | −1 | 9 | 3 | 8 | 69.45 | 69.20 |
9 | −1 | −1 | 0 | 7 | 1 | 10 | 58.11 | 58.40 |
10 | 0 | 0 | 0 | 9 | 2 | 10 | 85.68 | 86.00 |
11 | 1 | −1 | 0 | 11 | 1 | 10 | 46.11 | 45.90 |
12 | 1 | 0 | 1 | 11 | 2 | 12 | 55.74 | 55.70 |
13 | 1 | 0 | −1 | 11 | 2 | 8 | 49.86 | 50.40 |
14 | 0 | 1 | 1 | 9 | 3 | 12 | 78.38 | 78.70 |
15 | 0 | 0 | 0 | 9 | 2 | 10 | 85.68 | 85.80 |
16 | −1 | 0 | 1 | 7 | 2 | 12 | 65.54 | 65.00 |
17 | −1 | 0 | −1 | 7 | 2 | 8 | 61.76 | 61.80 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 3096.30 | 9 | 344.03 | 1671.80 | <0.0001 |
A-Voltage | 235.44 | 1 | 235.44 | 1144.13 | <0.0001 |
B-Time | 621.28 | 1 | 621.28 | 3019.07 | <0.0001 |
C-Activated carbon time | 46.56 | 1 | 46.56 | 226.26 | <0.0001 |
AB | 1.32 | 1 | 1.32 | 6.43 | 0.0389 |
AC | 1.10 | 1 | 1.10 | 5.36 | 0.0538 |
BC | 16.81 | 1 | 16.81 | 81.69 | <0.0001 |
A2 | 1053.11 | 1 | 1053.11 | 5117.52 | <0.0001 |
B2 | 336.52 | 1 | 336.52 | 1635.30 | <0.0001 |
C2 | 570.48 | 1 | 570.48 | 2772.22 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, W.; Zhang, P. Three-Phase Three-Dimensional Electrochemical Process for Efficient Treatment of Greywater. Membranes 2022, 12, 514. https://doi.org/10.3390/membranes12050514
Li W, Wang W, Zhang P. Three-Phase Three-Dimensional Electrochemical Process for Efficient Treatment of Greywater. Membranes. 2022; 12(5):514. https://doi.org/10.3390/membranes12050514
Chicago/Turabian StyleLi, Weiyang, Wei Wang, and Peng Zhang. 2022. "Three-Phase Three-Dimensional Electrochemical Process for Efficient Treatment of Greywater" Membranes 12, no. 5: 514. https://doi.org/10.3390/membranes12050514
APA StyleLi, W., Wang, W., & Zhang, P. (2022). Three-Phase Three-Dimensional Electrochemical Process for Efficient Treatment of Greywater. Membranes, 12(5), 514. https://doi.org/10.3390/membranes12050514