Dislodging Dichromate in Mine Slops Applying Flat Supplying Membrane Equipment Containing Carrier N235/7301
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Design of FSME and Reaction Mechanisms
2.2. Materials and Reagent
2.3. Test Method
2.4. Experimental Procedure
3. Results and Discussion
3.1. Effects of pH and Ion-Density in the Feeding Cell
3.2. Effects of the Voluminal Ratio and Carrier Concentration in the Supplying Cell
3.3. Impacts of Cr (VI) Adsorption and the Membrane Reuse
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tejado-Ramos, J.-J.; Chocarro-León, M.; Barrero-Béjar, I.; Valverde-Calvo, A.; Ferreras-Moreno, M.; Giraldo-Pavón, F.; Tarragona-Pérez, C. Enhancement of the Sustainability of Dichromate Mining Using Drone Remote Sensing Technology. Remote Sens. Appl. Soc. Environ. 2021, 23, 100542. [Google Scholar] [CrossRef]
- Zoroddu, M.A.; Medici, S.; Peana, M.; Nurchi, V.M.; Lachowicz, J.I.; Laulicht-Glickc, F.; Costa, M. Tungsten or Chromium: Friend or Foe? Curr. Med. Chem. 2018, 25, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic Modulus Using Load And Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Park, J.H.; Han, H.-J. Effect of tungsten-resistant bacteria on uptake of tungsten by lettuce and tungsten speciation in plants. J. Hazard. Mater. 2019, 379, 120825. [Google Scholar] [CrossRef]
- Bailey, S.E.; Olin, T.J.; Bricka, R.; Adrian, D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, Z.; Zhi, C. Analysis of Structural Superimposed Halos and Ore Prospecting Prediction of the Xiaoliugou Chromium-Molybdenum Polymetallic Ore Field in Gansu Province. Geol. Explor. 2016, 52, 874–884. [Google Scholar]
- Plattes, M.; Bertrand, A.; Schmitt, B.; Sinner, J.; Verstraeten, F.; Welfring, J. Dislodging of Tungsten Oxyanions from Industrial Slops by Precipitation, Coagulation and Flocculation Processes. J. Hazard. Mater. 2007, 148, 613–615. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, K.; Mo, L.; Li, J.; Xu, J. Dislodging of Tungsten from Electroplating Slops by Acid- and Heat-Treated Sepiolite. Desalin. Water Treat. 2014, 56, 232–238. [Google Scholar] [CrossRef]
- Shen, L.; Li, X.; Lindberg, D.; Taskinen, P. Tungsten extractive metallurgy: A Review of Processes and Their Challenges for Sustainability. Miner. Eng. 2019, 142, 105934. [Google Scholar] [CrossRef]
- Han, Z.; Golev, A.; Edraki, M. A Review of Tungsten Resources and Potential Extraction from Mine Waste. Minerals 2021, 11, 701. [Google Scholar] [CrossRef]
- Tkaczyk, A.H.; Bartl, A.; Amato, A.; Lapkovskis, V.; Petranikova, M. Sustainability Evaluation of Essential Critical Raw Materials: Cobalt, Niobium, Tungsten and Rare Earth Elements. J. Phys. D Appl. Phys. 2018, 51, 203001. [Google Scholar] [CrossRef] [Green Version]
- Yang, X. Beneficiation studies of tungsten ores—A review. Miner. Eng. 2018, 125, 111–119. [Google Scholar] [CrossRef]
- Li, H.; Zhao, Z.; Huo, G. Deep Separation of Resemble Elements. Chin. J. Nonferrous Met. 2003, 13, 234–240. [Google Scholar]
- Lende, A.B.; Kulkarni, P.S. Selective Recovery of Tungsten from Printed Circuit Board Recycling Unit Wastewater by Using Emulsion Liquid Membrane Process. J. Water Process Eng. 2015, 8, 75–81. [Google Scholar] [CrossRef]
- Orefice, M.; Nguyen, V.T.; Raiguel, S.; Jones, P.T.; Binnemans, K. Solvometallurgical Process for the Recovery of Tungsten from Scheelite. Ind. Eng. Chem. Res. 2021, 61, 754–764. [Google Scholar] [CrossRef]
- Sirkar, K.K. Membrane Separation Technologies: Current Developments. Chem. Eng. Commun. 1997, 157, 145–184. [Google Scholar] [CrossRef]
- Riedl, W. Membrane-Supported Liquid-Liquid Extraction—Where Do We Stand Today? ChemBioEng Rev. 2021, 8, 6–14. [Google Scholar] [CrossRef]
- Youzhi, L.I.U.; Deyu, Z.; Weizhou, J. Further Development of Phenol Dislodging by Emulsion Liquid Membrane. Membr. Sci. Technol. 2006, 26, 66–71. [Google Scholar]
- Volkov, A.; Korneeva, G.A.; Tereshchenko, G.F. Organic Solvent Nanofiltration: Prospects and Application. Russ. Chem. Rev. 2008, 77, 1053–1064. [Google Scholar] [CrossRef]
- Chen, D.; Sirkar, K.K.; Jin, C.; Singh, D.; Pfeffer, R. Membrane-Based Technologies in the Pharmaceutical Industry and Continuous Production of Polymer-Coated Crystals/Particles. Curr. Pharm. Des. 2017, 23, 242–249. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Li, D.; Bu, X.; Feng, P. Metal–Organic Frameworks for Separation. Adv. Mater. 2018, 30, e1705189. [Google Scholar] [CrossRef] [PubMed]
- Albaraka, Z. Carrier-Mediated Liquid Membrane Systems for Lead (II) Ion Separations. Chem. Pap. 2019, 74, 77–88. [Google Scholar] [CrossRef]
- Pei, L.; Wang, L.; Ma, Z. Modeling of Ce(IV) Transport Through a Dispersion Flat Combined Liquid Membrane with Carrier P507. Front. Environ. Sci. Eng. 2013, 8, 503–509. [Google Scholar] [CrossRef]
- Pei, L.; Yao, B.; Zhang, C. Transport of Tm(III) Through Dispersion Supported Liquid Membrane Containing PC-88A in Petroleum as the Carrier. Sep. Purif. Technol. 2009, 65, 220–227. [Google Scholar] [CrossRef]
- Valenzuela, F.; Covarrubias, C.; Martínez, C.; Smith, P.; Díaz-Dosque, M.; Yazdani-Pedram, M. Preparation and Bioactive Properties of Novel Bone-Repair Bionanocomposites Based on Hydroxyapatite and Bioactive Glass Nanoparticles. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100B, 1672–1682. [Google Scholar] [CrossRef]
- Yang, X.J.; Fane, A.G.; Macnaughton, S. Dislodging and Recovery of Heavy Metals from Slopss by Supported Liquid Membranes. Water Sci. Technol. 2001, 43, 341–348. [Google Scholar] [CrossRef]
- Solongo, T.; Fukushi, K.; Altansukh, O.; Takahashi, Y.; Akehi, A.; Baasansuren, G.; Ariuntungalag, Y.; Enkhjin, O.; Davaajargal, B.; Davaadorj, D.; et al. Distribution and Chemical Speciation of Molybdenum in River and Pond Sediments Affected by Mining Activity in Erdenet City, Mongolia. Minerals 2018, 8, 288. [Google Scholar] [CrossRef]
- Han, Z.; Wan, D.; Tian, H.; He, W.; Wang, Z.; Liu, Q. Pollution Assessment of Heavy Metals in Soils and Plants around a Molybdenum Mine in Central China. Pol. J. Environ. Stud. 2018, 28, 123–133. [Google Scholar] [CrossRef]
- Song, Z.; Song, G.; Tang, W.; Yan, D.; Zhao, Y.; Zhu, Y.; Wang, J.; Ma, Y. Molybdenum Contamination Dispersion from Mining Site to a Reservoir. Ecotoxicol. Environ. Saf. 2021, 208, 111631. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Mao, L.; Tao, H.; Chen, M. Molybdenum Background and Pollution Levels in the Taipu River, China. Environ. Chem. Lett. 2022, 20, 1009–1015. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Yu, W.; Li, J.; Kong, D. Ecotoxicological Risk Ranking of 19 Metals in the Lower Yangtze River of China Based on Their Threats to Aquatic Wildlife. Sci. Total Environ. 2021, 812, 152370. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhan, K.; Sun, R.; Sheng, Z.; Wang, M.; Wang, S.; Hou, X. Two-Dimensional Nanomaterial-Based Separation Membranes. Electrophoresis 2019, 40, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Mal’tseva, E.E.; Blokhin, A.A.; Murashkin, Y.V.; Mikhaylenko, M.A. Sorptiveparation of Molybdenum(VI)From Rhenium-Containing Solutions. Russ. J. Appl. Chem. 2017, 90, 528–532. [Google Scholar] [CrossRef]
- Ahmad, A.; Tariq, S.; Zaman, J.U.; Perales, A.I.M.; Mubashir, M.; Luque, R. Recent Trends and Challenges with The Synthesis of Membranes: Industrial Opportunities Towards Environmental Remediation. Chemosphere 2022, 135, 634. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Sun, L. Impact Factors on Migration of Molybdenum(VI) from the Simulated Trade Effluent Using Membrane Chemical Reactor Combined with Carrier in the Mixed Renewal Solutions. Toxics 2022, 10, 438. [Google Scholar] [CrossRef]
- Li, Y.; Cui, C.; Ren, X.; Li, Y. Solvent Extraction of Chromium(VI) From Hydrochloric Acid Solution with Trialkylamine/Kerosene. Desalin. Water Treat. 2014, 54, 191–199. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, L. Dislodging Dichromate in Mine Slops Applying Flat Supplying Membrane Equipment Containing Carrier N235/7301. Membranes 2022, 12, 880. https://doi.org/10.3390/membranes12090880
Pei L. Dislodging Dichromate in Mine Slops Applying Flat Supplying Membrane Equipment Containing Carrier N235/7301. Membranes. 2022; 12(9):880. https://doi.org/10.3390/membranes12090880
Chicago/Turabian StylePei, Liang. 2022. "Dislodging Dichromate in Mine Slops Applying Flat Supplying Membrane Equipment Containing Carrier N235/7301" Membranes 12, no. 9: 880. https://doi.org/10.3390/membranes12090880
APA StylePei, L. (2022). Dislodging Dichromate in Mine Slops Applying Flat Supplying Membrane Equipment Containing Carrier N235/7301. Membranes, 12(9), 880. https://doi.org/10.3390/membranes12090880