Analysis of the Composition of Bromide Anion Oxidation Products in Aqueous Solutions with Different pH via Rotating Ring-Disk Electrode Method
Abstract
:1. Introduction
- Heterogeneous oxidation of bromide (during the stage of formation of bromine) to bromate, which can be realized in an acid medium.
- Homogeneous reaction of disproportionation of bromine in a slightly alkaline medium.
2. Experimental
2.1. Chemicals
2.2. Procedures
2.3. Ring Collection Coefficient Measurements
3. Results and Discussion
3.1. Electrochemical Activity of Various Bromine-Containing Species
3.1.1. Electrochemical Oxidation of Bromide Anion
3.1.2. Electrochemical Activity of NaBrO3 on Pt Ring in Solutions with Various pH Values
3.1.3. Electrochemical Activity of HOBr (OBr−) on the Pt Ring
- Br2 reacts in the whole potential range, including the region above +0.5 V in the diffusion-limited regime.
- BrO− ion is reduced in the potential range near +0.5 V, reaching the diffusion limit near +0.1 V.
- Finally, BrO3− begins to react near +0.1 V, with a gradual increase in the reaction at more negative potentials.
3.2. Ring Collection Coefficients at Different pH Values
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cho, K.T.; Albertus, P.; Battaglia, V.; Kojic, A.; Srinivasan, V.; Weber, A.Z. Optimization and analysis of high-power hydrogen/bromine-flow batteries for grid-scale energy storage. Energy Technol. 2013, 1, 596–608. [Google Scholar] [CrossRef]
- Sun, C.N.; Mench, M.M.; Zawodzinski, T.A. High performance redox flow batteries: An analysis of the upper performance limits of flow batteries using non-aqueous solvents. Electrochim. Acta 2017, 237, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.V.; Kreutzer, H. Effect of transport on the performance of a hydrogen-bromine flow battery. ECS Trans. 2012, 41, 3–9. [Google Scholar] [CrossRef]
- Cho, K.T.; Ridgway, P.; Weber, A.Z.; Haussener, S.; Battaglia, V.; Srinivasan, V. High performance hydrogen/bromine redox flow battery for grid-scale energy storage. J. Electrochem. Soc. 2012, 159, A1806e15. [Google Scholar] [CrossRef]
- Cho, K.T.; Tucker, M.C.; Ding, M.; Ridgway, P.; Battaglia, V.S.; Srinivasan, V.; Weber, A.Z. Cyclic Performance Analysis of Hydrogen/Bromine Flow Batteries for Grid-Scale Energy Storage. ChemPlusChem 2015, 80, 402–411. [Google Scholar] [CrossRef]
- Huskinson, B.; Aziz, M.J. Performance model of a regenerative hydrogen bromine fuel cell for grid-scale energy storage. Energy Sci. Technol. 2013, 5, 1–16. [Google Scholar]
- Modestov, A.D.; Konev, D.V.; Antipov, A.E.; Petrov, M.M.; Pichugov, R.D.; Vorotyntsev, M.A. Bromate electroreduction from sulfuric acid solution at rotating disk electrode: Experimental study. Electrochim. Acta 2018, 259, 655–663. [Google Scholar] [CrossRef]
- Modestov, A.D.; Konev, D.V.; Antipov, A.E.; Vorotyntsev, M.A. Hydrogen-bromate flow battery: Can one reach both high bromate utilization and specific power? J. Solid State Electrochem. 2019, 23, 3075–3088. [Google Scholar] [CrossRef]
- Modestov, A.D.; Konev, D.V.; Tripachev, O.V.; Antipov, A.E.; Tolmachev, Y.V.; Vorotyntsev, M.A. A Hydrogen–Bromate Flow Battery for Air-Deficient Environments. Energy Technol. 2018, 6, 242–245. [Google Scholar] [CrossRef]
- Cettou, P.; Robertson, P.M.; Ibl, N. On the electrolysis of aqueous bromide solutions to bromate. Electrochim. Acta 1984, 29, 875–885. [Google Scholar] [CrossRef]
- Pavlović, O.Ž.; Krstajić, N.V.; Spasojević, M.D. Formation of bromates at a RuO2TiO2 titanium anode. Surf. Coat. Technol. 1988, 34, 177–183. [Google Scholar] [CrossRef]
- Bergmann, M.E.H.; Iourtchouk, T.; Rollin, J. The occurrence of bromate and perbromate on BDD anodes during electrolysis of aqueous systems containing bromide: First systematic experimental studies. J. Appl. Electrochem. 2011, 41, 1109–1123. [Google Scholar] [CrossRef]
- Vacca, A.; Mascia, M.; Palmas, S.; Mais, L.; Rizzardini, S. On the formation of bromate and chlorate ions during electrolysis with boron doped diamond anode for seawater treatment. J. Chem. Technol. Biotechnol. 2013, 88, 2244–2251. [Google Scholar] [CrossRef]
- Osuga, T.; Sugino, K. Electrolytic production of bromates. J. Electrochem. Soc. 1957, 104, 448. [Google Scholar] [CrossRef]
- Johnson, D.C.; Bruckenstein, S. A Ring-Disk Study of HOBr Formation at Platinum Electrodes in 1.0 M H2SO4. J. Electrochem. Soc. 1970, 117, 460. [Google Scholar] [CrossRef]
- Lurie, J. Handbook of Analytical Chemistry; Mir Publishers: Moscow, Russia, 1975. [Google Scholar]
- Michalowski, T. Calculation of pH and potential E for bromine aqueous solution. J. Chem. Educ. 1994, 71, 560. [Google Scholar] [CrossRef]
- Kelsall, G.H.; Welham, N.J.; Diaz, M.A. Thermodynamics of Cl-H2O, Br-H2O, I-H2O, Au-Cl-H2O, Au-Br-H2O and Au-I-H2O systems at 298 K. J. Electroanal. Chem. 1993, 361, 13–24. [Google Scholar] [CrossRef]
- White, R.E.; Bockris, J.O.M.; Conway, B.E.; Yeager, E. (Eds.) Comprehensive Treatise of Electrochemistry: Volume 8 Experimental Methods in Electrochemistry; Springer: New York, NY, USA, 1984. [Google Scholar]
- Vorotyntsev, M.A.; Antipov, A.E. Bromate electroreduction from acidic solution at rotating disc electrode. Theoretical study of the steady-state convective-diffusion transport for excess of bromate ions compared to protons. Electrochim. Acta 2018, 261, 113–126. [Google Scholar] [CrossRef]
- Jaworske, D.A.; Helz, G.R. Use of a rotating ring disc electrode to study fast bromine demand reactions. Int. J. Environ. Anal. Chem. 1985, 19, 189–202. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pichugov, R.; Konev, D.; Speshilov, I.; Abunaeva, L.; Petrov, M.; Vorotyntsev, M.A. Analysis of the Composition of Bromide Anion Oxidation Products in Aqueous Solutions with Different pH via Rotating Ring-Disk Electrode Method. Membranes 2022, 12, 820. https://doi.org/10.3390/membranes12090820
Pichugov R, Konev D, Speshilov I, Abunaeva L, Petrov M, Vorotyntsev MA. Analysis of the Composition of Bromide Anion Oxidation Products in Aqueous Solutions with Different pH via Rotating Ring-Disk Electrode Method. Membranes. 2022; 12(9):820. https://doi.org/10.3390/membranes12090820
Chicago/Turabian StylePichugov, Roman, Dmitry Konev, Ivan Speshilov, Lilia Abunaeva, Mikhail Petrov, and Mikhail Alexeevich Vorotyntsev. 2022. "Analysis of the Composition of Bromide Anion Oxidation Products in Aqueous Solutions with Different pH via Rotating Ring-Disk Electrode Method" Membranes 12, no. 9: 820. https://doi.org/10.3390/membranes12090820
APA StylePichugov, R., Konev, D., Speshilov, I., Abunaeva, L., Petrov, M., & Vorotyntsev, M. A. (2022). Analysis of the Composition of Bromide Anion Oxidation Products in Aqueous Solutions with Different pH via Rotating Ring-Disk Electrode Method. Membranes, 12(9), 820. https://doi.org/10.3390/membranes12090820