Theoretical and Experimental Study of the Effect of Plasma Characteristics on the Mechanical Properties of Ihram Cotton Fabric
Abstract
:1. Introduction
2. Experimental Set-Up
2.1. System Preparations
2.2. Textile Preparations
3. Results and Discussion
3.1. The Radial Distribution of the Electron Temperatures
3.1.1. Axial Distance Larger Than the Radial Distance
3.1.2. Axial Distance Less Than the Radial Distance
- (a)
- (b)
- As the pressure increases lead to a further increase in the breakdown voltage, a sharp increase in electron density and a higher electron–electron collision frequency lead to the decrease of the electron temperatures [32].
- (c)
3.2. Mechanical Properties
- (a)
- The L < R condition had a more favorable impact on the mechanical properties of plasma-treated Ihram cotton fabric samples than in the case L > R condition.
- (b)
- The elasticity area, stretch, and strain percentages of the Ihram cotton fabric samples were increased after treatment with plasma.
- (a)
- The density and the energy of the positive ions emerging from the plasma cell for L > R were much greater than L < R, when colliding with the Ihram cotton fabric sample.
- (b)
- Higher potentials are anticipated since the cathode fall region is compressed in thickness, along with the negative glow and positive column regions when L < R. As a result, a powerful electric field is created, which causes the ions to accelerate and makes the sputtering process more effective [38].
- (c)
- For L < R, the generated plasma temperatures decrease and densities increase; this indicates that the rate of plasma loss by diffusion decreased in a manner similar to that of the applied magnetized DC plasma [39], leading to an increase in current and current density.
Position | Parameters | Units | Untreated | Treated with OMSE | Treated with OMSTE |
---|---|---|---|---|---|
From A to B | stiffness | KPa | 2.75 | 3.2 | 3.5 |
B | yield | KPa | 275 | 320 | 350 |
strength | |||||
C | ultimate | KPa | 400 | 420 | 440 |
tensile strength | |||||
B–C | Strain | KPa | 125 | 100 | 90 |
Hardening | |||||
D | Elongation percent at Breaking Point | % | 200 | 230 | 250 |
Area under the curve of the elastic region | Resilience | J/m3 | 13,750 | 16,000 | 17,500 |
Area under the strain–stress curve up to fracture | Toughness | J/m3 | 50,375 | 55,725 | 60,175 |
3.3. The Mechanism Parameters of Plasma Interaction with Textile Membrane
3.3.1. Process Mechanism
3.3.2. Interaction Type
3.3.3. Gas Type
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phelps, A.V. Abnormal glow discharges in Ar: Experiments and models. Plasma Sources Sci. Technol. 2001, 10, 329. [Google Scholar] [CrossRef]
- Nasser, E. Fundamentals of Gaseous Ionization and Plasma Electronics; Wiley-Interscience: New York, NY, USA, 1971. [Google Scholar]
- Ghimire, B.; Lee, G.J.; Mumtaz, S.; Choi, E.H. Scavenging effects of ascorbic acid and mannitol on hydroxyl radicals generated inside water by an atmospheric pressure plasma jet. AIP Adv. 2018, 8, 075021. [Google Scholar] [CrossRef]
- Domonkos, M.; Tichá, P.; Trejbal, J.; Demo, P. Applications of Cold Atmospheric Pressure Plasma Technology in Medicine, Agriculture and Food Industry. Appl. Sci. 2021, 11, 4809. [Google Scholar] [CrossRef]
- Limanowski, R.; Yan, D.; Li, L.; Keidar, M. Preclinical Cold Atmospheric Plasma Cancer Treatment. Cancers 2022, 14, 3461. [Google Scholar] [CrossRef] [PubMed]
- Richards, J. Energies of particles at the cathode of a glow discharge. Vacuum 1984, 34, 559. [Google Scholar] [CrossRef]
- Galaly, A.R.; Zahran, H.H. Inactivation of bacteria using combined effects of magnetic field, low pressure and ultra low frequency plasma discharges (ULFP). J. Phys. Conf. Ser. 2013, 431, 012014. [Google Scholar] [CrossRef]
- Spasojević, D.; Steflekova, V.; Šišović, N.M.; Konjević, N. Electric field distribution in the cathode-Fall region of an abnormal glow discharge in hydrogen: Experiment and theory. Plasma Sources Sci. Technol. 2012, 21, 025006. [Google Scholar] [CrossRef]
- Parthasarathi, V.; Thilagavathi, G. Development of plasma enhanced antiviral surgical gown for healthcare workers. Fash. Text. 2015, 2, 473. [Google Scholar] [CrossRef]
- Galaly, A.R.; Elakshar, F.F.; Khedr, M.A. Study of the Etching Processes of Si [1 0 0] Wafer Using Ultra Low Frequency Plasma. Mater. Sci. Forum 2013, 756, 143. [Google Scholar] [CrossRef]
- Chen, Z.; Garcia, G., Jr.; Arumugaswami, V.; Wirz, R.E. Cold atmospheric plasma for SARS-CoV-2 inactivation. Phys. Fluids 2020, 32, 111702. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, Y.; Chang, X.; Yao, Z.; Wei, X.; Feng, Z.; Zhang, D.; Zhou, Q.; Wang, X.; Luo, H. In-Duct grating-Like dielectric barrier discharge system for air disinfection. J. Hazard. Mater. 2022, 435, 129075. [Google Scholar] [CrossRef] [PubMed]
- Morris, H.; Murray, R. Modeling the effect of weave structure and fabric thread density on the barrier effectiveness of woven surgical gowns Medical textiles. Text. Prog. 2020, 52, 1–127. [Google Scholar] [CrossRef]
- Rani, K.V.; Sarma, B.; Sarma, A. Plasma sputtering process of copper on polyester/silk blended fabrics for preparation of multifunctional properties. Vacuum 2017, 146, 206–215. [Google Scholar] [CrossRef]
- Galaly, A.R. The Effect of Different Cathode Configurations of the Plasma Cell on the Ion Velocity Distribution Function. IEEE Trans. Plasma Sci. 2021, 49, 535–545. [Google Scholar] [CrossRef]
- Asghar, A.H.; Galaly, A.R. The influence of different plasma cell discharges on the performance quality of surgical gown samples. Materials 2021, 14, 4329. [Google Scholar] [CrossRef]
- Prakash, N.H.; Sarma, B.; Gopi, S.; Sarma, A. Surface and moisture characteristics of jute using a D.C. glow discharge argon plasma. Instrum. Sci. Technol. 2015, 44, 73–84. [Google Scholar] [CrossRef]
- Raizer, Y.P. Gas Discharge Physics; Springer: New York, NY, USA, 1999. [Google Scholar]
- Von Engel, A.H. Ionized Gases; Oxford University Press: Oxford, UK, 1964. [Google Scholar]
- Lieberman, M.A.; Lichtenberg, A.J. Principles of Plasma Discharges for Materials Processing; Wiley Interscience: New York, NY, USA, 1994. [Google Scholar]
- Von Engel, A.; Bickerton, R.J. The Positive Column in a Longitudinal Magnetic Field. Proc. Phys. Society. Sect. B 1956, 59, 468. [Google Scholar]
- Alexander, P. Plasma Physics; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Chen, F. Introduction to Plasma Physics; Plenum Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Fruchtman, A. Ambipolar and nonambipolar cross-field diffusions. Plasma Sources Sci. Technol. 2009, 18, 025033. [Google Scholar]
- Hutchinson, I.H. Principles of Plasma Diagnostics; Cambridge Univ. Press: Cambridge, UK, 1990. [Google Scholar]
- Huba, J.D. Plasma Formulary; Naval Research Laboratory Report NRL/PU/6790-94-265; Naval Research Laboratory: Washington, DC, USA, 2011. [Google Scholar]
- Clement, F.; Held, B.; Soulem, N. Polystyrene thin films treatment under DC pulsed discharges conditions in nitrogen-Argon and oxygen-Argon mixtures. Eur. Phys. J. Appl. Phys. 2002, 17, 119–130. [Google Scholar] [CrossRef]
- Druyvesteyn, M.J.; Penning, F.M. The Mechanism of Electrical Discharges in Gases of Low Pressure Reviews of Modern Physics; American Physical Society: College Park, MD, USA, 1940; Volume 12, p. 87. [Google Scholar]
- Rida Galaly, A.; Van Oost, G. Comparison between Theoretical and Experimental Radial Electron Temperature Profiles in a Low Density Weakly Ionized Plasma. J. Mod. Phys. 2019, 10, 699–716. [Google Scholar] [CrossRef]
- von Engel, A.; Corrigan, S.J.B. The Excitation of Helium by Electrons of Low Energy. Proc. Phys. Soc. 1958, 72, 786–790. [Google Scholar] [CrossRef]
- Cozens, J.R.; Von Engel, A. Theory of the double probe at high gas pressure. Int. J. Electron. 1965, 19, 61–68. [Google Scholar] [CrossRef]
- Galaly, A.; Khedr, M. The edge effect on the EEDF measurements of magnetized DC plasma. Spectroscopy 2015, 6, 7. [Google Scholar] [CrossRef]
- Roth, J.R. Applications to Nonthermal Plasma processing. In Industrial Plasma Engineering; CRC Press: New York, NY, USA, 2019; Volume 2. [Google Scholar]
- Grill, A. Cold Plasma in Material Fabrications; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 1993. [Google Scholar]
- Mendhe, P.; Arolkar, G.; Shukla, S.; Deshmukh, R. Low-Temperature plasma processing for the enhancement of surface properties and dyeability of wool fabric. J. Appl. Polym. Sci. 2016, 133, 43097. [Google Scholar] [CrossRef]
- Sun, D.; Stylios, G.K. Effect of Low Temperature Plasma Treatment on the Scouring and Dyeing of Natural Fabrics. Text. Res. J. 2004, 74, 751–756. [Google Scholar] [CrossRef]
- Chen, F. Mini-Course on Plasma Diagnostics. In Proceedings of the IEEE-ICOPS Meeting, Jeju Island, Korea, 29–30 May 2003. [Google Scholar]
- Galaly, A.R.; Elakshar, F.F. Determination of the cathode fall thickness in the magnetized DC plasma for Argon gas discharge. Phys. Scr. 2013, 88, 65503. [Google Scholar] [CrossRef]
- Yasuda, H.; Tao, W.; Prelas, M. Spatial distributions of electron density and electron temperature in direct current glow discharge. J. Vac. Sci. Technol. 1996, 14, 2113–2121. [Google Scholar]
- Yasuda, H. Plasma Polymerization and Plasma Interactions with Polymeric Materials; John Wiley and Sons Inc.: New York, NY, USA, 1990. [Google Scholar]
- Radmilovic-Radjenovic, M.; Radjenovic, B.; Bojarov, A.; Klas, M.; Matejcik, S. The breakdown mechanisms in electrical discharges: The role of the field emission effect in direct current discharges in microgapsacta. Phys. Slovaca 2013, 63, 105. [Google Scholar] [CrossRef]
- Al-Hakary, S.K. Effect of Pressure and Hot Filament Cathode on Some Plasma Parameters of Hollow Anode Argon Glow Discharge Plasma. Am. J. Mod. Phys. 2016, 5, 30. [Google Scholar] [CrossRef]
- Jelil, R.A. A review of low-Temperature plasma treatment of textile materials. J. Mater. Sci. 2015, 50, 5913–5943. [Google Scholar] [CrossRef]
- Clement, F.; Held, B.; Soulem, N.; Spyrou, N. Polystyrene thin films treatment under DC pulsed discharges conditions in nitrogen. Eur. Phys. J. Appl. Phys. 2001, 13, 67–73. [Google Scholar] [CrossRef]
- Clement, F.; Held, B.; Soulem, N.; Guimon, C. XPS analyses of polystyrene thin films treated under DC pulsed discharges conditions in nitrogen, oxygen and oxygen-argon mixtures. Eur. Phys. J. Appl. Phys. 2002, 18, 135–151. [Google Scholar] [CrossRef]
- Bilek, M.M.M.; Newton-McGee, K.; McKenzie, D.R.; McCulloch, D.G. The role of energetic ions from plasma in the creation of nanostructured materials and stable polymer surface treatments. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2006, 242, 221–227. [Google Scholar] [CrossRef]
- Kan, C.-W.; Lam, Y.-L. Low Stress Mechanical Properties of Plasma-Treated Surgical gown Subjected to Zinc Oxide-Anti-Microbial Treatment. Materials 2013, 6, 314–333. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, M.G.; Nagy, L.; Nierstrasz, V.; Loghin, C.; Chen, Y.; Wang, L. Low-Stress Mechanical Property Study of Various Functional Fabrics for Tactile Property Evaluation. Materials 2018, 11, 2466. [Google Scholar] [CrossRef] [PubMed]
- Zille, A.; Oliveira, F.R.; Souto, A.P. Plasma Treatment in Textile Industry. Plasma Process. Polym. 2014, 12, 98–131. [Google Scholar] [CrossRef]
- Reece Roth, J. Applications to Nonthermal Plasma Processing. In Industrial Plasma Engineering, 1st ed.; CRC Press: Boca Raton, FL, USA, 2001; Volume 2. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galaly, A.R.; Dawood, N. Theoretical and Experimental Study of the Effect of Plasma Characteristics on the Mechanical Properties of Ihram Cotton Fabric. Membranes 2022, 12, 879. https://doi.org/10.3390/membranes12090879
Galaly AR, Dawood N. Theoretical and Experimental Study of the Effect of Plasma Characteristics on the Mechanical Properties of Ihram Cotton Fabric. Membranes. 2022; 12(9):879. https://doi.org/10.3390/membranes12090879
Chicago/Turabian StyleGalaly, Ahmed Rida, and Nagia Dawood. 2022. "Theoretical and Experimental Study of the Effect of Plasma Characteristics on the Mechanical Properties of Ihram Cotton Fabric" Membranes 12, no. 9: 879. https://doi.org/10.3390/membranes12090879
APA StyleGalaly, A. R., & Dawood, N. (2022). Theoretical and Experimental Study of the Effect of Plasma Characteristics on the Mechanical Properties of Ihram Cotton Fabric. Membranes, 12(9), 879. https://doi.org/10.3390/membranes12090879