Interdependence of Kinetics and Fluid Dynamics in the Design of Photocatalytic Membrane Reactors
Abstract
:1. Introduction
1.1. Factors That Affect PMRs
1.2. The Configuration of Photocatalytic Membrane Reactors (PMRs)
1.2.1. PMRs with Suspended Photocatalysts
PMR Configuration | Radiation Source | Photocatalyst, Membrane | Target Pollutant | Performance | Highlights | Ref | |
---|---|---|---|---|---|---|---|
Suspended | Integrative | Visible | N-TiO2, MF | Diclofenac | 84.18% | - Addition of H2O2 enhanced the degradation of diclofenac - A dense cake layer of photocatalysts and pollutants was formed on the MF membrane | [53] |
UV | TiO2, UF | Trihalomethanes | 86% | - Hydrophobic organic particulates in the model water were absorbed into the membrane causing membrane fouling | [54] | ||
UV | TiO2, UF | Diclofenac | 100% | - pH of the feed water had a significant effect on the performance; high degradation was achieved in acidic conditions | [55] | ||
UV | TiO2, UF | Ketoprofen | 86% | - Thermal conductivity of the TiO2 improved the membrane permeate flux | [56] | ||
Split system | UV | ZnO, NF | Congo red | 100% | - Significant numbers of ZnO photocatalysts were retained by the membrane and they were reused in the continuous process | [11] | |
UV | TiO2, MF | Tannic acid | 96% | - Improved membrane anti-fouling properties | [4] | ||
UV | TiO2, MF | Azo dye Acid Red 1 | <90% | - Performance was influenced by initial dye concentration. - Pseudo-first-order kinetics could not describe the reaction system | [12] | ||
UV | TiO2, UF | Diclofenac | 56% | - Hydraulic residence time had an insignificant effect on the performance | [40] | ||
UV | TiO2, UF | Ibuprofen | 100% | - No significant influence of operation mode was observed - Flux was recovered by cleaning with HCI | [37] | ||
Immobilized | UV | TiO2, ZrO2 active layer on Al2O3 support, UF | Para-chlorobenzoic acid | 0.088 min−1 removal rate | - Low kinetic rates were due to ions present in the feed water | [57] | |
UV | Ag-TiO2 coated on Al2O3 porous membrane | Rhodamine, E. coli | 1.007 mg m−2h−1, 7-log E. coli removed | - Antibacterial and photocatalytic properties of TiO2 were enhanced by Ag | [38] | ||
UV | LiCl-TiO2-doped PVDF, UF | Humic acid | 90% humic acid rejection | - Improved rejection and membrane fouling properties | [44] |
1.2.2. PMRs with Immobilized Photocatalysts
2. Modeling of PMRs’ Operational Parameters
2.1. Flat vs. Cylindrical Membranes
2.2. Membrane Solute Rejection Properties
2.3. Photocatalysts Loading Capacity
2.4. Characteristics of the Light Source
2.5. Residence Time
2.6. Initial Pollutant Concentration
2.7. Reactor Geometry
3. Gaps and Challenges in Current PMR Design
3.1. Reaction Kinetics
3.2. Membrane Stability in PMRs
4. Design of an Ideal PMR
4.1. Material of Construction
4.2. Thickness
4.3. Source of Light
4.4. Geometry
4.5. Incorporation of Magnetic Photocatalytic Nanoparticles
5. Applications of PMRs in the Removal of Emerging Contaminants
6. Conclusions and Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ho, D.P.; Vigneswaran, S.; Ngo, H.H. Photocatalysis-membrane hybrid system for organic removal from bio-logically treated sewage effluent. Sep. Purif. Technol. 2009, 68, 145–152. [Google Scholar] [CrossRef]
- Koe, W.S.; Lee, J.W.; Chong, W.C.; Pang, Y.L.; Sim, L.C. An overview of photocatalytic degradation: Photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Res. 2019, 27, 2522–2565. [Google Scholar] [CrossRef]
- Molinari, R.; Lavorato, C.; Argurio, P. Visible-Light Photocatalysts and Their Perspectives for Building Photocatalytic Membrane Reactors for Various Liquid Phase Chemical Conversions. Catalysts 2020, 10, 1334. [Google Scholar] [CrossRef]
- Shon, H.K.; Phuntsho, S.; Vigneswaran, S. Effect of photocatalysis on the membrane hybrid system for wastewater treatment. Desalination 2008, 225, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Zangeneh, H.; Zinatizadeh, A.A.; Zinadini, S.; Feyzi, M.; Bahnemann, D.W. Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2SiO2/CoFe2O4 nanoparticles. Sep. Purif. Technol. 2019, 209, 764–775. [Google Scholar] [CrossRef]
- Romay, M.; Diban, N.; Rivero, M.J.; Urtiaga, A.; Ortiz, I. Critical Issues and Guidelines to Improve the Performance of Photocatalytic Polymeric Membranes. Catalysts 2020, 10, 570. [Google Scholar] [CrossRef]
- Alfano, O.; Bahnemann, D.B.D.; Cassano, A.; Dillert, R.; Goslich, R. Photocatalysis in water environments using artificial and solar light. Catal. Today 2000, 58, 199–230. [Google Scholar] [CrossRef]
- Augugliaro, V.; García-López, E.; Loddo, V.; Malato, S.; Maldonado, I.; Marcì, G.; Molinari, R.; Palmisano, L. Degradation of lincomycin in aqueous medium: Coupling of solar photocatalysis and membrane separation. Sol. Energy 2005, 79, 402–408. [Google Scholar] [CrossRef]
- Starr, B.J.; Tarabara, V.V.; Herrera-Robledo, M.; Zhou, M.; Roualdes, S.; Ayral, A. Coating porous membranes with a photocatalyst: Comparison of LbL self-assembly and plasma-enhanced CVD techniques. J. Membr. Sci. 2016, 514, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Molinari, R.; Argurio, P.; Bellardita, M.; Palmisano, L. Photocatalytic Processes in Membrane Reactors. In Comprehensive Membrane Science and Engineering, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 101–138. [Google Scholar] [CrossRef]
- Hairom, N.H.H.; Mohammad, A.W.; Kadhum, A.A.H. Effect of various zinc oxide nanoparticles in membrane photocatalytic reactor for Congo red dye treatment. Sep. Purif. Technol. 2014, 137, 74–81. [Google Scholar] [CrossRef] [Green Version]
- Kertèsz, S.; Cakl, J.; Jiránková, H. Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination 2014, 343, 106–112. [Google Scholar] [CrossRef]
- Athanasiou, D.A.; Romanos, G.E.; Falaras, P. Design and optimization of a photocatalytic reactor for water purification combining optical fiber and membrane technologies. Chem. Eng. J. 2016, 305, 92–103. [Google Scholar] [CrossRef]
- Mozia, S.; Darowna, D.; Wróbel, R.; Morawski, A.W. A study on the stability of polyethersulfone ultra filtration membranes in a photocatalytic membrane reactor. Catal. Today 2015, 495, 176–186. [Google Scholar]
- Yin, J.; Deng, B. Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci. 2015, 479, 256–275. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, Y.; He, M.; Su, Y.; Zhao, X.; Elimelech, M.; Jiang, Z. Antifouling membranes for sustainable water purification: Strategies and mechanisms. Chem. Soc. Rev. 2016, 45, 5888–5924. [Google Scholar] [CrossRef]
- Wen, Y.; Yuan, J.; Ma, X.; Wang, S.; Liu, Y. Polymeric nanocomposite membranes for water treatment: A review. Environ. Chem. Lett. 2019, 17, 1539–1551. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef]
- Damodar, R.A.; You, S.-J.; Ou, S.-H. Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Sep. Purif. Technol. 2010, 76, 64–71. [Google Scholar] [CrossRef]
- Hatat-Fraile, M.; Liang, R.; Arlos, M.; He, R.X.; Peng, P.; Servos, M.R.; Zhou, Y.N. Concurrent photocatalytic and filtration processes using doped TiO2 coated quartz fiber membranes in a photocatalytic membrane reactor. Chem. Eng. J. 2017, 330, 531–540. [Google Scholar] [CrossRef]
- Romanos, G.; Athanasekou, C.; Katsaros, F.; Kanellopoulos, N.; Dionysiou, D.; Likodimos, V.; Falaras, P. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. J. Hazard. Mater. 2012, 211–212, 304–316. [Google Scholar] [CrossRef]
- Tshangana, C.S.; Muleja, A.A.; Nxumalo, E.N.; Mhlanga, S.D. Poly (ether) sulfone electrospun nanofibrous membranes embedded with graphene oxide quantum dots with antimicrobial activity. Environ. Sci. Pollut. Res. 2020, 27, 26845–26855. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Mamba, B.B. Interdependence of Contributing Factors Governing Dead-End Fouling of Nanofiltration Membranes. Membranes 2021, 11, 47. [Google Scholar] [CrossRef]
- Mahlangu, O.; Mamba, B.B.; Verliefde, A.R.D. Effect of multivalent cations on membrane-foulant and foulant-foulant interactions controlling fouling of nanofiltration membranes. Polym. Adv. Technol. 2020, 31, 2588–2600. [Google Scholar] [CrossRef]
- Li, C.; Sun, W.; Lu, Z.; Ao, X.; Li, S. Ceramic nanocomposite membranes and membrane fouling: A review. Water Res. 2020, 175, 115674. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Luo, J.; Wan, Y. A novel paradigm of photocatalytic cleaning for membrane fouling removal. J. Membr. Sci. 2021, 641, 119859. [Google Scholar] [CrossRef]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.-L.; Han, Z.-S.; Li, G.-B. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Li, F.; Deng, C.; Du, C.; Yang, B.; Tian, Q. Fouling mechanism and cleanability of ultrafiltration membranes modified with polydopamine-graft-PEG. Water SA 2015, 41, 448. [Google Scholar] [CrossRef] [Green Version]
- Darowna, D.; Wróbel, R.; Morawski, A.W.; Mozia, S. The influence of feed composition on fouling and stability of a polyethersulfone ultrafiltration membrane in a photocatalytic membrane reactor. Chem. Eng. J. 2017, 310, 360–367. [Google Scholar] [CrossRef]
- Leblebici, M.E.; Stefanidis, G.; Van Gerven, T. Comparison of photocatalytic space-time yields of 12 reactor designs for wastewater treatment. Chem. Eng. Process. Process Intensif. 2015, 97, 106–111. [Google Scholar] [CrossRef]
- Qi, N.; Zhang, H.; Jin, B.; Zhang, K. CFD modelling of hydrodynamics and degradation kinetics in an annular slurry photocatalytic reactor for wastewater treatment. Chem. Eng. J. 2011, 172, 84–95. [Google Scholar] [CrossRef]
- Rodriguez-Acosta, J.W.; Mueses, M.A.; Machuca-Martinez, F.; Ngel; Martí, M.; Nez, F. Mixing Rules Formulation for a Kinetic Model of the Langmuir-Hinshelwood Semipredictive Type Applied to the Heterogeneous Photocatalytic Degradation of Multicomponent Mixtures. Int. J. Photoenergy 2014, 2014, 817538. [Google Scholar] [CrossRef] [Green Version]
- Tisa, F.; Abdul Raman, A.; Daud, W.M.A.W. Simulation for supporting scale-up of a fluidized bed reactor for advanced water oxidation. Sci. World J. 2014, 2014, 348974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passalía, C.; Alfano, O.M.; Brandi, R.J. Integral Design Methodology of Photocatalytic Reactors for Air Pollution Remediation. Molecules 2017, 22, 945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbel, S.; Charles, G.; Becheikh, N.; Roques-Carmes, T.; Zahraa, O. Modelling and design of microchannel reactor for photocatalysis. Virtual Phys. Prototyp. 2012, 7, 203–209. [Google Scholar] [CrossRef]
- Casado, C.; Marugán, J.; Timmers, R.; Muñoz, M.; van Grieken, R. Comprehensive multiphysics modeling of photocatalytic processes by computational fluid dynamics based on intrinsic kinetic parameters determined in a differential photoreactor. Chem. Eng. J. 2017, 310, 368–380. [Google Scholar] [CrossRef] [Green Version]
- Mozia, S.; Morawski, A.W. The performance of a hybrid photocatalysis–MD system for the treatment of tap water contaminated with ibuprofen. Catal. Today 2012, 193, 213–220. [Google Scholar] [CrossRef]
- Goei, R.; Lim, T.T. Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: Photocatalytic and anti-bacterial activities. Water Res. 2014, 59, 207–218. [Google Scholar] [CrossRef]
- Méricq, J.P.; Mendret, J.; Brosillon, S.; Faur, C. High performance PVDF-TiO2 membranes for water treatment. Chem. Eng. Sci. 2015, 123, 283–291. [Google Scholar] [CrossRef]
- Plakas, K.V.; Sarasidis, V.C.; Patsios, S.I.; Lambropoulou, D.A.; Karabelas, A.J. Novel pilot scale continuous photocatalytic membrane reactor for removal of organic micropollutants from water. Chem. Eng. J. 2016, 304, 335–343. [Google Scholar] [CrossRef]
- Rani, C.N.; Karthikeyan, S.; Arockia, S.P. Process Intensification Photocatalytic ultrafiltration membrane reactors in water and wastewater treatment—A review. Chem. Eng. Process.-Process Intensif. 2021, 165, 108445. [Google Scholar] [CrossRef]
- Pastrana-Martínez, L.M.; Morales-Torres, S.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Water Res. 2015, 77, 179–190. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Wen, F.; Li, C. A visible-light-driven transfer hydrogenation on CdS nanoparticles combined with iridium complexes. Chem. Commun. 2011, 47, 7080–7082. [Google Scholar] [CrossRef]
- Song, H.; Shao, J.; Wang, J.; Zhong, X. The removal of natural organic matter with LiCl–TiO2-doped PVDF membranes by integration of ultrafiltration with photocatalysis. Desalination 2014, 344, 412–421. [Google Scholar] [CrossRef]
- Sanches, S.; Nunes, C.; Passarinho, P.C.; Ferreira, F.C.; Pereira, V.J.; Crespo, J.G. Development of photocatalytic titanium dioxide membranes for degradation of recalcitrant compounds. J. Chem. Technol. Biotechnol. 2017, 92, 1727–1737. [Google Scholar] [CrossRef]
- Azrague, K.; Aimar, P.; Benoit-Marquié, F.; Maurette, M. A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water. Appl. Catal. B Environ. 2007, 72, 197–204. [Google Scholar] [CrossRef]
- Chen, C.-C.; Shaya, J.; Polychronopoulou, K.; Golovko, V.B.; Tesana, S.; Wang, S.-Y.; Lu, C.-S. Photocatalytic Degradation of Ethiofencarb by a Visible Light-Driven SnIn4S8 Photocatalyst. Nanomaterials 2021, 11, 1325. [Google Scholar] [CrossRef]
- Horovitz, I.; Avisar, D.; Baker, M.A.; Grilli, R.; Lozzi, L.; Di Camillo, D.; Mamane, H. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: Influence of physical parameters. J. Hazard. Mater. 2016, 310, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Sundar, K.P.; Kanmani, S. Progression of Photocatalytic reactors and it’s comparison: A Review. Chem. Eng. Res. Des. 2020, 154, 135–150. [Google Scholar] [CrossRef]
- Zheng, X.; Shen, Z.-P.; Shi, L.; Cheng, R.; Yuan, D.-H. Photocatalytic Membrane Reactors (PMRs) in Water Treatment: Configurations and Influencing Factors. Catalysts 2017, 7, 224. [Google Scholar] [CrossRef]
- Wang, P.; Fane, A.G.; Lim, T.-T. Evaluation of a submerged membrane vis-LED photoreactor (sMPR) for carbamazepine degradation and TiO2 separation. Chem. Eng. J. 2012, 215–216, 240–251. [Google Scholar] [CrossRef]
- Ong, C.S.; Lau, W.J.; Goh, P.S.; Ng, B.; Ismail, A.F.; Choo, C.M. The impacts of various operating conditions on submerged membrane photocatalytic reactors (SMPR) for organic pollutant separation and degradation: A review. RSC Adv. 2015, 5, 97335–97348. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Tran, Q.B.; Nguyen, X.C.; Hai, L.T.; Ho, T.T.T.; Shokouhimehr, M.; Vo, D.-V.N.; Lam, S.S.; Nguyen, H.P.; Hoang, C.T.; et al. Submerged photocatalytic membrane reactor with suspended and immobilized N-doped TiO2 under visible irradiation for diclofenac removal from wastewater. Process Saf. Environ. Prot. 2020, 142, 229–237. [Google Scholar] [CrossRef]
- Fernández, R.L.; McDonald, J.A.; Khan, S.J.; Le-Clech, P. Removal of pharmaceuticals and endocrine disrupting chemicals by a submerged membrane photocatalysis reactor (MPR). Sep. Purif. Technol. 2014, 127, 131–139. [Google Scholar] [CrossRef]
- Plakas, K.; Mantza, A.; Sklari, S.; Zaspalis, V.; Karabelas, A. Heterogeneous Fenton-like oxidation of pharmaceutical diclofenac by a catalytic iron-oxide ceramic microfiltration membrane. Chem. Eng. J. 2019, 373, 700–708. [Google Scholar] [CrossRef]
- Szymański, K.; Gryta, M.; Darowna, D.; Mozia, S. A new submerged photocatalytic membrane reactor based on membrane distillation for ketoprofen removal from various aqueous matrices. Chem. Eng. J. 2022, 435, 134872. [Google Scholar] [CrossRef]
- Janssens, R.; Hainaut, R.; Gillard, J.; Dailly, H.; Luis, P. Performance of a Slurry Photocatalytic Membrane Reactor for the Treatment of Real Secondary Wastewater Effluent Polluted by Anticancer Drugs. Ind. Eng. Chem. Res. 2021, 60, 2223–2231. [Google Scholar] [CrossRef]
- Gupta, S.; Gomaa, H.; Ray, M.B. Fouling control in a submerged membrane reactor: Aeration vs. membrane oscillations. Chem. Eng. J. 2022, 432, 134399. [Google Scholar] [CrossRef]
- Sarasidis, V.C.; Plakas, K.; Patsios, S.I.; Karabelas, A.J. Investigation of diclofenac degradation in a continuous photo-catalytic membrane reactor. Influence of operating parameters. Chem. Eng. J. 2014, 239, 299–311. [Google Scholar] [CrossRef]
- Allé, P.H.; Fanou, G.D.; Robert, D.; Adouby, K.; Drogui, P. Photocatalytic degradation of Rhodamine B dye with TiO2 immobilized on SiC foam using full factorial design. Appl. Water Sci. 2020, 10, 207. [Google Scholar] [CrossRef]
- Cuperus, F.P.; Smolders, C.A. Characterization of UF Membranes Membrane Characteristics and Characterization Techniques. Adv. Colloid Interface Sci. 1991, 34, 135–173. [Google Scholar] [CrossRef] [Green Version]
- Byun, S.; Davies, S.; Alpatova, A.; Corneal, L.; Baumann, M.; Tarabara, V.; Masten, S. Mn oxide coated catalytic membranes for a hybrid ozonation–membrane filtration: Comparison of Ti, Fe and Mn oxide coated membranes for water quality. Water Res. 2011, 45, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.; Grimm, M.; Meyers, J.; Dietrich, C.; Gläser, R.; Schulze, A. Photoactive microfiltration membranes via directed synthesis of TiO2 nanoparticles on the polymer surface for removal of drugs from water. J. Membr. Sci. 2015, 478, 49–57. [Google Scholar] [CrossRef]
- Daraei, P.; Madaeni, S.S.; Ghaemi, N.; Salehi, E.; Khadivi, M.A.; Moradian, R.; Astinchap, B. Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe3O4 nanoparticles with enhanced performance for Cu(II) removal from water. J. Membr. Sci. 2012, 415–416, 250–259. [Google Scholar] [CrossRef]
- Caldeira, L.E.; Guaglianoni, W.C.; Venturini, J.; Arcaro, S.; Bergmann, C.P.; Bragança, S.R. Sintering-dependent mechanical and magnetic properties of spinel cobalt ferrite (CoFe2O4) ceramics prepared via sol-gel synthesis. Ceram. Int. 2020, 46, 2465–2472. [Google Scholar] [CrossRef]
- Zsirai, T.; Al-Jaml, A.; Qiblawey, H.; Al-Marri, M.J.; Ahmed, A.; Bach, S.; Watson, S.; Judd, S. Ceramic membrane filtration of produced water: Impact of membrane module. Sep. Purif. Technol. 2016, 165, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Qin, G.; Wei, W.; Zhao, X. Preparation and characterization of tubular supported ceramic microfiltration membranes from fly ash. Sep. Purif. Technol. 2011, 80, 585–591. [Google Scholar] [CrossRef]
- Szymański, K.; Morawski, A.W.; Mozia, S. Humic acids removal in a photocatalytic membrane reactor with a ceramic UF membrane. Chem. Eng. J. 2016, 305, 19–27. [Google Scholar] [CrossRef]
- Vatanpour, V.; Mansourpanah, Y.; Khadem, S.S.M.; Zinadini, S.; Dizge, N.; Ganjali, M.R.; Mirsadeghi, S.; Rezapour, M.; Saeb, M.R.; Karimi-Male, H. Nanostructured polyethersulfone nanocomposite membranes for dual protein and dye separation: Lower antifouling with lanthanum (III) vanadate nanosheets as a novel nanofiller. Polym. Test. 2021, 94, 107040. [Google Scholar] [CrossRef]
- Issaoui, M.; Limousy, L. Low-cost ceramic membranes: Synthesis, classifications, and applications. Comptes Rendus Chim. 2019, 22, 175–187. [Google Scholar] [CrossRef]
- Moslehyani, A.; Ismail, A.F.; Othman, M.H.D.; Matsuura, T. Hydrocarbon degradation and separation of bilge water via a novel TiO2-HNTs/PVDF-based photocatalytic membrane reactor (PMR). RSC Adv. 2015, 5, 14147–14155. [Google Scholar] [CrossRef]
- Doll, T.E.; Frimmel, F.H. Cross-flow microfiltration with periodical back-washing for photocatalytic degradation of pharmaceutical and diagnostic residues–evaluation of the long-term stability of the photocatalytic activity of TiO2. Water Res. 2005, 39, 847–854. [Google Scholar] [CrossRef]
- Salehian, S.; Heydari, H.; Khansanami, M.; Vatanpour, V.; Mousavi, S.A. Fabrication and performance of polysulfone/H2O2-g-C3N4 mixed matrix membrane in a photocatalytic membrane reactor under visible light irradiation for removal of natural organic matter. Sep. Purif. Technol. 2021, 285, 120291. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Wang, Y.; Ma, S.; Li, T.; Chen, X.; Li, Y.; Jiang, K. Adsorption and fouling behaviors of customized nanocomposite membrane to trace pharmaceutically active compounds under multiple influent matrices. Water Res. 2021, 206, 117762. [Google Scholar] [CrossRef]
- Schnabel, T.; Dutschke, M.; Mehling, S.; Springer, C.A.; Londong, J. Investigation of Factors Influencing the Photocatalytic Degradation of Pharmaceuticals, a Novel Investigation on Supported Catalysts Using UV-A LEDs as Light Source. ChemistrySelect 2022, 7, e202103759. [Google Scholar] [CrossRef]
- Lee, H.; Park, J.; Lam, S.S.; Park, Y.-K.; Kim, S.-C.; Jung, S.-C. Diclofenac degradation properties of a La-doped visible light-responsive TiO2 photocatalyst. Sustain. Chem. Pharm. 2022, 25, 100564. [Google Scholar] [CrossRef]
- Arzani, M.; Mahdavi, H.R.; Sheikhi, M.; Mohammadi, T.; Bakhtiari, O. Ceramic monolith as microfiltration membrane: Preparation, characterization and performance evaluation. Appl. Clay Sci. 2018, 161, 456–463. [Google Scholar] [CrossRef]
- Chong, M.N.; Lei, S.; Jin, B.; Saint, C.; Chow, C.W. Optimisation of an annular photoreactor process for degradation of Congo Red using a newly synthesized titania impregnated kaolinite nano-photocatalyst. Sep. Purif. Technol. 2009, 67, 355–363. [Google Scholar] [CrossRef]
- El-Zanati, E.M.; Farg, E.; Taha, E.; El-Gendi, A.; Abdallah, H. Preparation and characterization of different geo-metrical shapes of multi-bore hollow fiber membranes and application in vacuum membrane distillation. J. Anal. Sci. Technol. 2021, 11, 47. [Google Scholar]
- Bazhenov, S.D.; Bildyukevich, A.V.; Volkov, A.V. Gas-Liquid Hollow Fiber Membrane Contactors for Different Applications. Fibers 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Ruan, G.; Gao, X.; Pan, X.; Su, B.; Gao, C. Pilot study of inside-out and outside-in hollow fiber UF modules as direct pretreatment of seawater at low temperature for reverse osmosis. Desalination 2008, 219, 179–189. [Google Scholar] [CrossRef]
- Loske, L.; Nakagawa, K.; Yoshioka, T.; Matsuyama, H. 2D Nanocomposite Membranes: Water Purification and Fouling Mitigation. Membranes 2020, 10, 295. [Google Scholar] [CrossRef]
- Mahlangu, O.T.; Nackaerts, R.; Mamba, B.; Verliefde, A.R.D. Development of hydrophilic GO-ZnO/PES membranes for treatment of pharmaceutical wastewater. Water Sci. Technol. 2017, 76, 501–514. [Google Scholar] [CrossRef]
- Molinari, R.; Lavorato, C.; Argurio, P. Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal. Today 2017, 281, 144–164. [Google Scholar] [CrossRef]
- Briskot, T.; Hillebrandt, N.; Kluters, S.; Wang, G.; Studts, J.; Hahn, T.; Huuk, T.; Hubbuch, J. Modeling the Gibbs–Donnan effect during ultrafiltration and diafiltration processes using the Poisson–Boltzmann theory in combination with a basic Stern model. J. Membr. Sci. 2022, 648, 120333. [Google Scholar] [CrossRef]
- Mahlangu, T.; Hoek, E.; Mamba, B.; Verliefde, A. Influence of organic, colloidal and combined fouling on NF rejection of NaCl and carbamazepine: Role of solute–foulant–membrane interactions and cake-enhanced concentration polarisation. J. Membr. Sci. 2014, 471, 35–46. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H.; Xie, F.; Ma, X.; Niu, B.; Chen, M.; Zhang, H.; Zhang, Y.; Long, D. General synthesis of ultrafine metal oxide/reduced graphene oxide nanocomposites for ultrahigh-flux nanofiltration membrane. Nat. Commun. 2022, 13, 471. [Google Scholar] [CrossRef]
- Tang, W.; Meng, Y.; Yang, B.; He, D.; Li, Y.; Li, B.; Shi, Z.; Zhao, C. Preparation of hollow-fiber nanofiltration membranes of high performance for effective removal of PFOA and high resistance to BSA fouling. J. Environ. Sci. 2022, 122, 14–24. [Google Scholar] [CrossRef]
- Ali, M.E.A.; Shahat, A.; Ayoub, T.I.; Kamel, R.M. Fabrication of High Flux Polysulfone/Mesoporous Silica Nanocomposite Ultrafiltration Membranes for Industrial Wastewater Treatment. Biointerface Res. Appl. Chem. 2022, 12, 7556–7572. [Google Scholar] [CrossRef]
- Ali, M.E.A.; Atta, A.H.; Medhat, M.; Shahat, A.; Mohamed, S.K. Effective Removal of Methyl blue and Crystal Violet Dyes Using Improved Polysulfone/ZIF-8 Nanocomposite Ultrafiltration Membrane. Biointerface Res. Appl. Chem. 2021, 12, 7942–7956. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Luminescence characteristics of cobalt doped TiO2 nanoparticles. J. Lumin. 2012, 132, 178–184. [Google Scholar] [CrossRef]
- Mmelesi, O.K.; Masunga, N.; Kuvarega, A.; Nkambule, T.T.; Mamba, B.B.; Kefeni, K.K. Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Mater. Sci. Semicond. Process. 2021, 123, 105523. [Google Scholar] [CrossRef]
- Ong, C.S.; Lau, W.J.; Goh, P.S.; Ng, B.C.; Ismail, A.F. Investigation of submerged membrane photocatalytic reactor (sMPR) operating parameters during oily wastewater treatment process. Desalination 2014, 353, 48–56. [Google Scholar] [CrossRef]
- Olatunde, O.C.; Onwudiwe, D.C. UV-light assisted activation of persulfate by rGO-Cu3BiS3 for the degradation of diclofenac. Results Chem. 2022, 4, 100273. [Google Scholar] [CrossRef]
- Adán, C.; Marugán, J.; Mesones, S.; Casado, C.; van Grieken, R. Bacterial inactivation and degradation of organic molecules by titanium dioxide supported on porous stainless steel photocatalytic membranes. Chem. Eng. J. 2017, 318, 29–38. [Google Scholar] [CrossRef]
- Wang, Z.B.; Guan, Y.J.; Chen, B.; Bai, S.L. Retention and separation of 4BS dye from wastewater by the N-TiO2 ceramic membrane. Desalin. Water Treat. 2015, 57, 16963–16969. [Google Scholar] [CrossRef]
- Visan, A.; Van Ommen, J.R.; Kreutzer, M.; Lammertink, R.G.H. Photocatalytic Reactor Design: Guidelines for Kinetic Investigation. Ind. Eng. Chem. Res. 2019, 58, 5349–5357. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Liu, Z. Study on light intensity in the process of photocatalytic degradation of indoor gaseous formaldehyde for saving energy. Energy Convers. Manag. 2007, 48, 882–889. [Google Scholar] [CrossRef]
- Thiele, E.S.; French, R.H. Light-Scattering Properties of Representative, Morphological Rutile Titania Particles Studied Using a Finite-Element Method. J. Am. Ceram. Soc. 1998, 81, 469–479. [Google Scholar] [CrossRef]
- Xing, X.; Tang, S.; Hong, H.; Jin, H. Concentrated solar photocatalysis for hydrogen generation from water by titania-containing gold nanoparticles. Int. J. Hydrogen Energy 2020, 45, 9612–9623. [Google Scholar] [CrossRef]
- Bian, Z.; Tachikawa, T.; Majima, T. Superstructure of TiO2 crystalline nanoparticles yields effective conduction pathways for photogenerated charges. J. Phys. Chem. Lett. 2012, 3, 1422–1427. [Google Scholar] [CrossRef]
- Méndez, F.J.; González-Millán, A.; García-Macedo, J.A. A new insight into Au/TiO2-catalyzed hydrogen production from water-methanol mixture using lamps containing simultaneous ultraviolet and visible radiation. Int. J. Hydrogen Energy 2019, 44, 14945–14954. [Google Scholar] [CrossRef]
- Muleja, A.; Mamba, B. Development of calcined catalytic membrane for potential photodegradation of Congo red in aqueous solution. J. Environ. Chem. Eng. 2018, 6, 4850–4863. [Google Scholar] [CrossRef]
- Tshangana, C.; Chabalala, M.; Muleja, A.; Nxumalo, E.; Mamba, B. Shape-dependant photocatalytic and antimicrobial activity of ZnO nanostructures when conjugated to graphene quantum dots. J. Environ. Chem. Eng. 2020, 8, 103930. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, M.; Mi, B. Membrane surface modification with TiO2–Graphene oxide for enhanced photocatalytic performance. J. Membr. Sci. 2014, 455, 349–356. [Google Scholar] [CrossRef]
- Tshangana, C.S.; Muleja, A.A.; Kuvarega, A.T.; Malefetse, T.J.; Mamba, B.B. The applications of graphene oxide quantum dots in the removal of emerging pollutants in water: An overview. J. Water Process Eng. 2021, 43, 102249. [Google Scholar] [CrossRef]
- Mozia, S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 2010, 73, 71–91. [Google Scholar] [CrossRef]
- Ren, P.; Röckner, M.; Wang, F.-Y. Linearization of nonlinear Fokker-Planck equations and applications. J. Differ. Equ. 2022, 322, 1–37. [Google Scholar] [CrossRef]
- Wang, T.; de Vos, W.M.; de Grooth, J. CoFe2O4-peroxymonosulfate based catalytic UF and NF polymeric membranes for naproxen removal: The role of residence time. J. Membr. Sci. 2021, 646, 120209. [Google Scholar] [CrossRef]
- Faleye, A.; Adegoke, A.A.; Ramluckan, K.; Bux, F.; Stenström, T.A. Antibiotic Residue in the Aquatic Environment: Status in Africa. Open Chem. 2018, 16, 890–903. [Google Scholar] [CrossRef]
- Madikizela, L.M.; Chimuka, L. Occurrence of naproxen, ibuprofen, and diclofenac residues in wastewater and river water of KwaZulu-Natal Province in South Africa. Environ. Monit. Assess. 2017, 189, 348. [Google Scholar] [CrossRef]
- Hai, F.I.; Yang, S.; Asif, M.B.; Sencadas, V.; Shawkat, S.; Sanderson-Smith, M.; Gorman, J.; Xu, Z.-Q.; Yamamoto, K. Carbamazepine as a Possible Anthropogenic Marker in Water: Occurrences, Toxicological Effects, Regulations and Removal by Wastewater Treatment Technologies. Water 2018, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Madikizela, L.M.; Muthwa, S.F.; Chimuka, L. Determination of triclosan and ketoprofen in river water and wastewater by solid phase extraction and high performance liquid chromatography. S. Afr. J. Chem. 2014, 67, 143–150. [Google Scholar]
- Brunetti, A.; Zito, P.F.; Giorno, L.; Drioli, E.; Barbieri, G. Membrane reactors for low temperature applications: An overview. Chem. Eng. Process. Process Intensif. 2017, 124, 282–307. [Google Scholar] [CrossRef]
- Sakarkar, S.; Muthukumran, S.; Jegatheesan, V. Factors affecting the degradation of remazol turquoise blue (RTB) dye by titanium dioxide (TiO2) entrapped photocatalytic membrane. J. Environ. Manag. 2020, 272, 111090. [Google Scholar] [CrossRef]
- Iqbal, J.; Shah, N.S.; Sayed, M.; Khan, J.A.; Muhammad, N.; Khan, Z.U.H.; Rehman, S.U.; Naseem, M.; Howari, F.M.; Nazzal, Y.; et al. Synthesis of nitrogen-doped Ceria nanoparticles in deep eutectic solvent for the degradation of sulfamethaxazole under solar irradiation and additional antibacterial activities. Chem. Eng. J. 2020, 394, 124869. [Google Scholar] [CrossRef]
- Tshangana, C.S.; Muleja, A.A.; Mamba, B.B. Photocatalytic activity of graphene oxide quantum dots in an effluent from a South African wastewater treatment plant. J. Nanopart. Res. 2022, 24, 43. [Google Scholar] [CrossRef]
- Kim, S.K. Darcy friction factor and Nusselt number in laminar tube flow of Carreau fluid. Rheol. Acta 2022, 61, 243–255. [Google Scholar] [CrossRef]
- Tugaoen, H.O.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment. Sci. Total Environ. 2018, 613–614, 1331–1338. [Google Scholar] [CrossRef]
- Ghafoori, S.; Mehrvar, M.; Chan, P.K. Photoreactor scale-up for degradation of aqueous poly(vinyl alcohol) using UV/H2O2 process. Chem. Eng. J. 2014, 245, 133–142. [Google Scholar] [CrossRef]
- Marugán, J.; van Grieken, R.; Cassano, A.E.; Alfano, O.M. Scaling-up of slurry reactors for the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions. Catal. Today 2009, 144, 87–93. [Google Scholar] [CrossRef]
- Puma, G.L.; Brucato, A. Dimensionless analysis of slurry photocatalytic reactors using two-flux and six-flux radiation absorption–scattering models. Catal. Today 2007, 122, 78–90. [Google Scholar] [CrossRef]
- Puma, G.L.; Yue, P.L. Modelling and design of thin-film slurry photocatalytic reactors for water purification. Chem. Eng. Sci. 2003, 58, 2269–2281. [Google Scholar] [CrossRef]
- Ripoll, J. Derivation of the scalar radiative transfer equation from energy conservation of Maxwell’s equations in the far field. J. Opt. Soc. Am. A 2011, 28, 1765–1775. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Z.; Shi, J.; Hu, H.; Shangguan, W. Design consideration of photocatalytic oxidation reactors using TiO2–coated foam nickels for degrading indoor gaseous formaldehyde. Catal. Today 2007, 126, 359–368. [Google Scholar] [CrossRef]
- Puma, G.L. Dimensionless Analysis of Photocatalytic Reactors Using Suspended Solid Photocatalysts. Chem. Eng. Res. Des. 2005, 83, 820–826. [Google Scholar] [CrossRef]
- Brandi, R.J.; Alfano, O.M.; Cassano, A.E. Evaluation of Radiation Absorption in Slurry Photocatalytic Reactors. 2. Experimental Verification of the Proposed Method. Environ. Sci. Technol. 2000, 34, 2631–2639. [Google Scholar] [CrossRef]
- Mottin, S.; Panasenko, G.; Ganesh, S.S. Multiscale Modeling of Light Absorption in Tissues: Limitations of Classical Homogenization Approach. PLoS ONE 2010, 5, e14350. [Google Scholar] [CrossRef]
- Arridge, S. Optical tomography in medical imaging. Inverse Probl. 1999, 15, R41–R93. [Google Scholar] [CrossRef] [Green Version]
- Vaiano, V.; Sacco, O.; Pisano, D.; Sannino, D.; Ciambelli, P. From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chem. Eng. Sci. 2015, 137, 152–160. [Google Scholar] [CrossRef]
- Rosen, A. Reactor Design. Tufts University, USA, Paper. 2014. Available online: https://sites.tufts.edu./andrewrosen/files/2014/09/reactor_design_guide1.pdf. (accessed on 17 March 2022).
- Nauman, B. Handbook of Chemical Reactor Design, Optimization, and Scaleup; Mc Graw-Hill Professional: New York, NY, USA, 2001. [Google Scholar]
- Sinnott, R.K. Coulson and Richardson’s Chemical Engineering Design, 4th ed.; Elseveir: Oxford, UK, 2005. [Google Scholar]
- Assadi, A.A.; Palau, J.; Bouzaza, A.; Wolbert, D. Modeling of a continuous photocatalytic reactor for isovaleraldehyde oxidation: Effect of different operating parameters and chemical degradation pathway. Chem. Eng. Res. Des. 2013, 91, 1307–1316. [Google Scholar] [CrossRef]
- Minero, C. Kinetic analysis of photoinduced reactions at the water semiconductor interface. Catal. Today 1999, 54, 205–216. [Google Scholar] [CrossRef]
- Nielsen, M.G.; In, S.-I.; Vesborg, P.C.; Pedersen, T.; Almtoft, K.P.; Andersen, I.H.; Hansen, O.; Chorkendorff, I. A generic model for photocatalytic activity as a function of catalyst thickness. J. Catal. 2012, 289, 62–72. [Google Scholar] [CrossRef]
- Sanches, S.; Labuto, G.; Crespo, J.G.; Pereira, V.J.; Huertas, R.M. Stability of Polymeric Membranes to UV Exposure before and after Coating with TiO2 Nanoparticles. Polymers 2022, 14, 124. [Google Scholar]
- Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging. In Proceedings of the Nanosafe 2012: International Conferences on Safe Production and Use of Nanomaterials, Grenoble, France, 13–15 November 2012. [Google Scholar]
- Zodrow, K.; Brunet, L.; Mahendra, S.; Li, A.; Zhang, A.; Li, Q.; Alvarez, P.J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Res. 2009, 43, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Wan, H.; Briot, N.; Saad, A.; Ormsbee, L.; Bhattacharyya, D. Pore functionalized PVDF membranes with in-situ synthesized metal nanoparticles: Material characterization, and toxic organic degradation. J. Membr. Sci. 2017, 530, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Towler, G.; Sinnott, R.K. Chemical Engineering Design—Principles, Practice and Economics of Plant and Process Design, 2nd ed.; Elsevier: Oxford, UK, 2013. [Google Scholar]
- Harriott, P. Chemical Reactor Design, 2nd ed.; Marcel Dekker: New York, NY, USA, 2003. [Google Scholar]
- Bao, H.; Zhang, W.; Hua, Q.; Jiang, Z.; Yang, J.; Huang, W. Crystal-plane-controlled surface restructuring and catalytic performance of oxide nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 12294–12298. [Google Scholar] [CrossRef]
- Bhabhor, P.N.S.A. Design and Analytical Calculation of Reactor Pressure Vessel. Int. J. Sci. Res. 2013, 2, 231–235. [Google Scholar]
- Sasser, S. The Design and Testing of a Novel Batch Photocatalytic Reactor and Photocatalyst. Doctoral Dissertation, University of South Florida, Tampa, FL, USA, 2016. [Google Scholar]
- Ravi, R. Reactor Design—General Principles; Elsevier Ltd.: Cambridge, MA, USA, 2017. [Google Scholar] [CrossRef]
- Backhurst, J.R.; Harker, J.H. Fluid Flow, Heat Transfer and Mass Transfer, 1st ed.; Elsevier/Butterworth-Heinemann: Oxford, UK, 2006. [Google Scholar]
- Himadri, R.G. Nonideal Flow in Reactors, Reaction Engineering Principles. In Reaction Engineering Principles; CRC Press: Boca Raton, FL, USA, 2019; Volume 10, pp. 281–330. [Google Scholar] [CrossRef]
- Schwedhelm, I.P. A Non-Invasive Microscopy Platform for the Online Monitoring of hiPSC Aggregation in Suspension Cultures in Small-Scale Stirred Tank Bioreactors. Doctoral Dissertation, Universität Würzburg, Würzburg, Germany, 2019. [Google Scholar]
- Park, Y.; Davis, M.E.; Wallis, D.A. Analysis of a continuous, aerobic, fixed-film bioreactor. I. Steady-state behavior. Biotechnol. Bioeng. 1984, 26, 457–467. [Google Scholar] [CrossRef]
- Hu, X.; Ilgun, A.D.; Passalacqua, A.; Fox, R.O.; Bertola, F.; Milosevic, M.; Visscher, F. CFD simulations of stirred-tank reactors for gas-liquid and gas-liquid-solid systems using OpenFOAM®. Int. J. Chem. React. Eng. 2021, 19, 193–207. [Google Scholar] [CrossRef]
- Abid, M.F.; Abdulrahman, A.A.; Hamza, N.H. Hydrodynamic and kinetic study of a hybrid detoxification process with zero liquid discharge system in an industrial wastewater treatment. J. Environ. Health Sci. Eng. 2014, 12, 145. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, M.; Rashidi, F.; Royaee, S.J.; Jafarikojour, M. Performance evaluation of a continuous flow photocatalytic reactor for wastewater treatment. Environ. Sci. Pollut. Res. 2014, 21, 12505–12517. [Google Scholar] [CrossRef]
- Chekir, N.; Tassalit, D.; Benhabiles, O.; Sahraoui, N.; Mellal, M. Effective removal of paracetamol in compound parabolic collectors and fixed bed reactors under natural sunlight. Water Sci. Technol. 2020, 82, 2460–2471. [Google Scholar] [CrossRef]
- Kumar, J.; Bansal, A. CFD simulations of immobilized-titanium dioxide based annular photocatalytic reactor: Model development and experimental validation. Indian J. Chem. Technol. 2015, 22, 95–104. [Google Scholar]
- Dutta, P.K.; Ray, A.K. Experimental investigation of Taylor vortex photocatalytic reactor for water purification. Chem. Eng. Sci. 2004, 59, 5249–5259. [Google Scholar] [CrossRef]
- Colombo, E.; Ashokkumar, M. Comparison of the photocatalytic efficiencies of continuous stirred tank reactor (CSTR) and batch systems using a dispersed micron sized photocatalyst. RSC Adv. 2017, 7, 48222–48229. [Google Scholar] [CrossRef] [Green Version]
- Protti, S.; Ravelli, D.; Fagnoni, M. Design Consideration of Continuous-Flow Photoreactors. In Photochemical Processes in Continuous-Flow Reactors; World Scientific: Amsterdam, The Netherlands, 2017; Volume 23, pp. 1–36. [Google Scholar] [CrossRef]
- Sambiagio, C.; Noël, T. Flow Photochemistry: Shine Some Light on Those Tubes! Trends Chem. 2020, 2, 92–106. [Google Scholar] [CrossRef] [Green Version]
- Miyawaki, A.; Taira, S.; Shiraishi, F. Performance of continuous stirred-tank reactors connected in series as a photocatalytic reactor system. Chem. Eng. J. 2016, 286, 594–601. [Google Scholar] [CrossRef]
- Tokode, O.; Prabhu, R.; Lawton, L.A.; Robertson, P.K.J. UV LED Sources for Heterogeneous Photocatalysis. In Environmental Photochemistry Part III. The Handbook of Environmental Chemistry; Bahnemann, D., Robertson, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 35. [Google Scholar]
- Yatmaz, H.C.; Wallis, C.; Howarth, C. The spinning disc reactor—Studies on a novel TiO2 photocatalytic reactor. Chemosphere 2001, 42, 397–403. [Google Scholar] [CrossRef]
- Mirzaei, M.; Jafarikojour, M.; Dabir, B.; Dadvar, M. Evaluation and modeling of a spinning disc photoreactor for degradation of phenol: Impact of geometry modification. J. Photochem. Photobiol. A Chem. 2017, 346, 206–214. [Google Scholar] [CrossRef]
- Kanmani, S.; Thanasekaran, K.; Beck, D. Performance Studies on Novel Solar Photocatalytic Reactors for Decolourisation of Textile Dyeing Wastewaters. 2003. Available online: https://www.researchgate.net/publication/297863927 (accessed on 16 March 2022).
- Chong, M.N.; Jin, B.; Chow, C.; Saint, C. A new approach to optimise an annular slurry photoreactor system for the degradation of Congo Red: Statistical analysis and modelling. Chem. Eng. J. 2009, 152, 158–166. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Dai, Y.; Dong, W.; Zhang, S.; Chen, J. CFD modeling of a UV-LED photocatalytic odor abatement process in a continuous reactor. J. Hazard. Mater. 2012, 215–216, 25–31. [Google Scholar] [CrossRef]
- Wright, R. Creep of A508/533 Pressure Vessel Steel; Idaho National Lab: Idaho Falls, ID, USA, 2014; Volume 15, p. 234. [CrossRef]
- Stenstrom, M.K.; Rosso, D. Fundamentals of Chemical Reactor Theory. University of California, LA, Paper. 2014. Available online: https://doczz.net/doc/8855504/fundamentals-of-chemical-reactor-theory (accessed on 16 March 2022).
- Jarvis, P.; Autin, O.; Goslan, E.H.; Hassard, F. Application of Ultraviolet Light-Emitting Diodes. Water 2019, 15, 1894. [Google Scholar] [CrossRef] [Green Version]
- Zeitler, K. Photoredox Catalysis with Visible Light. Angew. Chem. Int. Ed. 2009, 48, 9785–9789. [Google Scholar] [CrossRef]
- Ahmadi, E.; Yousefzadeh, S.; Ansari, M.; Ghaffari, H.R.; Azari, A.; Miri, M.; Mesdaghinia, A.; Nabizadeh, R.; Kakavandi, B.; Ahmadi, P.; et al. Performance, kinetic, and biodegradation pathway evaluation of anaerobic fixed film fixed bed reactor in removing phthalic acid esters from wastewater. Sci. Rep. 2017, 7, srep41020. [Google Scholar] [CrossRef]
- Haitz, R.; Tsao, J.Y. Front Cover: Solid-state lighting: ‘The case’ 10 years after and future prospects. Phys. Status Solidi 2011, 208, 1. [Google Scholar] [CrossRef]
- Khademalrasool, M.; Farbod, M.; Talebzadeh, M.D. The improvement of photocatalytic processes: Design of a photoreactor using high-power LEDs. J. Sci. Adv. Mater. Devices 2016, 1, 382–387. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Valsaraj, K.T. Development of an optical fiber monolith reactor for photocatalytic wastewater Treatment. J. Appl. Electrochem. 2005, 35, 699–708. [Google Scholar] [CrossRef]
- Danion, A.; Disdier, J.; Guillard, C.; Abdelmalek, F.; Jaffrezic-Renault, N. Characterization and study of a single-TiO2-coated optical fiber reactor. Appl. Catal. B Environ. 2004, 52, 213–223. [Google Scholar] [CrossRef]
- Nguyen, T.-V.; Wu, J.C.S. Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. Sol. Energy Mater. Sol. Cells 2008, 92, 864–872. [Google Scholar] [CrossRef]
- Zhu, R.; Che, S.; Liu, X.; Lin, S.; Xu, G.; Ouyang, F. A novel fluidized-bed-optical-fibers photocatalytic reactor (FBOFPR) and its performance. Appl. Catal. A Gen. 2014, 471, 136–141. [Google Scholar] [CrossRef]
- Otálvaro-Marín, H.L.; Mueses, M.A.; Machuca-Martínez, F. Boundary layer of photon absorption applied to heterogeneous photocatalytic solar flat plate reactor design. Int. J. Photoenergy 2014, 2014, 930439. [Google Scholar] [CrossRef] [Green Version]
- Sannino, D.; Vaiano, V.; Sacco, O.; Ciambelli, P. Mathematical modelling of photocatalytic degradation of methylene blue under visible light irradiation. J. Environ. Chem. Eng. 2013, 1, 56–60. [Google Scholar] [CrossRef]
- Rabahi, A.; Assadi, A.A.; Nasrallah, N.; Bouzaza, A.; Maachi, R.; Wolbert, D. Photocatalytic treatment of petroleum industry wastewater using recirculating annular reactor: Comparison of experimental and modeling. Environ. Sci. Pollut. Res. 2019, 26, 19035–19046. [Google Scholar] [CrossRef]
- Khataee, A.; Fathinia, M.; Aber, S.; Zarei, M. Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: Intermediates identification. J. Hazard. Mater. 2010, 181, 886–897. [Google Scholar] [CrossRef]
- UMI.3D Photocatalytic Reactor. Available online: https://umicli.umi.us/discover/5bc4ad8643f0f90222ebdcba/en (accessed on 18 March 2022).
- Masunga, N.; Mamba, B.B.; Getahun, Y.W.; El-Gendy, A.A.; Kefeni, K.K. Synthesis of single-phase superparamagnetic copper ferrite nanoparticles using an optimized coprecipitation method. Mater. Sci. Eng. B 2021, 272, 11536. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.; Mamba, B. Synthesis and characterization of magnetic nanoparticles and study their removal capacity of metals from acid mine drainage. Chem. Eng. J. 2015, 276, 222–231. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.; Mamba, B.B. Ferrite nanoparticles: Synthesis, characterisation and applications in electronic device. Mater. Sci. Eng. B 2017, 215, 37–55. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Mamba, B.B.; Msagati, T.A.M. Application of spinel ferrite nanoparticles in water and wastewater treatment: A review Tetrahedral site Octahedral site Oxygen. Sep. Purif. Technol. 2017, 188, 399–422. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.; Nkambule, T.T.; Mamba, B.B. Synthesis and application of hematite nanoparticles for acid mine drainage treatment. J. Environ. Chem. Eng. 2018, 6, 1865–1874. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, L.; Yuan, J.; Xiang, W.; Liu, H.; Luo, H.; Zhang, X. Photocatalytic optical fibers for degradation of organic pollutants in wastewater: A review. Environ. Chem. Lett. 2011, 19, 1335–1346. [Google Scholar] [CrossRef]
- Shevale, V.B.; Dhodamani, A.G.; Koli, V.B.; Barkul, R.P.; Jadhav, J.P.; Delekar, S.D. Efficient degradation of Azorubin S colourant in the commercial jam-jelly food samples using TiO2-CoFe2O4 nanocomposites in visible light. Mater. Res. Bull. 2017, 89, 79–88. [Google Scholar] [CrossRef]
- Nazarkovsky, M.; Bogatyrov, V.; Czech, B.; Urubkov, I.; Polshin, E.; Wójcik, G.; Gun’Ko, V.; Galaburda, M.; Skubiszewska-Zięba, J. Titania-coated nanosilica–cobalt ferrite composites: Structure and photocatalytic activity. J. Photochem. Photobiol. A Chem. 2015, 319-320, 40–52. [Google Scholar] [CrossRef]
- Lu, Y.-B.; Wang, H.-C.; She, X.-Y.; Huang, D.; Yang, Y.-X.; Gao, X.; Zhu, Z.-M.; Liu, X.-X.; Xie, Z. A novel preparation of GO/NiFe2O4/TiO2 nanorod arrays with enhanced photocatalytic activity for removing unsymmetrical dimethylhydrazine from water. Mater. Sci. Semicond. Process. 2020, 121, 105448. [Google Scholar] [CrossRef]
- Raupp, B.G.; Alessio, A.; Hossain, M.M.; Changrani, R. First-principles modeling, scaling laws and design of structured photocatalytic oxidation reactors for air purification. Catal. Today 2001, 69, 41–49. [Google Scholar] [CrossRef]
- Archer, E.; Wolfaardt, G.M.; Van Wyk, J.H. Review: Pharmaceutical and personal care products (PPCPs) as endocrine disrupting contaminants (EDCs) in South African surface waters. Water SA 2017, 43, 684. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Wang, H.; Xu, P. Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals. Chem. Eng. J. 2017, 310, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Pasco, E.V.; Xagoraraki, I.; Tarabara, V.V. Virus removal and inactivation in a hybrid microfiltration–UV process with a photocatalytic membrane. Sep. Purif. Technol. 2015, 149, 245–254. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Q.; Chen, L.; Wang, J.; Cheng, R. Photocatalytic membrane reactor (PMR) for virus removal in water: Performance and mechanisms. Chem. Eng. J. 2015, 277, 124–129. [Google Scholar] [CrossRef]
- Jiang, L.; Choo, K.-H. Photocatalytic mineralization of secondary effluent organic matter with mitigating fouling propensity in a submerged membrane photoreactor. Chem. Eng. J. 2016, 288, 798–805. [Google Scholar] [CrossRef]
- Rodríguez-Chueca, J.; Mesones, S.; Marugán, J. Hybrid UV-C/microfiltration process in membrane photoreactor for wastewater disinfection. Environ. Sci. Pollut. Res. 2018, 26, 36080–36087. [Google Scholar] [CrossRef]
- Horovitz, I.; Avisar, D.; Luster, E.; Lozzi, L.; Luxbacher, T.; Mamane, H. MS2 bacteriophage inactivation using a N-doped TiO2-coated photocatalytic membrane reactor: Influence of water-quality parameters. Chem. Eng. J. 2018, 354, 995–1006. [Google Scholar] [CrossRef]
- Kazemi, M.; Jahanshahi, M.; Peyravi, M. Hexavalent chromium removal by multilayer membrane assisted by photocatalytic couple nanoparticle from both permeate and retentate. J. Hazard. Mater. 2018, 344, 12–22. [Google Scholar] [CrossRef]
- Su, C.-Y.; Wang, C.-C.; Hsueh, Y.-C.; Gurylev, V.; Kei, C.-C.; Perng, T.-P. Fabrication of highly homogeneous Al-doped TiO2 nanotubes by nanolamination of atomic layer deposition. J. Am. Ceram. Soc. 2017, 100, 4988–4993. [Google Scholar] [CrossRef]
- Szymański, K.; Morawski, A.W.; Mozia, S. Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid UV/H2O2—Ultrafiltration system. Chem. Eng. Process. Process Intensif. 2018, 125, 318–324. [Google Scholar] [CrossRef]
- Song, L.; Zhu, B.; Jegatheesan, V.; Gray, S.; Duke, M.; Muthukumaran, S. Treatment of secondary effluent by sequential combination of photocatalytic oxidation with ceramic membrane filtration. Environ. Sci. Pollut. Res. 2017, 25, 5191–5202. [Google Scholar] [CrossRef]
- Doruk, N.; Yatmaz, H.C.; Dizge, N. Degradation Efficiency of Textile and Wood Processing Industry Wastewater by Photocatalytic Process Using In Situ Ultrafiltration Membrane. Clean–Soil Air Water 2016, 44, 224–231. [Google Scholar] [CrossRef]
- Qu, D.; Qiang, Z.; Xiao, S.; Liu, Q.; Lei, Y.; Zhou, T. Degradation of Reactive Black 5 in a submerged photocatalytic membrane distillation reactor with microwave electrodeless lamps as light source. Sep. Purif. Technol. 2014, 122, 54–59. [Google Scholar] [CrossRef]
- Rawindran, H.; Lim, J.-W.; Goh, P.-S.; Subramaniam, M.N.; Ismail, A.F.; Daud, N.M.R.B.N.M.; Arzhandi, M.R.-D. Simultaneous separation and degradation of surfactants laden in produced water using PVDF/TiO2 photocatalytic membrane. J. Clean. Prod. 2019, 221, 490–501. [Google Scholar] [CrossRef]
- Sanches, S.; Penetra, A.; Rodrigues, A.; Cardoso, V.; Ferreira, E.; Benoliel, M.; Crespo, M.B.; Crespo, J.; Pereira, V. Removal of pesticides from water combining low pressure UV photolysis with nanofiltration. Sep. Purif. Technol. 2013, 115, 73–82. [Google Scholar] [CrossRef]
- Cruz, M.; Gomez, C.; Durán-Valle, C.J.; Pastrana-Martínez, L.M.; Faria, J.; Silva, A.M.; Faraldos, M.; Bahamonde, A. Bare TiO2 and graphene oxide TiO2 photocatalysts on the degradation of selected pesticides and influence of the water matrix. Appl. Surf. Sci. 2017, 416, 1013–1021. [Google Scholar] [CrossRef]
- Luster, E.; Avisar, D.; Horovitz, I.; Lozzi, L.; Baker, M.A.; Grilli, R.; Mamane, H. N-Doped TiO2-Coated Ceramic Membrane for Carbamazepine Degradation in Different Water Qualities. Nanomaterials 2017, 7, 206. [Google Scholar] [CrossRef] [Green Version]
- Pastrana-Martínez, L.M.; Carabineiro, S.A.C.; Buijnsters, J.S.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Photocatalytic activity of nanocarbon-TiO2 composites with gold nanoparticles for the degradation of water pollutants. Water Res. 2016, 10, 87–108. [Google Scholar] [CrossRef]
- Molinari, R.; Caruso, A.; Argurio, P.; Poerio, T. Degradation of the drugs Gemfibrozil and Tamoxifen in pressurized and de-pressurized membrane photoreactors using suspended polycrystalline TiO2 as catalyst. Catal. Today 2008, 319, 54–63. [Google Scholar] [CrossRef]
- Chin, S.S.; Lim, T.M.; Chiang, K.; Fane, A.G. Factors affecting the performance of a low-pressure submerged membrane photocatalytic reactor. Chem. Eng. J. 2007, 130, 53–63. [Google Scholar] [CrossRef]
- Darowna, D.; Grondzewska, S.; Morawski, A.W.; Mozia, S. Removal of non-steroidal anti-inflammatory drugs from primary and secondary effluents in a photocatalytic membrane reactor. J. Chem. Technol. Biotechnol. 2014, 89, 1265–1273. [Google Scholar] [CrossRef]
- Asha, R.C.; Kumar, M. Sulfamethoxazole in poultry wastewater: Identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor. J. Environ. Sci. Health A 2015, 50, 1011–1019. [Google Scholar] [CrossRef]
- Molinari, R.; Pirillo, F.; Loddo, V.; Palmisano, L. Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor. Catal. Today 2006, 118, 205–213. [Google Scholar] [CrossRef] [Green Version]
PSTY | High | Low | |
---|---|---|---|
STY | |||
High | High illumination efficiency High mass ratio | Low illumination efficiency High mass ratio | |
Low | High illumination efficiency Low mass ratio | Low illumination efficiency Low mass ratio |
Reactor Type | Photocatalyst; Irradiation Source | Membrane Type | Water Matrix | Application | Highlights | Ref. | |
---|---|---|---|---|---|---|---|
(1) Water disinfection | Immobilized PMR | TiO2 P25; UV light | Ceramic tubular membrane (0.8 μm pore size) | Simulated water containing bacteriophage P22 | Virus removal | - Photocatalysis improved the LRV compared to simple UV disinfection - The proposed configuration is viable for working with turbid water, since radiation at the permeate side minimizes the scattering of light | [195] |
Submerged slurry PMR | TiO2 P25, UV | A flat sheet polyvinylidene fluoride (PVDF) membrane with a nominal pore size of 0.15 μm | Synthetic water | Virus removal | - The optimum operation was achieved with a 10 to 25 mg TiO2 load, at 40 Lm−2 h−1, and under intermittent suction mode -Fouling occurred at conditions above the optimum - 24 h continuous operation achieved; LRV of 99.99% was achieved | [196] | |
Submerged slurry PMR | TiO2 P25, UV | Hollow fiber polyethylene membrane (0.4 μm pore size) | Municipal wastewater | Inactivation of bacteria | - Bacterial eradication was caused by membrane rejection - UV exposure, ROS oxidation, and adsorption at TiO2 surface successfully deactivated bacteria | [197] | |
Immobilized PMR | TiO2, UVC lamp | Porous stainless steel MF membranes (0.2 μm and 0.5 μm pore sizes) | Synthetic wastewater | Enterococcus faecalis, Escherichia coli, and Candida albicans removal | - Immobilization of TiO2 on the membrane improved filtration performance and UVC attenuation | [198] | |
Immobilized PMR | TiO2 solar UV–vis | N-doped TiO2-coated Al2O3 ceramic membrane | Natural surface water | Removal of MS2 bacteriophage | - LRV of 99.99% was achieved - Performance was affected by water quality - Pretreatment processes improved PMR performance, especially with high alkaline water and organic loading | [199] | |
(2) Treatment of heavy metals | Immobilized PMR | TiO2, nanozerovalent iron, UV light | Thin-film composite (TFC) membrane | Synthetic water | Reduction of Cr(VI) | - High water flow and antifouling capabilities were demonstrated by the membrane - Low Cr(VI) concentrations in permeate were achieved | [200] |
Immobilized PMR | TiO2/Ag NPs under visible light irradiation | Algae-decorated TiO2/Ag hybrid nanofiber membrane | Synthetic water | Photo-removal of Cr(VI) | - Algae inhibited electron and hole recombination, allowing electrons to effectively reduce Cr(VI) on the TiO2 surface - The PMR membrane continued to work effectively after 5 cycles, indicating that it could be useful for organic and heavy metals removal | [201] | |
(3) Treatment of reclaimed wastewater | Submerged PMR | TiO2, UV lamp | Tubular ceramic UF membranes | Municipal wastewater | Removal of secondary effluent organic matter | - Improved membrane fouling resistance with efficiency greater than 60% degradation - PMR efficiency was hampered by turbidity | [10] |
Immobilized PMR | ZrO2, UVC germicidal lamps | TiO2 tubular ceramic UF membranes | Municipal wastewater | Removal of secondary effluent organic matter | - 61% total organic carbon (TOC) removal was achieved after 5 h of operation - Optimum TiO2 of 1.5 g L−1 was used | [202] | |
Slurry PMR | TiO2, UV lamp | Tubular ceramic membrane (0.1 μm pore size) | Municipal wastewater | Removal of secondary effluent organic matter | - During the first 60 min of PMR operation, permeate flux decreased - Organic chemical adsorption was pH-dependent | [203] | |
(4) Dye removal | Submerged PMR | ZnO or TiO2, UVC and UVA lamps | Flat sheet PES UF membrane | Raw textile and wood processing industry wastewaters | Removal of dye | - UVC lamps outperformed UVA lamps by a small margin - Initial wastewater concentration influenced colour removal considerably - Maximum degrading rate was found using an initial COD value of 150 mgO2 L−1 | [204] |
Suspended PMR | ZnO, UV light | Poly piperazine amide NF membrane and polyamide UF membrane | Industrial dye wastewater | Removal of Congo red dye | - 65% Congo red removal - Minimum permeate flux (25%) was achieved using 0.3 g L−1 ZnO - NF membrane performed better in terms of turbidity reduction, colour removal, and rejection of total suspended solids | [58] | |
Submerged PMR | TiO2 P25, microwave electrodeless lamps | PVDF hollow fiber membrane (0.2 μm) | Synthetic water | Reactive black 5 (RB5) | - 5 h of irradiation resulted in RB5 total decolorization and 80.1% TOC elimination - Increased photocatalyst loading from 0.5 to 6.0 g L−1 resulted in a 15.8% reduction in permeate flux | [205] | |
(5) Treatment of oily wastewater | Submerged PMR | TiO2, UV irradiation | PVDF hollow fiber membrane | Synthetic cutting oil wastewater | Removal of oil | - Photocatalytic degradation and water flux were negatively influenced by increasing feed concentration - Under optimal conditions, TOC degradation (80%) and oil rejection (90%) were achieved | [93] |
Immobilized PMR | TiO2, | Hollow fiber PVDF membrane | Oil recovery platform water | Degradation of surfactants | - Membrane performance was impaired by agglomeration of TiO2 NPs - 66.73% COD removal and 47.95 Lm−2h−1 membrane flux were achieved | [206] | |
(6) Removal of pesticides | Immobilized PMR | TiO2 | Ceramic membrane | Synthetic water | Removal of diuron and chlorfenvinphos | - Diuron and chlorfenvinphos removals were 95% and 78%, respectively | [207] |
Slurry PMR | GO-TiO2, UV–vis | Synthetic water made from natural water and ultrapure water | Removal of diuron, isoproturon, atrazine, and alachlor | - In a natural water matrix, improved performance was more meaningful - Under visible light irradiation, TiO2 doped with GO demonstrated improved photocatalytic performance | [208] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakachaka, V.; Tshangana, C.; Mahlangu, O.; Mamba, B.; Muleja, A. Interdependence of Kinetics and Fluid Dynamics in the Design of Photocatalytic Membrane Reactors. Membranes 2022, 12, 745. https://doi.org/10.3390/membranes12080745
Chakachaka V, Tshangana C, Mahlangu O, Mamba B, Muleja A. Interdependence of Kinetics and Fluid Dynamics in the Design of Photocatalytic Membrane Reactors. Membranes. 2022; 12(8):745. https://doi.org/10.3390/membranes12080745
Chicago/Turabian StyleChakachaka, Vimbainashe, Charmaine Tshangana, Oranso Mahlangu, Bhekie Mamba, and Adolph Muleja. 2022. "Interdependence of Kinetics and Fluid Dynamics in the Design of Photocatalytic Membrane Reactors" Membranes 12, no. 8: 745. https://doi.org/10.3390/membranes12080745
APA StyleChakachaka, V., Tshangana, C., Mahlangu, O., Mamba, B., & Muleja, A. (2022). Interdependence of Kinetics and Fluid Dynamics in the Design of Photocatalytic Membrane Reactors. Membranes, 12(8), 745. https://doi.org/10.3390/membranes12080745